1
|
Li A, Yang C, Zhang L. Zinc oxide nanoparticles promote migrasomes formation. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137792. [PMID: 40048781 DOI: 10.1016/j.jhazmat.2025.137792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
The rising pollution from zinc oxide nanoparticles (ZnO-NPs) poses significant global concerns due to their widespread environmental presence and potential negative effects on human health. This study explores how ZnO-NPs impact migrasomes formation, a crucial process for cellular migration and communication. Our findings indicate that 28 nm ZnO-NPs enhance migrasomes formation, correlating with increased levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and GTP-RhoA-essential molecules in migrasomes biogenesis. Additionally, ZnO-NPs help alleviate mitochondrial damage caused by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) through mitocytosis, which removes dysfunctional mitochondria, thereby preserving cellular integrity. The migrasomes induced by ZnO-NPs were found to contain various cellular components, including mitochondria, lysosomes, lipid droplets, and the ZnO-NPs themselves. These results underscore the role of ZnO-NPs in promoting migrasomes formation and protecting mitochondrial function, revealing significant implications for cellular behavior, therapeutic applications, and environmental and health safety.
Collapse
Affiliation(s)
- Ang Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chengxiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Gu W. A bibliometric analysis of programmed cell death in oral cancer literature: research patterns and emerging trends (2000-2024). Discov Oncol 2025; 16:585. [PMID: 40261469 PMCID: PMC12014878 DOI: 10.1007/s12672-025-02410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Programmed cell death (PCD) plays a crucial role in oral cancer pathogenesis and treatment. However, a comprehensive bibliometric analysis of the global research landscape in this field has not been conducted. This study aims to analyze the evolution and current trends of PCD research in oral cancer from 2000 to 2024. METHODS Publications were retrieved from the Web of Science Core Collection database using relevant keywords related to oral cancer and PCD. VOSviewer 1.6.20 and CiteSpace 6.1R6 software were employed to conduct bibliometric analysis, including publication trends, citation analysis, co-authorship networks, keyword co-occurrence, and research hotspots. The time span was set from January 2000 to December 2024. RESULTS A total of 963 publications were identified and analyzed. The annual publication output showed a steady increase, with a significant growth rate after 2010, dividing the study period into three distinct phases. The most productive countries were China (58.42%), South Korea (12.27%), and Japan (10.04%), with China Medical University and Kaohsiung Medical University being the leading institutions. Research hotspots evolved from traditional apoptosis studies to emerging forms of PCD such as autophagy, ferroptosis, and pyroptosis. Keyword analysis revealed three major research clusters: basic molecular mechanisms (centered around ROS and oxidative stress), clinical aspects (including prognosis and cell proliferation), and cell death pathways. Citation burst analysis identified emerging trends in targeting multiple PCD pathways simultaneously for oral cancer therapy, with special focus on treatment resistance and survival. CONCLUSION This bibliometric analysis provides a comprehensive overview of global research trends in PCD and oral cancer over the past two decades. The findings highlight the shift from basic mechanistic studies focusing on apoptosis to more diverse PCD pathways and translational research. Emerging research directions include the exploration of synergistic mechanisms among multiple PCD pathways, development of AI-based personalized treatment plans, investigation of microenvironment regulation of PCD, and application of novel drug delivery systems. These trends demonstrate the field's evolution toward more integrated, personalized approaches in oral cancer treatment. This study offers valuable insights for researchers and funding agencies to identify research gaps and potential collaboration opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Wenli Gu
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Yin IX, Udduttulla A, Xu VW, Chen KJ, Zhang MY, Chu CH. Use of Antimicrobial Nanoparticles for the Management of Dental Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:209. [PMID: 39940185 PMCID: PMC11820271 DOI: 10.3390/nano15030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Dental diseases represent a significant global health concern, with traditional treatment methods often proving costly and lacking in long-term efficacy. Emerging research highlights nanoparticles as a promising, cost-effective therapeutic alternative, owing to their unique properties. This review aims to provide a comprehensive overview of the application of antimicrobial and antioxidant nanoparticles in the management of dental diseases. Silver and gold nanoparticles have shown great potential for inhibiting biofilm formation and thus preventing dental caries, gingivitis, and periodontitis. Various dental products can integrate copper nanoparticles, known for their antimicrobial properties, to combat oral infections. Similarly, zinc oxide nanoparticles enhance the antimicrobial performance of dental materials, including adhesives and cements. Titanium dioxide and cerium oxide nanoparticles possess antimicrobial and photocatalytic properties, rendering them advantageous for dental materials and oral hygiene products. Chitosan nanoparticles are effective in inhibiting oral pathogens and reducing inflammation in periodontal tissues. Additionally, curcumin nanoparticles, with their antimicrobial, anti-inflammatory, and antioxidant properties, can enhance the overall performance of dental materials and oral care products. Incorporating these diverse nanoparticles into dental materials and oral care products holds the potential to significantly reduce the risk of infection, control biofilm formation, and improve overall oral health. This review underscores the importance of continued research and development in this promising field to realize the full potential of nanoparticles in dental care.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China; (I.X.Y.); (A.U.); (V.W.X.); (K.J.C.); (M.Y.Z.)
