1
|
Molaei MJ. Magnetic hyperthermia in cancer therapy, mechanisms, and recent advances: A review. J Biomater Appl 2024; 39:3-23. [PMID: 38606627 DOI: 10.1177/08853282241244707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Hyperthermia therapy refers to the elevating of a region in the body for therapeutic purposes. Different techniques have been applied for hyperthermia therapy including laser, microwave, radiofrequency, ultrasonic, and magnetic nanoparticles and the latter have received great attention in recent years. Magnetic hyperthermia in cancer therapy aims to increase the temperature of the body tissue by locally delivering heat from the magnetic nanoparticles to cancer cells with the aid of an external alternating magnetic field to kill the cancerous cells or prevent their further growth. This review introduces magnetic hyperthermia with magnetic nanoparticles. It includes the mechanism of the operation and magnetism behind the magnetic hyperthermia phenomenon. Different synthesis methods and surface modification to enhance the biocompatibility, water solubility, and stability of the nanoparticles in physiological environments have been discussed. Recent research on versatile types of magnetic nanoparticles with their ability to increase the local temperature has been addressed.
Collapse
Affiliation(s)
- Mohammad Jafar Molaei
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
2
|
Dash P, Panda PK, Su C, Lin YC, Sakthivel R, Chen SL, Chung RJ. Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment. J Mater Chem B 2024; 12:3881-3907. [PMID: 38572601 DOI: 10.1039/d3tb01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Sung-Lung Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
3
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Vasil’kov A, Voronova A, Batsalova T, Moten D, Naumkin A, Shtykova E, Volkov V, Teneva I, Dzhambazov B. Evolution of Gold and Iron Oxide Nanoparticles in Conjugates with Methotrexate: Synthesis and Anticancer Effects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3238. [PMID: 37110074 PMCID: PMC10146258 DOI: 10.3390/ma16083238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Au and Fe nanoparticles and their conjugates with the drug methotrexate were obtained by an environmentally safe method of metal-vapor synthesis (MVS). The materials were characterized by transmission and scanning electron microscopy (TEM, SEM), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering using synchrotron radiation (SAXS). The use of acetone as an organic reagent in the MVS makes it possible to obtain Au and Fe particles with an average size of 8.3 and 1.8 nm, respectively, which was established by TEM. It was found that Au, both in the NPs and the composite with methotrexate, was in the Au0, Au+ and Au3+ states. The Au 4f spectra for Au-containing systems are very close. The effect of methotrexate was manifested in a slight decrease in the proportion of the Au0 state-from 0.81 to 0.76. In the Fe NPs, the main state is the Fe3+ state, and the Fe2+ state is also present in a small amount. The analysis of samples by SAXS registered highly heterogeneous populations of metal nanoparticles coexisting with a wide proportion of large aggregates, the number of which increased significantly in the presence of methotrexate. For Au conjugates with methotrexate, a very wide asymmetric fraction with sizes up to 60 nm and a maximum of ~4 nm has been registered. In the case of Fe, the main fraction consists of particles with a radius of 4.6 nm. The main fraction consists of aggregates up to 10 nm. The size of the aggregates varies in the range of 20-50 nm. In the presence of methotrexate, the number of aggregates increases. The cytotoxicity and anticancer activity of the obtained nanomaterials were determined by MTT and NR assays. Fe conjugates with methotrexate showed the highest toxicity against the lung adenocarcinoma cell line and Au nanoparticles loaded with methotrexate affected the human colon adenocarcinoma cell line. Both conjugates displayed lysosome-specific toxicity against the A549 cancer cell line after 120 h of culture. The obtained materials may be promising for the creation of improved agents for cancer treatment.
Collapse
Affiliation(s)
- Alexander Vasil’kov
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Anastasiia Voronova
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Tsvetelina Batsalova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Dzhemal Moten
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Alexander Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia; (E.S.); (V.V.)
| | - Vladimir Volkov
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia; (E.S.); (V.V.)
