1
|
Rostami M, Kolahi Azar H, Salehi M, Abedin Dargoush S, Rostamani H, Jahed-Khaniki G, Alikord M, Aghabeigi R, Ahmadi A, Beheshtizadeh N, Webster TJ, Rezaei N. The food and biomedical applications of curcumin-loaded electrospun nanofibers: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:12383-12410. [PMID: 37691403 DOI: 10.1080/10408398.2023.2251584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Encapsulating curcumin (CUR) in nanocarriers such as liposomes, polymeric micelles, silica nanoparticles, protein-based nanocarriers, solid lipid nanoparticles, and nanocrystals could be efficient for a variety of industrial and biomedical applications. Nanofibers containing CUR represent a stable polymer-drug carrier with excellent surface-to-volume ratios for loading and cell interactions, tailored porosity for controlled CUR release, and diverse properties that fit the requirements for numerous applications. Despite the mentioned benefits, electrospinning is not capable of producing fibers from multiple polymers and biopolymers, and the product's effectiveness might be affected by various machine- and material-dependent parameters like the voltage and the flow rate of the electrospinning process. This review delves into the current and innovative recent research on nanofibers containing CUR and their various applications.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojdeh Salehi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Islamic Azad University, Mashhad, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Alikord
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aghabeigi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Department of Food Sciences and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, Teresina, Brazil
- School of Engineering, Saveetha University, Chennai, India
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Derakhshi M, Naseri M, Vafaeipour Z, Malaekeh-Nikouei B, Jafarian AH, Ansari L. Enhanced wound-healing efficacy of electrospun mesoporous hydroxyapatite nanoparticle-loaded chitosan nanofiber developed using pluronic F127. Int J Biol Macromol 2023; 240:124427. [PMID: 37060977 DOI: 10.1016/j.ijbiomac.2023.124427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
One of the goals of wound repairing is to mimic the function and architecture of the native extracellular matrix (ECM). To this end, for the first time, we used pluronic F127 and mesoporous rod-like hydroxyapatite nanoparticles (mr-HAP NPs) simultaneously to prepare a novel low-diameter electrospun ECM-mimicking wound dressing based on a mixture of chitosan and polyethylene oxide. F127 is used as a surface tension regulator of the polymer solution. In addition, F127 has the special ability to reduce the size of nanofibers. mr-HAP NPs are used as cell proliferation accelerators which also improve the mechanical properties and water uptake capacity of the as-prepared dressing. The average size of nanofibers in the presence of F127 was about 110 nm which was >2.5 times lower than nanofibers prepared without F127. The water uptake capacity was evaluated to investigate the wound exudate absorption capacity of the wound dressing. It was observed that the incorporation of mr-HAP NPs into wound dressing structure increases the water uptake capacity by >2.5 times. Alongside the evaluation of cytocompatibility through in vitro cell viability assay, the wound healing efficacy was also determined in full-thickness skin wounds in a rat model for 15 days. The cytocompatible wound dressing showed significantly higher wound closure efficacy than the control group so the wounds healed entirely on the last day of the treatment period. As well, the pathology analysis proved better granulation tissue development and greater re-epithelialization. These findings are by virtue of the improved mechanical properties, accelerated cell migration and proliferation, proper environment for oxygen exchange, and enhanced exudate uptake of the wound dressing. These all are due to the presence of F127 and mr-HAP.