| |
Collapse
|
4
|
Shukla NP, Senapathy GJ. Current Review on Nanophytomedicines in the Treatment of Oral Cancer: Recent Trends and Treatment Prospects. Crit Rev Ther Drug Carrier Syst 2025; 42:89-118. [PMID: 39321333 DOI: 10.1615/critrevtherdrugcarriersyst.v42.i1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cancer is one of the major life-threatening diseases in the world and oral cancer is the 8th most common type of deadly cancers in Asian countries. Despite many causes, tobacco is the main causative agent as 90% of oral cancer cases were due to daily consumption of tobacco and its products. The major drawback of the conventional therapies for oral cancer including chemotherapy, surgery and radiotherapy or combination of these is the dose limiting toxicity. Developments in technology and research led to new innovative discoveries in cancer treatments. In the past few decades, increased attention has been given to researches in alternative cancer treatment strategies using plants and plant products. Recently many anticancer drugs from natural products or phytochemicals were approved internationally. Due to the low bioavailability and poor solubility of phytochemicals, various research works on nano-carrier based drug delivery systems were exploited in the recent past to make them as promising anticancer agents. In the current review, an overview of oral cancer and its treatment, risk factors, missing links of conventional therapies, contribution of nanotechnology in cancer treatment and research on phytochemical based drug treatment and different polymeric nanoparticles were discussed briefly. The future prospects for the use of various types of polymeric nanoparticles applied in the diagnosis and treatment of oral cancer were also mentioned. The major concern of this review is to give the reader a better understanding on various types of treatment for oral cancer.
Collapse
Affiliation(s)
- Neha P Shukla
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, Gujarat 394350, India
| | - Giftson J Senapathy
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
5
|
Sivasubramanian PD, Unnikrishnan G, Kolanthai E, Muthuswamy S. Engineered nanoparticle systems: A review on emerging strategies for enhanced cancer therapeutics. NEXT MATERIALS 2025; 6:100405. [DOI: 10.1016/j.nxmate.2024.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Zhang R, Yang H, Guo M, Niu S, Xue Y. Mitophagy and its regulatory mechanisms in the biological effects of nanomaterials. J Appl Toxicol 2024; 44:1834-1853. [PMID: 38642013 DOI: 10.1002/jat.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
Mitophagy is a selective cellular process critical for the removal of damaged mitochondria. It is essential in regulating mitochondrial number, ensuring mitochondrial functionality, and maintaining cellular equilibrium, ultimately influencing cell destiny. Numerous pathologies, such as neurodegenerative diseases, cardiovascular disorders, cancers, and various other conditions, are associated with mitochondrial dysfunctions. Thus, a detailed exploration of the regulatory mechanisms of mitophagy is pivotal for enhancing our understanding and for the discovery of novel preventive and therapeutic options for these diseases. Nanomaterials have become integral in biomedicine and various other sectors, offering advanced solutions for medical uses including biological imaging, drug delivery, and disease diagnostics and therapy. Mitophagy is vital in managing the cellular effects elicited by nanomaterials. This review provides a comprehensive analysis of the molecular mechanisms underpinning mitophagy, underscoring its significant influence on the biological responses of cells to nanomaterials. Nanoparticles can initiate mitophagy via various pathways, among which the PINK1-Parkin pathway is critical for cellular defense against nanomaterial-induced damage by promoting mitophagy. The role of mitophagy in biological effects was induced by nanomaterials, which are associated with alterations in Ca2+ levels, the production of reactive oxygen species, endoplasmic reticulum stress, and lysosomal damage.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Zhou X, Medina-Ramirez IE, Su G, Liu Y, Yan B. All Roads Lead to Rome: Comparing Nanoparticle- and Small Molecule-Driven Cell Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310966. [PMID: 38616767 DOI: 10.1002/smll.202310966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Autophagy, vital for removing cellular waste, is triggered differently by small molecules and nanoparticles. Small molecules, like rapamycin, non-selectively activate autophagy by inhibiting the mTOR pathway, which is essential for cell regulation. This can clear damaged components but may cause cytotoxicity with prolonged use. Nanoparticles, however, induce autophagy, often causing oxidative stress, through broader cellular interactions and can lead to a targeted form known as "xenophagy." Their impact varies with their properties but can be harnessed therapeutically. In this review, the autophagy induced by nanoparticles is explored and small molecules across four dimensions: the mechanisms behind autophagy induction, the outcomes of such induction, the toxicological effects on cellular autophagy, and the therapeutic potential of employing autophagy triggered by nanoparticles or small molecules. Although small molecules and nanoparticles each induce autophagy through different pathways and lead to diverse effects, both represent invaluable tools in cell biology, nanomedicine, and drug discovery, offering unique insights and therapeutic opportunities.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, 071100, China
| | - Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av Universidad 940, Aguascalientes, Aguascalientes, México
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 10024, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Pei J, Natarajan PM, Umapathy VR, Swamikannu B, Sivaraman NM, Krishnasamy L, Palanisamy CP. Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy. Molecules 2024; 29:2706. [PMID: 38893579 PMCID: PMC11173400 DOI: 10.3390/molecules29112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The fabrication of zinc oxide-based nanomaterials (including natural and synthetic polymers like sulfated polysaccharide, chitosan, and polymethyl methacrylate) has potential to improve oral cancer treatment strategies. This comprehensive review explores the diverse synthesis methods employed to fabricate zinc oxide nanomaterials tailored for oral cancer applications. Several synthesis processes, particularly sol-gel, hydrothermal, and chemical vapor deposition approaches, are thoroughly studied, highlighting their advantages and limitations. The review also examines how synthesis parameters, such as precursor selection, the reaction temperature, and growth conditions, influence both the physicochemical attributes and biological efficacy of the resulting nanomaterials. Furthermore, recent advancements in surface functionalization and modification strategies targeted at improving the targeting specificity and pharmaceutical effectiveness of zinc oxide-based nanomaterials in oral cancer therapy are elucidated. Additionally, the review provides insights into the existing issues and prospective views in the field, emphasizing the need for further research to optimize synthesis methodologies and elucidate the mechanisms underlying the efficacy of zinc oxide-based nanoparticles in oral cancer therapy.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China;