| | - Ivanka Teneva
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| |
Collapse
|
5
|
Dhawan U, Tseng CL, Wu PH, Liao MY, Wang HY, Wu KCW, Chung RJ. Theranostic doxorubicin encapsulated FeAu alloy@metal-organic framework nanostructures enable magnetic hyperthermia and medical imaging in oral carcinoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102652. [PMID: 36623714 DOI: 10.1016/j.nano.2023.102652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as attractive candidates in cancer theranostics due to their ability to envelop magnetic nanoparticles, resulting in reduced cytotoxicity and high porosity, enabling chemodrug encapsulation. Here, FeAu alloy nanoparticles (FeAu NPs) are synthesized and coated with MIL-100(Fe) MOFs to fabricate FeAu@MOF nanostructures. We encapsulated Doxorubicin within the nanostructures and evaluated the suitability of this platform for medical imaging and cancer theranostics. FeAu@MOF nanostructures (FeAu@MIL-100(Fe)) exhibited superparamagnetism, magnetic hyperthermia behavior and displayed DOX encapsulation and release efficiency of 69.95 % and 97.19 %, respectively, when stimulated with alternating magnetic field (AMF). In-vitro experiments showed that AMF-induced hyperthermia resulted in 90 % HSC-3 oral squamous carcinoma cell death, indicating application in cancer theranostics. Finally, in an in-vivo mouse model, FeAu@MOF nanostructures improved image contrast, reduced tumor volume by 30-fold and tumor weight by 10-fold, which translated to enhancement in cumulative survival, highlighting the prospect of this platform for oral cancer treatment.
Collapse
Affiliation(s)
- Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 110, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 110, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei City 110, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Ping-Hsuan Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Huey-Yuan Wang
- Department of Stomatology, MacKay Memorial Hospital, Taipei 104217, Taiwan.
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City 350, Taiwan; Center of Atomic Initiative for New Materials (Al-MAT), National Taiwan University, Taipei 106216, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan.
| |
Collapse
|
6
|
Thirumurugan S, Dash P, Liu X, Tseng YY, Huang WJ, Li Y, Zhao G, Lin C, Murugan K, Dhawan U, Chung RJ. Angiopep-2-decorated titanium-alloy core-shell magnetic nanoparticles for nanotheranostics and medical imaging. NANOSCALE 2022; 14:14789-14800. [PMID: 36184995 DOI: 10.1039/d2nr03683e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The poor permeability of therapeutic agents across the blood-brain barrier and blood-tumor barrier is a significant barrier in glioma treatment. Low-density lipoprotein receptor-related protein (LRP-1) recognises a dual-targeting ligand, angiopep-2, which is overexpressed in the BBB and gliomas. Here, we have synthesized Ti@FeAu core-shell nanoparticles conjugated with angiopep-2 (Ti@FeAu-Ang nanoparticles) to target glioma cells and treat brain cancer via hyperthermia produced by a magnetic field. Our results confirmed that Ti@FeAu core-shell nanoparticles were superparamagnetic, improved the negative contrast effect on glioma, and exhibited a temperature elevation of 12° C upon magnetic stimulation, which implies potential applications in magnetic resonance imaging (MRI) and hyperthermia-based cancer therapy. Angiopep-2-decorated nanoparticles exhibited higher cellular uptake by C6 glioma cells than by L929 fibroblasts, demonstrating selective glioma targeting and improved cytotoxicity up to 85% owing to hyperthermia produced by a magnetic field. The in vivo findings demonstrated that intravenous injection of Ti@FeAu-Ang nanoparticles exhibited a 10-fold decrement in tumor volume compared to the control group. Furthermore, immunohistochemical analysis of Ti@FeAu-Ang nanoparticles showed that coagulative necrosis of tumor tissues and preliminary safety analysis highlighted no toxicity to the haematological system, after Ti@FeAu-Ang nanoparticle-induced hyperthermia treatment.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| | - Xinrui Liu
- Department of Neurosurgical Oncology, First Hospital of Jilin University, Changchun, China
| | - Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City 236017, Taiwan
| | - Wei-Jhih Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| | - Yunqian Li
- Department of Neurosurgical Oncology, First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgical Oncology, First Hospital of Jilin University, Changchun, China
| | - Chingpo Lin
- Department of Neurosurgical Oncology, First Hospital of Jilin University, Changchun, China
| | - Keerthi Murugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
- Department of Chemistry, Ethiraj College for Women, Chennai, Tamil Nadu, India
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, University of Glasgow, Scotland, UK.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| |
Collapse