Collapse
Affiliation(s)
- Mansooreh Derakhshi
- Nano Pajoohan Derakhshan Limited Liability Company, Mashhad 9158754156, Iran
| | - Mahdi Naseri
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Vafaeipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer molecular pathology research center, Mashhad University of medical science, Mashhad, Iran
| | - Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Thummarati P, Suksiriworapong J, Sakchaisri K, Nawroth T, Langguth P, Roongsawang B, Junyaprasert VB. Comparative study of dual delivery of gemcitabine and curcumin using CD44 targeting hyaluronic acid nanoparticles for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Özen İ, Wang X. Biomedicine: electrospun nanofibrous hormonal therapies through skin/tissue—a review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- İlhan Özen
- Textile Engineering Department, Erciyes University, Melikgazi, Kayseri, Turkey
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| |
Collapse
|
5
|
Turgut Y, Yurdakok-Dikmen B, Uyar R, Birer M, Filazi A, Acarturk F. Effects of electrospun fiber curcumin on bisphenol A exposed Caco-2 cells. Drug Chem Toxicol 2021; 45:2613-2625. [PMID: 34696662 DOI: 10.1080/01480545.2021.1979031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Curcumin; the major polyphenolic compound, isolated from Curcuma longa L.; loaded polyvinylpyrrolidone K90 fibers were prepared using electrospinning method. Effectiveness was tested on human colorectal adenocarcinoma cells with the presence of the endocrine disrupter Bisphenol A. Curcumin-loaded fibers were shown to have good physicochemical properties where excellent morphology of the electrospin fibers were formed. With the presence of 8 nM Bisphenol A, 17.37 mM fibers were found to inhibit proliferation in the cells in a dose-dependent manner. Fibers induced a significant increase in malondialdehyde by Thiobarbituric Acid Reactive Substances Assay compared to the control and this effect was supported by the presence of Bisphenol A. Western blot results indicate Super Oxide Dismutase-1 levels were increased by fiber, while Bisphenol A coincubated group resulted in a decrease. Fibers increased the expression of Estrogen Receptor 2, while Estrogen Receptor 1 expression did not change. Estrogen Receptor 2 expression was increased by coincubation with Bisphenol A; indicating a possible role of Estrogen Receptor 2 in the protective effects of fiber. This study presents that fiber had enhanced bioavailability and solubility with increased anticancer effect in human colon adenocarcinoma cells in presence of Bisphenol A; where involved mechanisms are antioxidant system and estrogen receptor expression.
Collapse
Affiliation(s)
- Yağmur Turgut
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Begum Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Recep Uyar
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Mehmet Birer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Fusun Acarturk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Wu S, Liu J, Cai J, Zhao J, Duan B, Chen S. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles. Biofabrication 2021; 13. [PMID: 34450602 DOI: 10.1088/1758-5090/ac2209] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/27/2021] [Indexed: 11/11/2022]
Abstract
Fiber constructed yarns are the elementary building blocks for the generation of implantable biotextiles, and there are always needs for designing and developing new types of yarns to improve the properties of biotextile implants. In the present study, we aim to develop novel nanofiber yarns (NYs) by combining nanostructure that more closely mimic the extracellular matrix fibrils of native tissues with biodegradability, strong mechanical properties and great textile processibility. A novel electrospinning system which integrates yarn formation with hot drawing process was developed to fabricate poly(L-lactic acid) (PLLA) NYs. Compared to the PLLA NYs without hot drawing, the thermally drawn PLLA NYs presented superbly-orientated fibrous structure and notably enhanced crystallinity. Importantly, they possessed admirable mechanical performances, which matched and even exceeded the commercial PLLA microfiber yarns (MYs). The thermally drawn PLLA NYs were also demonstrated to notably promote the adhesion, alignment, proliferation, and tenogenic differentiation of human adipose derived mesenchymal stem cells (hADMSCs) compared to the PLLA NYs without hot drawing. The thermally drawn PLLA NYs were further processed into various nanofibrous tissue scaffolds with defined structures and adjustable mechanical and biological properties using textile braiding and weaving technologies, demonstrating the feasibility and versatility of thermally drawn PLLA NYs for textile-forming utilization. The hADMSCs cultured on PLLA NY-based textiles presented enhanced attachment and proliferation capacities than those cultured on PLLA MY-based textiles. This work presents a facile technique to manufacture high performance PLLA NYs, which opens up opportunities to generate advanced nanostructured biotextiles for surgical implant applications.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, People's Republic of China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, People's Republic of China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