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, d Centre of Medical and Bio-Allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai 600 107, Tamil Nadu, India;
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, Tamil Nadu, India;
| | - Nandini Manickam Sivaraman
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Lakshmi Krishnasamy
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Liu Y, Wang Y, Zhang J, Peng Q, Wang X, Xiao X, Shi K. Nanotherapeutics targeting autophagy regulation for improved cancer therapy. Acta Pharm Sin B 2024; 14:2447-2474. [PMID: 38828133 PMCID: PMC11143539 DOI: 10.1016/j.apsb.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical efficacy of current cancer therapies falls short, and there is a pressing demand to integrate new targets with conventional therapies. Autophagy, a highly conserved self-degradation process, has received considerable attention as an emerging therapeutic target for cancer. With the rapid development of nanomedicine, nanomaterials have been widely utilized in cancer therapy due to their unrivaled delivery performance. Hence, considering the potential benefits of integrating autophagy and nanotechnology in cancer therapy, we outline the latest advances in autophagy-based nanotherapeutics. Based on a brief background related to autophagy and nanotherapeutics and their impact on tumor progression, the feasibility of autophagy-based nanotherapeutics for cancer treatment is demonstrated. Further, emerging nanotherapeutics developed to modulate autophagy are reviewed from the perspective of cell signaling pathways, including modulation of the mammalian target of rapamycin (mTOR) pathway, autophagy-related (ATG) and its complex expression, reactive oxygen species (ROS) and mitophagy, interference with autophagosome-lysosome fusion, and inhibition of hypoxia-mediated autophagy. In addition, combination therapies in which nano-autophagy modulation is combined with chemotherapy, phototherapy, and immunotherapy are also described. Finally, the prospects and challenges of autophagy-based nanotherapeutics for efficient cancer treatment are envisioned.
Collapse
Affiliation(s)
- Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jincheng Zhang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qikai Peng
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xingdong Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xiyue Xiao
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Mohammadi M, Hashemzadeh MS. Zinc Oxide Nanoparticles and Cancer Chemotherapy: Helpful Tools for Enhancing Chemo-sensitivity and Reducing Side Effects? Biol Trace Elem Res 2024; 202:1878-1900. [PMID: 37639166 DOI: 10.1007/s12011-023-03803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
Cancer chemotherapy is still a serious challenge. Chemo-resistance and destructive side effects of chemotherapy drugs are the most critical limitations of chemotherapy. Chemo-resistance is the leading cause of chemotherapy failure. Chemo-resistance, which refers to the resistance of cancer cells to the anticancer effects of chemotherapy drugs, is caused by various reasons. Among the most important of these reasons is the increase in the efflux of chemotherapy drugs due to the rise in the expression and activity of ABC transporters, the weakening of apoptosis, and the strengthening of stemness. In the last decade, a significant number of studies focused on the application of nanotechnology in cancer treatment. Considering the anti-cancer properties of zinc, zinc oxide nanoparticles have received much attention in recent years. Some studies have indicated that zinc oxide nanoparticles can target the critical mechanisms of cancer chemo-resistance and enhance the effectiveness of chemotherapy drugs. These studies have shown that zinc oxide nanoparticles can reduce the activity of ABC transporters, increase DNA damage and apoptosis, and attenuate stemness in cancer cells, leading to enhanced chemo-sensitivity. Some other studies have also shown that zinc oxide nanoparticles in low doses can be helpful in minimizing the harmful side effects of chemotherapy drugs. In this article, after a brief overview of the mechanisms of chemo-resistance and anticancer effects of zinc, we will review all these studies in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
Krishna SBN, Jakmunee J, Mishra YK, Prakash J. ZnO based 0-3D diverse nano-architectures, films and coatings for biomedical applications. J Mater Chem B 2024; 12:2950-2984. [PMID: 38426529 DOI: 10.1039/d4tb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Thin-film nano-architecting is a promising approach that controls the properties of nanoscale surfaces to increase their interdisciplinary applications in a variety of fields. In this context, zinc oxide (ZnO)-based various nano-architectures (0-3D) such as quantum dots, nanorods/nanotubes, nanothin films, tetrapods, nanoflowers, hollow structures, etc. have been extensively researched by the scientific community in the past decade. Owing to its unique surface charge transport properties, optoelectronic properties and reported biomedical applications, ZnO has been considered as one of the most important futuristic bio-nanomaterials. This review is focused on the design/synthesis and engineering of 0-3D nano-architecture ZnO-based thin films and coatings with tunable characteristics for multifunctional biomedical applications. Although ZnO has been extensively researched, ZnO thin films composed of 0-3D nanoarchitectures with promising thin film device bio-nanotechnology applications have rarely been reviewed. The current review focuses on important details about the technologies used to make ZnO-based thin films, as well as the customization of properties related to bioactivities, characterization, and device fabrication for modern biomedical uses that are relevant. It features biosensing, tissue engineering/wound healing, antibacterial, antiviral, and anticancer activity, as well as biomedical diagnosis and therapy with an emphasis on a better understanding of the mechanisms of action. Eventually, key issues, experimental parameters and factors, open challenges, etc. in thin film device fabrications and applications, and future prospects will be discussed, followed by a summary and conclusion.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, (H.P.), India.