|
7
|
Muzzi B, Albino M, Gabbani A, Omelyanchik A, Kozenkova E, Petrecca M, Innocenti C, Balica E, Lavacchi A, Scavone F, Anceschi C, Petrucci G, Ibarra A, Laurenzana A, Pineider F, Rodionova V, Sangregorio C. Star-Shaped Magnetic-Plasmonic Au@Fe 3O 4 Nano-Heterostructures for Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29087-29098. [PMID: 35708301 PMCID: PMC9247976 DOI: 10.1021/acsami.2c04865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 05/19/2023]
Abstract
Here, we synthesize a Au@Fe3O4 core@shell system with a highly uniform unprecedented star-like shell morphology with combined plasmonic and magnetic properties. An advanced electron microscopy characterization allows assessing the multifaceted nature of the Au core and its role in the growth of the peculiar epitaxial star-like shell with excellent crystallinity and homogeneity. Magnetometry and magneto-optical spectroscopy revealed a pure magnetite shell, with a superior saturation magnetization compared to similar Au@Fe3O4 heterostructures reported in the literature, which is ascribed to the star-like morphology, as well as to the large thickness of the shell. Of note, Au@Fe3O4 nanostar-loaded cancer cells displayed magneto-mechanical stress under a low frequency external alternating magnetic field (few tens of Hz). On the other hand, such a uniform, homogeneous, and thick magnetite shell enables the shift of the plasmonic resonance of the Au core to 640 nm, which is the largest red shift achievable in Au@Fe3O4 homogeneous core@shell systems, prompting application in photothermal therapy and optical imaging in the first biologically transparent window. Preliminary experiments performing irradiation of a stable water suspension of the nanostar and Au@Fe3O4-loaded cancer cell culture suspension at 658 nm confirmed their optical response and their suitability for photothermal therapy. The outstanding features of the prepared system can be thus potentially exploited as a multifunctional platform for magnetic-plasmonic applications.
Collapse
Affiliation(s)
- Beatrice Muzzi
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena 1240, I-53100 Siena, Italy
| | - Martin Albino
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Alessio Gabbani
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Chemistry and Industrial Chemistry & INSTM, University of Pisa, 56126 Pisa, Italy
| | - Alexander Omelyanchik
- Institute
of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236008 Kaliningrad, Russia
| | - Elena Kozenkova
- Institute
of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236008 Kaliningrad, Russia
| | - Michele Petrecca
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Claudia Innocenti
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
| | - Elena Balica
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Lavacchi
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
| | - Francesca Scavone
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Firenze, Italy
| | - Cecilia Anceschi
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Firenze, Italy
| | - Gaia Petrucci
- Department
of Chemistry and Industrial Chemistry & INSTM, University of Pisa, 56126 Pisa, Italy
| | - Alfonso Ibarra
- Laboratorio
de Microscopias Avanzadas (LMA), Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | - Anna Laurenzana
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Firenze, Italy
| | - Francesco Pineider
- Department
of Chemistry and Industrial Chemistry & INSTM, University of Pisa, 56126 Pisa, Italy
| | - Valeria Rodionova
- Institute
of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236008 Kaliningrad, Russia
| | - Claudio Sangregorio
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
8
|
Recent Advances of Magnetic Gold Hybrids and Nanocomposites, and Their Potential Biological Applications. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Magnetic gold nanoparticles (mGNP) have become a great interest of research for nanomaterial scientists because of their significant magnetic and plasmonic properties applicable in biomedical applications. Various synthetic approaches and surface modification techniques have been used for mGNP including the most common being the coprecipitation, thermal decomposition, and microemulsion methods in addition to the Brust Schiffrin technique, which involves the reduction of metal precursors in a two-phase system (water and toluene) in the presence of alkanethiol. The hybrid magnetic–plasmonic nanoparticles based on iron core and gold shell are being considered as potential theranostic agents. In this critical review, in addition to future works, we have summarized recent developments for synthesis and surface modification of mGNP with their applications in modern biomedical science such as drug and gene delivery, bioimaging, biosensing, and neuro-regeneration, neuro-degenerative and arthritic disorders. This review includes techniques and biological applications of mGNP majorly based on research from the previous six years.