8
|
Sharma D, Satapathy BK. Fabrication of optimally controlled electrosprayed polymer-free nano-particles of curcumin/β-cyclodextrin inclusion complex. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Sharma D, Satapathy BK. Understanding release kinetics and collapse proof suture retention response of curcumin loaded electrospun mats based on aliphatic polyesters and their blends. J Mech Behav Biomed Mater 2021; 120:104556. [PMID: 34000581 DOI: 10.1016/j.jmbbm.2021.104556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
The paper aims at designing and fabrication of PLA/PCL blended suture resistant electrospun mats (EMs) encapsulating non-toxic curcumin and optimization of its release behavior, to facilitate its sustained release at the targeted areas, without complexation with any chemical and/or synthetic drug. The release of curcumin from PLA/PCL blended EMs followed a diffusion-controlled mechanism, as evident from the agreement of the experimental release data with Peppas- Korsmeyer, Higuchi, and Kopcha model. The curcumin embedded EMs have effectively rendered a release confirming to a new generalized logarithmic model. PLA/PCL blended EMs have proved to be an excellent carrier system, exhibiting enhanced cumulative curcumin release with an increase in curcumin loading. The evaluation of structural and viscoelastic properties of the fabricated EMs showed an increase in modulus and strength, along with a subsequent decrease in elongation, with an increase in curcumin content. Suture-induced cooperative collapse dynamics the EMs have been found to be a three-stage process involving stable, stable-unstable, and fast-unstable structural failure corresponding to network realignment, lateral pullout/fracture of fibers, and divergent tearing along the crack path. The viscoelastic responses showed a prominent shift in glass transition temperature (Tg) of the PCL phase indicating the development of curcumin-induced microstructural changes attributed to the H-bonding interaction with polymer segments of PLA/PCL-based EMs. Our study demonstrates, functionally efficient designing of PLA/PCL-based curcumin-loaded biodegradable EMs with sustained retention of tunable mechanical properties and hydrophobicity, irrespective of the extent of (in-vitro) curcumin release.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
10
|
Tanideh N, Azarpira N, Sarafraz N, Zare S, Rowshanghiyas A, Farshidfar N, Iraji A, Zarei M, El Fray M. Poly(3-Hydroxybutyrate)-Multiwalled Carbon Nanotubes Electrospun Scaffolds Modified with Curcumin. Polymers (Basel) 2020. [DOI: https://doi.org/10.3390/polym12112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate selection of suitable materials and methods is essential for scaffolds fabrication in tissue engineering. The major challenge is to mimic the structure and functions of the extracellular matrix (ECM) of the native tissues. In this study, an optimized 3D structure containing poly(3-hydroxybutyrate) (P3HB), multiwalled carbon nanotubes (MCNTs) and curcumin (CUR) was created by electrospinning a novel biomimetic scaffold. CUR, a natural anti-inflammatory compound, has been selected as a bioactive component to increase the biocompatibility and reduce the potential inflammatory reaction of electrospun scaffolds. The presence of CUR in electrospun scaffolds was confirmed by 1H NMR and Fourier-transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) revealed highly interconnected porosity of the obtained 3D structures. Addition of up to 20 wt% CUR has enhanced mechanical properties of the scaffolds. CUR has also promoted in vitro bioactivity and hydrolytic degradation of the electrospun nanofibers. The developed P3HB-MCNT composite scaffolds containing 20 wt% of CUR revealed excellent in vitro cytocompatibility using mesenchymal stem cells and in vivo biocompatibility in rat animal model study. Importantly, the reduced inflammatory reaction in the rat model after 8 weeks of implantation has also been observed for scaffolds modified with CUR. Overall, newly developed P3HB-MCNTs-CUR electrospun scaffolds have demonstrated their high potential for tissue engineering applications.