| |
Collapse
|
12
|
Chang X, Niu S, Guo M, Shang M, Guo S, Mou X, Wu T, Tang M, Xue Y. Silver nanoparticles induced synaptic degeneration via Ca 2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells. Food Chem Toxicol 2024:114577. [PMID: 38458532 DOI: 10.1016/j.fct.2024.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Silver nanoparticles (AgNPs) have been widely used in biomedicine and cosmetics, increasing their potential risks in neurotoxicity. But the involved molecular mechanism remains unclear. This study aims to explore molecular events related to AgNPs-induced neuronal damage by RNA-seq, and elucidate the role of Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells synaptic degeneration induced by AgNPs. This study found that cell viabilities were decreased by AgNPs in a dose/time-dependent manner. AgNPs also increased protein expression of PINK1, Parkin, synaptophysin, and inhibited PGC-1α, MAP2 and APP protein expression, indicating AgNPs-induced synaptic degeneration involved in disturbance of mitophagy and mitochondrial biogenesis in HT22 cells. Moreover, inhibition of AgNPs-induced Ca2+/CaMKII activation and Drp1/ROS rescued mitophagy disturbance and synaptic degeneration in HT22 cells by reserving aforementioned protein express changes except for PGC-1α and APP protein. Thus, AgNPs-induced synaptic degeneration was mediated by Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells, and mitophagy is the sensitive to the mechanism. Our study will provide in-depth molecular mechanism data for neurotoxic evaluation and biomedical application of AgNPs.
Collapse
Affiliation(s)
- Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shunyuan Guo
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
13
|
Mathur A, Ritu, Chandra P, Das A. Autophagy: a necessary evil in cancer and inflammation. 3 Biotech 2024; 14:87. [PMID: 38390576 PMCID: PMC10879063 DOI: 10.1007/s13205-023-03864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 02/24/2024] Open
Abstract
Autophagy, a highly regulated cellular process, assumes a dual role in the context of cancer. On the one hand, it functions as a crucial homeostatic pathway, responsible for degrading malfunctioning molecules and organelles, thereby maintaining cellular health. On the other hand, its involvement in cancer development and regression is multifaceted, contingent upon a myriad of factors. This review meticulously examines the intricacies of autophagy, from its molecular machinery orchestrated by Autophagy-Related Genes (ATG) initially discovered in yeast to the various modes of autophagy operative within cells. Beyond its foundational role in cellular maintenance, autophagy reveals context-specific functions in processes like angiogenesis and inflammation. Our analysis delves into how autophagy-related factors directly impact inflammation, underscoring their profound implications for cancer dynamics. Additionally, we extend our inquiry to explore autophagy's associations with cardiovascular conditions, neurodegenerative disorders, and autoimmune diseases, illuminating the broader medical relevance of this process. Furthermore, this review elucidates how autophagy contributes to sustaining hallmark cancer features, including stem cell maintenance, proliferation, angiogenesis, metastasis, and metabolic reprogramming. Autophagy emerges as a pivotal process that necessitates careful consideration in cancer treatment strategies. To this end, we investigate innovative approaches, ranging from enzyme-based therapies to MTOR inhibitors, lysosomal blockers, and nanoparticle-enabled interventions, all aimed at optimizing cancer treatment outcomes by targeting autophagy pathways. In summary, this comprehensive review provides a nuanced perspective on the intricate and context-dependent role of autophagy in cancer biology. Our exploration not only deepens our understanding of this fundamental process but also highlights its potential as a therapeutic target. By unraveling the complex interplay between autophagy and cancer, we pave the way for more precise and effective cancer treatments, promising better outcomes for patients.