Collapse
|
9
|
Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants (Basel) 2022; 11:antiox11040625. [PMID: 35453310 PMCID: PMC9030926 DOI: 10.3390/antiox11040625] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent developments in diagnosis and treatment options, cancer remains one of the most critical threats to health. Several anti-cancer therapies have been identified, but further research is needed to provide more treatment options that are safe and effective for cancer. Hyperthermia (HT) is a promising treatment strategy for cancer because of its safety and cost-effectiveness. This review summarizes studies on the anti-cancer effects of HT and the detailed mechanisms. In addition, combination therapies with anti-cancer drugs or natural products that can effectively overcome the limitations of HT are reviewed because HT may trigger protective events, such as an increase of heat shock proteins (HSPs). In the 115 reports included, the mechanisms related to apoptosis, cell cycle, reactive oxygen species, mitochondrial membrane potential, DNA damage, transcription factors and HSPs were considered important. This review shows that HT is an effective inducer of apoptosis. Moreover, the limitations of HT may be overcome using combined therapy with anti-cancer drugs or natural products. Therefore, appropriate combinations of such agents with HT will exert maximal effects to treat cancer.
Collapse
|
10
|
Meng F, Yun Z, Yan G, Wang G, Lin C. Engineering of anticancer drugs entrapped polymeric nanoparticles for the treatment of colorectal cancer therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Assessing Suitability of Co@Au Core/Shell Nanoparticle Geometry for Improved Theranostics in Colon Carcinoma. NANOMATERIALS 2021; 11:nano11082048. [PMID: 34443879 PMCID: PMC8401835 DOI: 10.3390/nano11082048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
The interactions between cells and nanomaterials at the nanoscale play a pivotal role in controlling cellular behavior and ample evidence links cell intercommunication to nanomaterial size. However, little is known about the effect of nanomaterial geometry on cell behavior. To elucidate this and to extend the application in cancer theranostics, we have engineered core–shell cobalt–gold nanoparticles with spherical (Co@Au NPs) and elliptical morphology (Co@Au NEs). Our results show that owing to superparamagnetism, Co@Au NPs can generate hyperthermia upon magnetic field stimulation. In contrast, due to the geometric difference, Co@Au NEs can be optically excited to generate hyperthermia upon photostimulation and elevate the medium temperature to 45 °C. Both nanomaterial geometries can be employed as prospective contrast agents; however, at identical concentration, Co@Au NPs exhibited 4-fold higher cytotoxicity to L929 fibroblasts as compared to Co@Au NEs, confirming the effect of nanomaterial geometry on cell fate. Furthermore, photostimulation-generated hyperthermia prompted detachment of anti-cancer drug, Methotrexate (MTX), from Co@Au NEs-MTX complex and which triggered 90% decrease in SW620 colon carcinoma cell viability, confirming their application in cancer theranostics. The geometry-based perturbation of cell fate can have a profound impact on our understanding of interactions at nano-bio interface which can be exploited for engineering materials with optimized geometries for superior theranostic applications.
Collapse
|
12
|
Tarkistani MAM, Komalla V, Kayser V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1227. [PMID: 34066549 PMCID: PMC8148580 DOI: 10.3390/nano11051227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Recently, there has been an increased interest in iron-gold-based hybrid nanostructures, due to their combined outstanding optical and magnetic properties resulting from the usage of two separate metals. The synthesis of these nanoparticles involves thermal decomposition and modification of their surfaces using a variety of different methods, which are discussed in this review. In addition, different forms such as core-shell, dumbbell, flower, octahedral, star, rod, and Janus-shaped hybrids are discussed, and their unique properties are highlighted. Studies on combining optical response in the near-infrared window and magnetic properties of iron-gold-based hybrid nanoparticles as multifunctional nanoprobes for drug delivery, magnetic-photothermal heating as well as contrast agents during magnetic and optical imaging and magnetically-assisted optical biosensing to detect traces of targeted analytes inside the body has been reviewed.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (M.A.M.T.); (V.K.)
| |
Collapse
|
13
|
Huynh KH, Hahm E, Noh MS, Lee JH, Pham XH, Lee SH, Kim J, Rho WY, Chang H, Kim DM, Baek A, Kim DE, Jeong DH, Park SM, Jun BH. Recent Advances in Surface-Enhanced Raman Scattering Magnetic Plasmonic Particles for Bioapplications. NANOMATERIALS 2021; 11:nano11051215. [PMID: 34064407 PMCID: PMC8147842 DOI: 10.3390/nano11051215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
The surface-enhanced Raman scattering (SERS) technique, that uses magnetic plasmonic particles (MPPs), is an advanced SERS detection platform owing to the synergetic effects of the particles’ magnetic and plasmonic properties. As well as being an ultrasensitive and reliable SERS material, MPPs perform various functions, such as aiding in separation, drug delivery, and acting as a therapeutic material. This literature discusses the structure and multifunctionality of MPPs, which has enabled the novel application of MPPs to various biological fields.