Collapse
|
11
|
Tanideh N, Azarpira N, Sarafraz N, Zare S, Rowshanghiyas A, Farshidfar N, Iraji A, Zarei M, El Fray M. Poly(3-Hydroxybutyrate)-Multiwalled Carbon Nanotubes Electrospun Scaffolds Modified with Curcumin. Polymers (Basel) 2020; 12:2588. [DOI: https:/doi.org/10.3390/polym12112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Appropriate selection of suitable materials and methods is essential for scaffolds fabrication in tissue engineering. The major challenge is to mimic the structure and functions of the extracellular matrix (ECM) of the native tissues. In this study, an optimized 3D structure containing poly(3-hydroxybutyrate) (P3HB), multiwalled carbon nanotubes (MCNTs) and curcumin (CUR) was created by electrospinning a novel biomimetic scaffold. CUR, a natural anti-inflammatory compound, has been selected as a bioactive component to increase the biocompatibility and reduce the potential inflammatory reaction of electrospun scaffolds. The presence of CUR in electrospun scaffolds was confirmed by 1H NMR and Fourier-transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) revealed highly interconnected porosity of the obtained 3D structures. Addition of up to 20 wt% CUR has enhanced mechanical properties of the scaffolds. CUR has also promoted in vitro bioactivity and hydrolytic degradation of the electrospun nanofibers. The developed P3HB-MCNT composite scaffolds containing 20 wt% of CUR revealed excellent in vitro cytocompatibility using mesenchymal stem cells and in vivo biocompatibility in rat animal model study. Importantly, the reduced inflammatory reaction in the rat model after 8 weeks of implantation has also been observed for scaffolds modified with CUR. Overall, newly developed P3HB-MCNTs-CUR electrospun scaffolds have demonstrated their high potential for tissue engineering applications.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Pharmacology Department, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Najmeh Sarafraz
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Aida Rowshanghiyas
- Department of Medical Biotechnology, Tehran Medical Science, Islamic Azad University, Tehran 19395-1495, Iran
| | - Nima Farshidfar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Moein Zarei
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland
| |
Collapse
|
12
|
Tanideh N, Azarpira N, Sarafraz N, Zare S, Rowshanghiyas A, Farshidfar N, Iraji A, Zarei M, El Fray M. Poly(3-Hydroxybutyrate)-Multiwalled Carbon Nanotubes Electrospun Scaffolds Modified with Curcumin. Polymers (Basel) 2020; 12:E2588. [PMID: 33158130 PMCID: PMC7694206 DOI: 10.3390/polym12112588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Appropriate selection of suitable materials and methods is essential for scaffolds fabrication in tissue engineering. The major challenge is to mimic the structure and functions of the extracellular matrix (ECM) of the native tissues. In this study, an optimized 3D structure containing poly(3-hydroxybutyrate) (P3HB), multiwalled carbon nanotubes (MCNTs) and curcumin (CUR) was created by electrospinning a novel biomimetic scaffold. CUR, a natural anti-inflammatory compound, has been selected as a bioactive component to increase the biocompatibility and reduce the potential inflammatory reaction of electrospun scaffolds. The presence of CUR in electrospun scaffolds was confirmed by 1H NMR and Fourier-transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) revealed highly interconnected porosity of the obtained 3D structures. Addition of up to 20 wt% CUR has enhanced mechanical properties of the scaffolds. CUR has also promoted in vitro bioactivity and hydrolytic degradation of the electrospun nanofibers. The developed P3HB-MCNT composite scaffolds containing 20 wt% of CUR revealed excellent in vitro cytocompatibility using mesenchymal stem cells and in vivo biocompatibility in rat animal model study. Importantly, the reduced inflammatory reaction in the rat model after 8 weeks of implantation has also been observed for scaffolds modified with CUR. Overall, newly developed P3HB-MCNTs-CUR electrospun scaffolds have demonstrated their high potential for tissue engineering applications.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (N.T.); (S.Z.)