Collapse
Affiliation(s)
- Amit Mathur
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| |
Collapse
|
14
|
Yao Y, Zhang T, Tang M. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123231. [PMID: 38154775 DOI: 10.1016/j.envpol.2023.123231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of nanotechnology, engineered nanomaterials (ENMs) are widely used in various fields. This has exacerbated the environmental pollution and human exposure of ENMs. The study of toxicity of ENMs and its mechanism has become a hot research topic in recent years. Mitochondrial damage plays an important role in the toxicity of ENMs. This paper reviews the structural damage, dysfunction, and molecular level perturbations caused by different ENMs to mitochondria, including ZnO NPs, Ag NPs, TiO2 NPs, iron oxide NPs, cadmium-based quantum dots, CuO NPs, silica NPs, carbon-based nanomaterials. Among them, mitochondrial quality control plays an important role in mitochondrial damage. We further summarize the cellular level outcomes caused by mitochondrial damage, mainly including, apoptosis, ferroptosis, pyroptosis and inflammation response. In addition, we concluded that reducing mitochondrial damage at source as well as accelerating recovery from mitochondrial damage through ENMs modification and pharmacological intervention are two feasible strategies. This review further provides new insights into the mitochondrial toxicity mechanisms of ENMs and provides a new foothold for predicting human health and environmental risks of ENMs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
15
|
Gomaa S, Nassef M, Tabl G, Zaki S, Abdel-Ghany A. Doxorubicin and folic acid-loaded zinc oxide nanoparticles-based combined anti-tumor and anti-inflammatory approach for enhanced anti-cancer therapy. BMC Cancer 2024; 24:34. [PMID: 38178054 PMCID: PMC10768430 DOI: 10.1186/s12885-023-11714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnONPs) have impressively shown their efficacy in targeting and therapy of cancer. The present research was designated to investigate the potential of ZnONP nanocomposites as a cancer chemotherapeutic-based drug delivery system and to assess the anti-tumor and anti-inflammatory effectiveness of ZnONP nanocomposites combination with systemic chemotherapeutic drugs doxorubicin (DOX) and folic acid (FA) in Ehrlich ascites carcinoma (EAC) tumor cell line both in vitro and in vivo. METHODS Anti-tumor potential of ZnONP nanocomposites: ZnONPs, ZnONPs/FA, ZnONPs/DOX and ZnONPs/DOX/FA against EAC tumor cell line was evaluated in vitro by MTT assay. Anti-tumor and anti-inflammatory efficacy of ZnONP nanocomposites were analyzed in vivo by examination of the proliferation rate and apoptosis rate of EAC tumor cells by flow cytometry, splenocytes count, level of inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), as well as liver and kidney function in EAC-challenged mice. RESULTS In vitro results showed that ZnONP nanocomposites showed a high anti-proliferative potency against EAC tumor cells. Furthermore, the in vivo study revealed that the treatment EAC-challenged mice with ZnONPs, ZnONPs/DOX, ZnONPs/FA and ZnONPs/DOX/FA hindered the proliferation rate of implanted EAC tumor cells through lowering their number and increasing their apoptosis rate. Moreover, the treatment of EAC-challenged mice with ZnONPs/DOX/FA markedly decreased the level of IL-6 and TNF-α and remarkably ameliorated the liver and kidney damages that were elevated by implantation of EAC tumor cells, restoring the liver and kidney functions to be close to the naïve mice control. CONCLUSION ZnONP nanocomposites may be useful as a cancer chemotherapeutic-based drug delivery system. ZnONP nanocomposites: ZnONPs/DOX, ZnONPs/FA and ZnONPs/DOX/FA regimen may have anti-inflammatory approaches and a great potential to increase anti-tumor effect of conventional chemotherapy, overcoming resistance to cancer systemic chemotherapeutics and reducing their side effects, offering a promising regimen for cancer therapy.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed Nassef
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ghada Tabl
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Somia Zaki
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Asmaa Abdel-Ghany
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
16
|
Baskar G, Palaniyandi T, Viswanathan S, Wahab MRA, Surendran H, Ravi M, Sivaji A, Rajendran BK, Natarajan S, Govindasamy G. Recent and advanced therapy for oral cancer. Biotechnol Bioeng 2023; 120:3105-3115. [PMID: 37243814 DOI: 10.1002/bit.28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Oral cancer is a common and deadly kind of tissue invasion, has a high death rate, and may induce metastasis that mostly affects adults over the age of 40. Most in vitro traditional methods for studying cancer have included the use of monolayer cell cultures and several animal models. There is a worldwide effort underway to reduce the excessive use of laboratory animals since, although being physiologically adequate, animal models rarely succeed in exactly mimicking human models. 3D culture models have gained great attention in the area of biomedicine because of their capacity to replicate parent tissue. There are many benefits to using a drug delivery approach based on nanoparticles in cancer treatment. Because of this, in vitro test methodologies are crucial for evaluating the efficacy of prospective novel nanoparticle drug delivery systems. This review discusses current advances in the utility of 3D cell culture models including multicellular spheroids, patient-derived explant cultures, organoids, xenografts, 3D bioprinting, and organoid-on-a-chip models. Aspects of nanoparticle-based drug discovery that have utilized 2D and 3D cultures for a better understanding of genes implicated in oral cancers are also included in this review.
Collapse
Affiliation(s)
- Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | | | - Sudhakar Natarajan
- Department of HIV/AIDS, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Gopu Govindasamy
- Department of Surgical Oncology, Rajiv Gandhi Government General Hospital and Madras Medical College, Chennai, India
| |
Collapse
|
17
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
19
|
Panez-Toro I, Muñoz-García J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F, Heymann D. Advances in Osteosarcoma. Curr Osteoporos Rep 2023:10.1007/s11914-023-00803-9. [PMID: 37329384 PMCID: PMC10393907 DOI: 10.1007/s11914-023-00803-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE OF REVIEW This article gives a brief overview of the most recent developments in osteosarcoma treatment, including targeting of signaling pathways, immune checkpoint inhibitors, drug delivery strategies as single or combined approaches, and the identification of new therapeutic targets to face this highly heterogeneous disease. RECENT FINDINGS Osteosarcoma is one of the most common primary malignant bone tumors in children and young adults, with a high risk of bone and lung metastases and a 5-year survival rate around 70% in the absence of metastases and 30% if metastases are detected at the time of diagnosis. Despite the novel advances in neoadjuvant chemotherapy, the effective treatment for osteosarcoma has not improved in the last 4 decades. The emergence of immunotherapy has transformed the paradigm of treatment, focusing therapeutic strategies on the potential of immune checkpoint inhibitors. However, the most recent clinical trials show a slight improvement over the conventional polychemotherapy scheme. The tumor microenvironment plays a crucial role in the pathogenesis of osteosarcoma by controlling the tumor growth, the metastatic process and the drug resistance and paved the way of new therapeutic options that must be validated by accurate pre-clinical studies and clinical trials.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Javier Muñoz-García
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
| | - Jorge W Vargas-Franco
- University of Antioquia, Department of Basic Studies, Faculty of Odontology, Medellin, Colombia
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Marie-Françoise Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), 75012, Paris, France
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
- University of Sheffield, Medical School, Department of Oncology and Metabolism, S10 2RX, Sheffield, UK.