Collapse
Affiliation(s)
- Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Mi Suk Noh
- Medical Device & Bio-research Team, Bio-medical & Environ-chemical Division, Korea Testing Certification, Gunpo, Gyeonggi-do 15809, Korea;
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Korea;
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do 24341, Korea;
| | - Dong Min Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Ahruem Baek
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
- Center for Educational Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seung-min Park
- Department of Urology, Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: (S.-m.P.); (B.-H.J.); Tel.: +82-2-450-0521 (B.-H.J.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
- Correspondence: (S.-m.P.); (B.-H.J.); Tel.: +82-2-450-0521 (B.-H.J.)
| |
Collapse
|
14
|
Improved photothermal therapy of brain cancer cells and photogeneration of reactive oxygen species by biotin conjugated gold photoactive nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 215:112102. [PMID: 33388605 DOI: 10.1016/j.jphotobiol.2020.112102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Herein, we report on the design and development of functionalized acrylic polymeric nanoparticles with Spiropyrans (SPs) and imidazole moieties via superficial polymerizations. Then, Au3+ ions were immobilized and reduced on their surface to obtain photoresponsive gold-decorated polymer nanoparticles(Au-NPs). The synthesized Au-NPs were surface adapted with biotin as specific targeting tumor penetration cells and enhance the intercellular uptake through the endocytosis. FT-IR (Fourier-transform Infrared Spectroscopy), UV-Vis (Ultra Violet-Visible Spectrophotometer), EDS (Energy Dispersive X-Ray Spectroscopy), SEM (Scanning Electron Microscope) and HR-TEM (High-resolution transmission electron microscopy) descriptions were engaged to illustrate their spectral analysis and morphological examinations of Bt@Au-NPs. Fluorescence microscopy images of cellular uptake descriptions and ICP-MS (Inductively coupled plasma mass spectrometry) investigation established the cell lines labeling ability and enhanced targetting efficacy of biotin-conjugated Au-NPs (Bt@Au-NPs) toward C6 glioma cells (brain cancer cells) with 72.5% cellular uptake relative to 30.2% for non-conjugated lone. These were further established through intracellular ROS examinations and in vitro cytotoxicity investigation on the C6 glioma cell line. The solid surface plasmon absorptions of the Au-NPs and Bt@Au-NPs providing raised photothermal therapy under UV irradiation. The synthesized multifunctional Bt@Au-NPs with an inclusive combination of potential resources presented encouraging nanoprobe with targeting capability, improved photodynamic and photothermal cancer therapy.
Collapse
|
15
|
Ting CK, Dhawan U, Tseng CL, Alex Gong CS, Liu WC, Tsai HD, Chung RJ. Hyperthermia-Induced Controlled Local Anesthesia Administration Using Gelatin-Coated Iron-Gold Alloy Nanoparticles. Pharmaceutics 2020; 12:E1097. [PMID: 33207577 PMCID: PMC7697341 DOI: 10.3390/pharmaceutics12111097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023] Open
Abstract
The lack of optimal methods employing nanoparticles to administer local anesthesia often results in posing severe risks such as non-biocompatibility, in vivo cytotoxicity, and drug overdose to patients. Here, we employed magnetic field-induced hyperthermia to achieve localized anesthesia. We synthesized iron-gold alloy nanoparticles (FeAu Nps), conjugated an anesthetic drug, Lidocaine, and coated the product with gelatin to increase the biocompatibility, resulting in a FeAu@Gelatin-Lidocaine nano-complex formation. The biocompatibility of this drug-nanoparticle conjugate was evaluated in vitro, and its ability to trigger local anesthesia was also evaluated in vivo. Upon exposure to high-frequency induction waves (HFIW), 7.2 ± 2.8 nm sized superparamagnetic nanoparticles generated heat, which dissociated the gelatin coating, thereby triggering Lidocaine release. MTT assay revealed that 82% of cells were viable at 5 mg/mL concentration of Lidocaine, indicating that no significant cytotoxicity was induced. In vivo experiments revealed that unless stimulated with HFIW, Lidocaine was not released from the FeAu@Gelatin-Lidocaine complex. In a proof-of-concept experiment, an intramuscular injection of FeAu@Gelatin-Lidocaine complex was administered to the rat posterior leg, which upon HFIW stimulation triggered an anesthetic effect to the injected muscle. Based on our findings, the FeAu@Gelatin-Lidocaine complex can deliver hyperthermia-induced controlled anesthetic drug release and serve as an ideal candidate for site-specific anesthesia administration.