- Pharmacology Department, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Najmeh Sarafraz
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (N.T.); (S.Z.)
| | - Aida Rowshanghiyas
- Department of Medical Biotechnology, Tehran Medical Science, Islamic Azad University, Tehran 19395-1495, Iran;
| | - Nima Farshidfar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Moein Zarei
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland
| |
Collapse
|
13
|
Design of active electrospun mats with single and core-shell structures to achieve different curcumin release kinetics. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109900] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Narvani AA, Imam MA, Godenèche A, Calvo E, Corbett S, Wallace AL, Itoi E. Degenerative rotator cuff tear, repair or not repair? A review of current evidence. Ann R Coll Surg Engl 2020; 102:248-255. [PMID: 31896272 PMCID: PMC7099167 DOI: 10.1308/rcsann.2019.0173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION We review the literature and highlight the important factors to consider when counselling patients with non-traumatic rotator cuff tears on which route to take. Factors include the clinical outcomes of surgical and non-surgical routes, tendon healing rates with surgery (radiological outcome) and natural history of the tears if treated non-operatively. METHODS A PRISMA-compliant search was carried out, including the online databases PubMed and Embase™ from 1960 to the end of June 2018. FINDINGS A total of 49 of the 743 (579 PubMed and 164 Embase™) results yielded by the preliminary search were included in the review. There is no doubt that the non-surgical route with an appropriate physiotherapy programme has a role in the management of degenerative rotator cuff tears. This is especially the case in patients with significant risk factors for surgery, those who do not wish to go through a surgical treatment and those with small, partial and irreparable tears. However, rotator cuff repair has a good clinical outcome with significant improvements in pain, range of motion, strength, quality of life and sleep patterns.
Collapse
Affiliation(s)
- A A Narvani
- Ashford and St Peter's NHS Foundation Trust, Chertsey, Surrey, UK
- Fortius Clinic, London, UK
| | - M A Imam
- Ashford and St Peter's NHS Foundation Trust, Chertsey, Surrey, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - E Calvo
- Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | - S Corbett
- Fortius Clinic, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - E Itoi
- Tohoku University School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
Tavares TD, Antunes JC, Ferreira F, Felgueiras HP. Biofunctionalization of Natural Fiber-Reinforced Biocomposites for Biomedical Applications. Biomolecules 2020; 10:E148. [PMID: 31963279 PMCID: PMC7023167 DOI: 10.3390/biom10010148] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
In the last ten years, environmental consciousness has increased worldwide, leading to the development of eco-friendly materials to replace synthetic ones. Natural fibers are extracted from renewable resources at low cost. Their combination with synthetic polymers as reinforcement materials has been an important step forward in that direction. The sustainability and excellent physical and biological (e.g., biocompatibility, antimicrobial activity) properties of these biocomposites have extended their application to the biomedical field. This paper offers a detailed overview of the extraction and separation processes applied to natural fibers and their posterior chemical and physical modifications for biocomposite fabrication. Because of the requirements for biomedical device production, specialized biomolecules are currently being incorporated onto these biocomposites. From antibiotics to peptides and plant extracts, to name a few, this review explores their impact on the final biocomposite product, in light of their individual or combined effect, and analyzes the most recurrent strategies for biomolecule immobilization.
Collapse
Affiliation(s)
| | | | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (T.D.T.); (J.C.A.); (F.F.)
| |
Collapse
|
16
|
Nikolic I, Mitsou E, Pantelic I, Randjelovic D, Markovic B, Papadimitriou V, Xenakis A, Lunter DJ, Zugic A, Savic S. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes' role overcome penetration enhancement effect? Eur J Pharm Sci 2019; 142:105135. [PMID: 31682974 DOI: 10.1016/j.ejps.2019.105135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
The objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers. Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml. Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions' interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.