| |
Collapse
|
20
|
Li Z, Yin X, Lyu C, Wang T, Wang W, Zhang J, Wang J, Wang Z, Han C, Zhang R, Guo D, Xu R. Zinc oxide nanoparticles induce toxicity in diffuse large B-cell lymphoma cell line U2932 via activating PINK1/Parkin-mediated mitophagy. Biomed Pharmacother 2023; 164:114988. [PMID: 37307677 DOI: 10.1016/j.biopha.2023.114988] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma. Zinc oxide (ZnO) nanoparticles have excellent anti-tumor properties in the biomedical field. The present study aimed to explore the underlying mechanism by which ZnO nanoparticles induce toxicity in DLBCL cells (U2932) via the PINK1/Parkin-mediated mitophagy pathway. After U2932 cells were exposed to various concentrations of ZnO nanoparticles, the cell survival rate, reactive oxygen species (ROS) generation, cell cycle arrest, and changes in the expression of PINK1, Parkin, P62, and LC3 were monitored. Moreover, we investigated monodansylcadaverine (MDC) fluorescence intensity and autophagosome and further validated the results using the autophagy inhibitor 3-methyladenine (3-MA). The results showed that ZnO nanoparticles could effectively inhibit the proliferation of U2932 cells and induce cell cycle arrest at the G0/G1 phases. Moreover, ZnO nanoparticles significantly increased ROS production, MDC fluorescence intensity, autophagosome formation, and the expression of PINK1, Parkin, and LC3, and decreased the expression of P62 in U2932 cells. In contrast, the autophagy level was reduced after the intervention of the 3-MA. Overall, ZnO nanoparticles can trigger PINK1/Parkin-mediated mitophagy signaling in U2932 cells, which may be a potential therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Teng Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Wenhao Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jiachen Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jinxin Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Zhenzhen Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Chen Han
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, China.
| | - Ruirong Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China; Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China; Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
21
|
Mitophagy Effects of Protodioscin on Human Osteosarcoma Cells by Inhibition of p38MAPK Targeting NIX/LC3 Axis. Cells 2023; 12:cells12030395. [PMID: 36766737 PMCID: PMC9913878 DOI: 10.3390/cells12030395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protodioscin (PD) is a steroidal saponin with various pharmacological activities, including neuro-protective, anti-inflammatory, and anti-tumor activities. However, the effect of PD on human osteosarcoma (OS) cells is unclear. In this study, we found that PD significantly inhibits the growth of human HOS and 143B OS cells through the upregulation of apoptotic-related proteins (cleaved caspase-3, cleaved caspase-9, and cleaved PARP) and mitophagy-related proteins (LC3B and NIX), which contribute to the induction of apoptosis, and MMP (mitochondrial membrane potential) dysfunction and mitophagy. The inhibition of LC3 or NIX was shown to decrease apoptosis and mitophagy in PD-treated OS cells. The knockdown of p38MAPK by siRNA decreased mitochondrial dysfunction, autophagy, mitophagy, and the NIX/LC3B expression in the PD-treated OS cells. A binding affinity analysis revealed that the smaller the KD value (-7.6 Kcal/mol and -8.9 Kcal/mol, respectively), the greater the binding affinity in the PD-NIX and PD-LC3 complexes. These findings show the inhibitory effects of PD-induced mitophagy in human OS cells and may represent a novel therapeutic strategy for human OS, by targeting the NIX/LC3 pathways.
Collapse
|
22
|
He G, Nie JJ, Liu X, Ding Z, Luo P, Liu Y, Zhang BW, Wang R, Liu X, Hai Y, Chen DF. Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Bioact Mater 2023; 19:690-702. [PMID: 35600978 PMCID: PMC9112061 DOI: 10.1016/j.bioactmat.2022.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) therapy faces many challenges, especially the poor survival rate once metastasis occurs. Therefore, it is crucial to explore new OS treatment strategies that can efficiently inhibit OS metastasis. Bioactive nanoparticles such as zinc oxide nanoparticles (ZnO NPs) can efficiently inhibit OS growth, however, the effect and mechanisms of them on tumor metastasis are still not clear. In this study, we firstly prepared well-dispersed ZnO NPs and proved that ZnO NPs can inhibit OS metastasis-related malignant behaviors including migration, invasion, and epithelial-mesenchymal transition (EMT). RNA-Seqs found that differentially expressed genes (DEGs) in ZnO NP-treated OS cells were enriched in wingless/integrated (Wnt) and hypoxia-inducible factor-1 (HIF-1) signaling pathway. We further proved that Zn2+ released from ZnO NPs induced downregulation of β-catenin expression via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. ZnO NPs combined with ICG-001, a β-catenin inhibitor, showed a synergistic inhibitory effect on OS lung metastasis and a longer survival time. In addition, tissue microarray (TMA) of OS patients also detected much higher β-catenin expression which indicated the role of β-catenin in OS development. In summary, our current study not only proved that ZnO NPs can inhibit OS metastasis by degrading β-catenin in HIF-1α/BNIP3/LC3B-mediated mitophagy pathway, but also provided a far-reaching potential of ZnO NPs in clinical OS treatment with metastasis. Zn2+ released from bioactive ZnO NPs trigger OS metastasis inhibition. ZnO NPs inhibit OS metastasis through degrading β-catenin expression via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Tissue microarray of OS patients detected higher β-catenin expression which confirmed the potential of ZnO NPs in clinical.