Collapse
Affiliation(s)
- Chien-Kun Ting
- Division of General Anesthesia, Department of Anesthesiology, Taipei Veterans General Hospital, 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan;
- School of Medicine, National Yang-Ming University, 155, Sec. 2, Linong St., Taipei 11221, Taiwan
| | - Udesh Dhawan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (U.D.); (W.-C.L.); (H.-D.T.)
- Institute of Chemistry, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei 11529, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250, Wu-Hsing St., Taipei 11031, Taiwan;
- International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 250, Wu-Hsing St., Taipei 11031, Taiwan
- Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, 250, Wu-Hsing St., Taipei 11031, Taiwan
- International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, 250, Wu-Hsing St., Taipei 11031, Taiwan
| | - Cihun-Siyong Alex Gong
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wenhua 1st Rd., Taoyuan 33302, Taiwan;
- Green Technology Research Center, Portable Energy System Group, College of Engineering, Chang Gung University, 259, Wenhua 1st Rd., Taoyuan 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, 5, Fuxing St., Taoyuan 33305, Taiwan
| | - Wai-Ching Liu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (U.D.); (W.-C.L.); (H.-D.T.)
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, 20A, Tsing Yi Road, Tsing Yi Island, New Territories, Hong Kong 999077, China
| | - Huai-De Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (U.D.); (W.-C.L.); (H.-D.T.)
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (U.D.); (W.-C.L.); (H.-D.T.)
| |
Collapse
|
16
|
The Magnetic Band-Structures of Ordered PtxFe1−x, PtxCo1−x, and PtxNi1−x (x = 0.25, 0.50, and 0.75). MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electronic band structures of the ordered L12 and L10 phases of the PtxM1−x (M = Fe, Co and Ni) alloys were investigated using spin-polarized density functional theory (DFT). The relative contributions of both itinerant (Stoner) and localized magnetism at the high-symmetry k-points were determined and discussed qualitatively. Significant directional effects were identified along the A and R directions of the L10 and L12 alloys, respectively, and are discussed in terms of charge channeling effects.
Collapse
|
17
|
Huynh KH, Pham XH, Kim J, Lee SH, Chang H, Rho WY, Jun BH. Synthesis, Properties, and Biological Applications of Metallic Alloy Nanoparticles. Int J Mol Sci 2020; 21:E5174. [PMID: 32708351 PMCID: PMC7404399 DOI: 10.3390/ijms21145174] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/23/2022] Open
Abstract
Metallic alloy nanoparticles are synthesized by combining two or more different metals. Bimetallic or trimetallic nanoparticles are considered more effective than monometallic nanoparticles because of their synergistic characteristics. In this review, we outline the structure, synthesis method, properties, and biological applications of metallic alloy nanoparticles based on their plasmonic, catalytic, and magnetic characteristics.
Collapse
Affiliation(s)
- Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| | - Sang Hun Lee
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon 24341, Korea;
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| |
Collapse
|
18
|
Abstract
The presented paper is a review article discussing existing synthesis methods and different applications of nanosized magnetic nanoparticles. It was shown that, in addition to the spectrum of properties typical for nanomaterials (primarily a large specific surface area and a high fraction of surface atoms), magnetic nanoparticles also possess superparamagnetic properties that contribute to their formation of an important class of biomedical functional nanomaterials. This primarily concerns iron oxides magnetite and maghemite, for which in vitro and in vivo studies have shown low toxicity and high biocompatibility in comparison with other magnetic nanomaterials. Due to their exceptional chemical, biological, and physical properties, they are widely used in various areas, such as magnetic hyperthermia, targeted drug delivery, tissue engineering, magnetic separation of biological objects (cells, bacteria, viruses, DNA, and proteins), and magnetic diagnostics (they are used as agents for MRS and immunoassay). In addition to discussing the main problems and prospects of using nanoparticles of magnetic iron oxides for advanced biomedical applications, information is also reflected on their structure, production methods, and properties.
Collapse
|
19
|
Xu M, Li N. Metal-based nanocontainers for drug delivery in tumor therapy. SMART NANOCONTAINERS 2020:195-215. [DOI: 10.1016/b978-0-12-816770-0.00012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|