Collapse
Affiliation(s)
- Ines Nikolic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11221, Serbia
| | - Evgenia Mitsou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Ivana Pantelic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11221, Serbia
| | - Danijela Randjelovic
- Institute of Chemistry, Technology and Metallurgy, Department of Microelectronic Technologies, University of Belgrade, Belgrade 11000, Serbia
| | - Bojan Markovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade 11221, Serbia
| | | | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Dominique Jasmin Lunter
- Institute of Pharmaceutical Technology, Eberhard-Karls University, Tübingen D-72076, Germany
| | - Ana Zugic
- Institute for Medicinal Plant Research "Dr Josif Pančić", Belgrade 11000, Serbia
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11221, Serbia.
| |
Collapse
|
17
|
Sotomil JM, Münchow EA, Pankajakshan D, Spolnik KJ, Ferreira JA, Gregory RL, Bottino MC. Curcumin-A Natural Medicament for Root Canal Disinfection: Effects of Irrigation, Drug Release, and Photoactivation. J Endod 2019; 45:1371-1377. [PMID: 31542283 DOI: 10.1016/j.joen.2019.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/25/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Curcumin incorporation into polymeric fibers was tested for its antimicrobial properties and potential use in root canal disinfection. METHODS Curcumin-modified fibers were processed via electrospinning and tested against a 7-day old established Actinomyces naeslundii biofilm. The medicaments tested were as follows: curcumin-modified fibers at 2.5 and 5.0 mg/mL, curcumin-based irrigant at 2.5 and 5.0 mg/mL, saline solution (negative control), and the following positive controls: 2% chlorhexidine, 1% sodium hypochlorite, and triple antibiotic paste (TAP, 1 mg/mL). All medicaments, except for the positive controls, were allocated according to the light exposure protocol (ie, photoactivation with a light-emitting diode every 30 seconds for 4 minutes or without photoactivation). After treatment, the medicaments were removed, and 1 mL saline solution was added; the biofilm was scraped from the well and used to prepare a 1:2000 dilution. Spiral plating was performed using anaerobic blood agar plates. After 24 hours, colony-forming units (colony-forming units/mL, n = 11/group) were counted to determine the antimicrobial effects. RESULTS Data exhibited significant antimicrobial effects on the positive control groups followed by the curcumin irrigants and, lastly, the photoactivated curcumin-modified fibers. There was a significant reduction of viable bacteria in curcumin-based irrigants, which was greater than the TAP-treated group. Curcumin-free fibers, saline, and the nonphotoactivated curcumin-modified fibers did not display antimicrobial activity. CONCLUSIONS Curcumin seems to be a potential alternative to TAP when controlling infection, but it requires a minimal concentration (2.5 mg/mL) to be effective. Photoactivation of curcumin-based medicaments seems to be essential to obtain greater antibiofilm activity.
Collapse
Affiliation(s)
- Julian M Sotomil
- Department of Prosthodontics, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Eliseu A Münchow
- Department of Dentistry, Health Science Institute, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Divya Pankajakshan
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Kenneth J Spolnik
- Department of Endodontics, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Richard L Gregory
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan.
| |
Collapse
|
18
|
Chung J, Kwak S. Effect of nanoscale confinement on molecular mobility and drug release properties of cellulose acetate/sulindac nanofibers. J Appl Polym Sci 2019. [DOI: 10.1002/app.47863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junho Chung
- Department of Materials Science and EngineeringSeoul National University, 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 South Korea
| | - Seung‐Yeop Kwak
- Department of Materials Science and EngineeringSeoul National University, 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 South Korea
- Research Institute of Advanced Materials (RIAM)Seoul National University, 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 South Korea
| |
Collapse
|
19
|
Lach AA, Morris HL, Martins JA, Stace ET, Carr AJ, Mouthuy PA. Pyridine as an additive to improve the deposition of continuous electrospun filaments. PLoS One 2019; 14:e0214419. [PMID: 31022203 PMCID: PMC6483168 DOI: 10.1371/journal.pone.0214419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Electrospun filaments are leading to a new generation of medical yarns that have the ability to enhance tissue healing through their biophysical cues. We have recently developed a technology to fabricate continuous electrospun filaments by depositing the submicron fibres onto a thin wire. Here we investigate the influence of pyridine on the fibre deposition. We have added pyridine to polydioxanone solutions at concentrations ranging from 0 to 100 ppm, increasing the conductivity of the solutions almost linearly from 0.04 uS/cm to 7 uS/cm. Following electrospinning, this led to deposition length increasing from 1 cm to 14 cm. The samples containing pyridine easily underwent cold drawing. The strength of drawn filaments increased from 0.8 N to 1.5 N and this corresponded to a decrease in fibre diameter, with values dropping from 2.7 μm to 1 μm. Overall, these findings are useful to increase the reliability of the manufacturing process of continuous electrospun filaments and to vary their biophysical properties required for their application as medical yarns such as surgical sutures.