Collapse
Affiliation(s)
- Guanping He
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zihao Ding
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Peng Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Bo-Wen Zhang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Corresponding author.
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Corresponding author.
| | - Da-Fu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
- Corresponding author.
| |
Collapse
|
23
|
Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 2023; 13:736-766. [PMID: 36632220 PMCID: PMC9830443 DOI: 10.7150/thno.79876] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Cellular mitophagy means that cells selectively wrap and degrade damaged mitochondria through an autophagy mechanism, thus maintaining mitochondria and intracellular homeostasis. In recent years, mitophagy has received increasing attention as a research hotspot related to the pathogenesis of clinical diseases, such as neurodegenerative diseases, cardiovascular diseases, cancer, metabolic diseases, and so on. It has been found that the regulation of mitophagy may become a new direction for the treatment of some diseases. In addition, numerous small molecule modulators of mitophagy have also been reported, which provides new opportunities to comprehend the procedure and potential of therapeutic development. Taken together, in this review, we summarize current understanding of the mechanism of mitophagy, discuss the roles of mitophagy and its relationship with diseases, introduce the existing small-molecule pharmacological modulators of mitophagy and further highlight the significance of their development.
Collapse
Affiliation(s)
- Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| |
Collapse
|
24
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
25
|
Aljohar AY, Muteeb G, Zia Q, Siddiqui S, Aatif M, Farhan M, Khan MF, Alsultan A, Jamal A, Alshoaibi A, Ahmad E, Alam MW, Arshad M, Ahamed MI. Anticancer effect of zinc oxide nanoparticles prepared by varying entry time of ion carriers against A431 skin cancer cells in vitro. Front Chem 2022; 10:1069450. [PMID: 36531331 PMCID: PMC9751667 DOI: 10.3389/fchem.2022.1069450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 09/19/2023] Open
Abstract
Although, zinc oxide nanoparticles (ZRTs) as an anti-cancer agent have been the subject of numerous studies, none of the reports has investigated the impact of the reaction entry time of ion-carriers on the preparation of ZRTs. Therefore, we synthesized variants of ZRTs by extending the entry time of NaOH (that acts as a carrier of hydroxyl ions) in the reaction mixture. The anti-proliferative action, morphological changes, reactive oxygen species (ROS) production, and nuclear apoptosis of ZRTs on human A431 skin carcinoma cells were observed. The samples revealed crystallinity and purity by X-ray diffraction (XRD). Scanning electron microscopy (SEM) images of ZRT-1 (5 min ion carrier entry) and ZRT-2 (10 min ion carrier entry) revealed microtubule like morphology. On prolonging the entry time for ion carrier (NaOH) introduction in the reaction mixture, a relative ascent in the aspect ratio was seen. The typical ZnO band with a slight shift in the absorption maxima was evident with UV-visible spectroscopy. Both ZRT-1 and ZRT-2 exhibited non-toxic behavior as evident by RBC lysis assay. Additionally, ZRT-2 showed better anti-cancer potential against A431 cells as seen by MTT assay, ROS generation and chromatin condensation analyses. At 25 μM of ZRT-2, 5.56% cells were viable in MTT test, ROS production was enhanced to 166.71%, while 33.0% of apoptotic cells were observed. The IC50 for ZRT-2 was slightly lower (6 μM) than that for ZRT-1 (8 μM) against A431 cells. In conclusion, this paper presents a modest, economical procedure to generate ZRT nano-structures exhibiting strong cytotoxicity against the A431 cell line, indicating that ZRTs may have application in combating cancer.
Collapse
Affiliation(s)
- Albandri Yousef Aljohar
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Lucknow, India
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohd. Farhan Khan
- Faculty of Science, Gagan College of Management & Technology, Aligarh, India
| | - Abdulrahman Alsultan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| | - Azfar Jamal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Department of Biology, College of Science, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Ejaz Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Md Arshad
- Molecular Endocrinology Laboratory, Zoology Department, Lucknow University, Lucknow, India
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohd Imran Ahamed
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
26
|
Wang M, Luan S, Fan X, Wang J, Huang J, Gao X, Han D. The emerging multifaceted role of PINK1 in cancer biology. Cancer Sci 2022; 113:4037-4047. [PMID: 36071695 DOI: 10.1111/cas.15568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
For its various important functions in cells, phosphatase and tensin homolog-induced kinase 1 (PINK1) has drawn considerable attention for the role it plays in early-onset Parkinson's disease. In recent years, emerging evidence has supported the hypothesis that PINK1 plays a part in regulating many physiological and pathophysiological processes in cancer cells, including cytoplasmic homeostasis, cell survival, and cell death. According to the findings of these studies, PINK1 can function as a tumor promoter or suppressor, showing a duality that is dependent on the context. In this study we review the mechanistic characters relating to PINK1 based on available published data from peer-reviewed articles, The Cancer Genome Atlas data mining, and cell-based assays. This mini review focuses on some of the interplays between PINK1 and the context and recent developments in the field, including its growing involvement in mitophagy and its nonmitophagy organelles-related function. This review aims to help readers better grasp how PINK1 is functioning in cell physiological and pathophysiological processes, especially in cancer biology.