Collapse
Affiliation(s)
- Antonina A. Lach
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Hayley L. Morris
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Joana A. Martins
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Edward T. Stace
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Andrew J. Carr
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Pierre-Alexis Mouthuy
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
20
|
Krishnan K A, Thomas S. Recent advances on herb-derived constituents-incorporated wound-dressing materials: A review. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4540] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Asha Krishnan K
- International and Inter University Centre for Nanoscience and Nanotechnology; Mahatma Gandhi University; Kottayam India
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology; Mahatma Gandhi University; Kottayam India
| |
Collapse
|
21
|
Bae S, DiBalsi MJ, Meilinger N, Zhang C, Beal E, Korneva G, Brown RO, Kornev KG, Lee JS. Heparin-Eluting Electrospun Nanofiber Yarns for Antithrombotic Vascular Sutures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8426-8435. [PMID: 29461035 DOI: 10.1021/acsami.7b14888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The surgical connection of blood vessels, anastomosis, is a critical procedure in many reparative, transplantation, and reconstructive surgical procedures. However, effective restoration of circulation is complicated by pathological clotting (thrombosis) or progressive occlusion due to excess cell proliferation that often leads to additional surgeries and increases morbidity and mortality risk for patients. Pharmaceutical agents have been tested to prevent these complications, but many have unacceptable systemic side effects. Therefore, an alternative approach to deliver these drugs at the site of injury in a controlled manner is necessary. The objective of this study was to develop electrospun nanofibers composed of polyester poly(lactide- co-glycolide) (PLGA), poly(ethylene oxide) (PEO), and positively charged copolymer, poly(lactide- co-glycolide)- graft-polyethylenimine (PgP) for electrostatic binding and release of heparin for application as an antithrombotic microvascular suture. PgP was synthesized with different coupling ratios between PLGA and branched polyethylenimine (bPEI) to obtain PgP1 (∼1 PLGA grafted to 1 bPEI) and PgP3.7 (∼3.7 PLGA grafted to 1 bPEI). Nanofiber yarns (PLGA/PEO/PgP1 and PLGA/PEO/PgP3.7) were fabricated by electrospinning. Heparin immobilization on the positively charged nanofiber yarns was visualized using fluorescein-conjugated heparin (F-Hep), and the amount of immobilized F-Hep was higher on both PLGA/PEO/PgP3.7 and PLGA/PEO/PgP1 than yarns without PgP (PLGA/PEO). We also found that F-Hep was released from both PgP-containing yarns in a sustained manner over 20 days, while over 60% of F-Hep was released within 4 h from PLGA/PEO. Finally, we observed that heparin-eluting nanofiber yarns with both PgP1 and PgP3.7 showed significantly longer clotting times than nanofiber yarns without PgP. The clotting time of PLGA/PEO/PgP3.7 was not significantly different than that of free heparin (0.5 μg/mL). These results show that heparin-eluting electrospun nanofiber yarns may offer a basis for the development of microvascular sutures with anticoagulant activity.
Collapse
Affiliation(s)
- Sooneon Bae
- Dental and Craniofacial Trauma Research & Tissue Regeneration Directorate , United States Army Institute of Surgical Research , JBSA Fort Sam Houston , Texas 78234 , United States
| | | | | | | | | | | | - Robert O Brown
- Department of Head & Neck Surgery , Greenville Health System , Greenville , South Carolina 29615 , United States
| | | | | |
Collapse
|