Collapse
Affiliation(s)
- Meng Wang
- Department of Colorectal Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shijia Luan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xiang Fan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Ju Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Dong Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Bai J, Wu L, Wang X, Wang Y, Shang Z, Jiang E, Shao Z. Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe? Cancers (Basel) 2022; 14:cancers14235723. [PMID: 36497206 PMCID: PMC9738284 DOI: 10.3390/cancers14235723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) therapy is unsatisfactory, and the prevalence of the disease is increasing. The role of mitochondria in OSCC therapy has recently attracted increasing attention, however, many mechanisms remain unclear. Therefore, we elaborate upon relative studies in this review to achieve a better therapeutic effect of OSCC treatment in the future. Interestingly, we found that mitochondria not only contribute to OSCC therapy but also promote resistance, and targeting the mitochondria of OSCC via nanoparticles is a promising way to treat OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Luping Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Xinmiao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Yifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| |
Collapse
|
28
|
Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res 2022; 12:2589-2612. [PMID: 35149969 DOI: 10.1007/s13346-022-01125-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a catabolic process in which an organism responds to its nutrient or metabolic emergencies. It involves the degradation of cytoplasmic proteins and organelles by forming double-membrane vesicles called "autophagosomes." They sequester cargoes, leading them to degradation in the lysosomes. Although autophagy acts as a protective mechanism for maintaining homeostasis through cellular recycling, it is ostensibly a cause of certain cancers, but a cure for others. In other words, insufficient autophagy, due to genetic or cellular dysfunctions, can lead to tumorigenesis. However, many autophagy modulators are developed for cancer therapy. Diverse nanoparticles have been documented to induce autophagy. Also, the highly stable nanoparticles show blockage to autophagic flux. In this review, we revealed a general mechanism by which autophagy can be induced or blocked via nanoparticles as well as several studies recently performed to prove the stated fact. In addition, we have also elucidated the paradoxical roles of autophagy in cancer and how their differential role at different stages of various cancers can affect its treatment outcomes. And finally, we summarize the breakthroughs in cancer disease treatments by using metallic, polymeric, and liposomal nanoparticles as potent autophagy modulators.
Collapse
Affiliation(s)
- Shloka Negi
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Deepa Dehari
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Sanjay Singh
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India.
| |
Collapse
|
29
|
Mundekkad D, Cho WC. Mitophagy Induced by Metal Nanoparticles for Cancer Treatment. Pharmaceutics 2022; 14:2275. [PMID: 36365094 PMCID: PMC9699542 DOI: 10.3390/pharmaceutics14112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Research on nanoparticles, especially metal nanoparticles, in cancer therapy is gaining momentum. The versatility and biocompatibility of metal nanoparticles make them ideal for various applications in cancer therapy. They can bring about apoptotic cell death in cancer cells. In addition to apoptosis, nanoparticles mediate a special type of autophagy facilitated through mitochondria called mitophagy. Interestingly, nanoparticles with antioxidant properties are capable of inducing mitophagy by altering the levels of reactive oxygen species and by influencing signaling pathways like PINK/Parkin pathway and P13K/Akt/mTOR pathway. The current review presents various roles of metal nanoparticles in inducing mitophagy in cancer cells. We envision this review sheds some light on the blind spots in the research related to mitophagy induced by nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Centre for NanoBioTechnology (CNBT), Vellore Institute of Technology, Vellore 632014, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
30
|
Abstract
The constant evolution and applications of metallic nanoparticles (NPs) make living organisms more susceptible to being exposed to them. Among the most used are zinc oxide nanoparticles (ZnO-NPs). Therefore, understanding the molecular effects of ZnO-NPs in biological systems is extremely important. This review compiles the main mechanisms that induce cell toxicity by exposure to ZnO-NPs and reported in vitro research models, with special attention to mitochondrial damage. Scientific evidence indicates that in vitro ZnO-NPs have a cytotoxic effect that depends on the size, shape and method of synthesis of ZnO-NPs, as well as the function of the cells to which they are exposed. ZnO-NPs come into contact with the extracellular region, leading to an increase in intracellular [Zn2+] levels. The mechanism by which intracellular ZnO-NPs come into contact with organelles such as mitochondria is still unclear. The mitochondrion is a unique organelle considered the “power station” in the cells, participates in numerous cellular processes, such as cell survival/death, multiple biochemical and metabolic processes, and holds genetic material. ZnO-NPs increase intracellular levels of reactive oxygen species (ROS) and, in particular, superoxide levels; they also decrease mitochondrial membrane potential (MMP), which affects membrane permeability and leads to cell death. ZnO-NPs also induced cell death through caspases, which involve the intrinsic apoptotic pathway. The expression of pro-apoptotic genes after exposure to ZnO-NPs can be affected by multiple factors, including the size and morphology of the NPs, the type of cell exposed (healthy or tumor), stage of development (embryonic or differentiated), energy demand, exposure time and, no less relevant, the dose. To prevent the release of pro-apoptotic proteins, the damaged mitochondrion is eliminated by mitophagy. To replace those mitochondria that underwent mitophagy, the processes of mitochondrial biogenesis ensure the maintenance of adequate levels of ATP and cellular homeostasis.
Collapse
|
31
|
Chen C, Zhou C, Zhang W, Liu H, Wang M, Li F, Li Q, Cao Y. Effect and Mechanism of PINK1/Parkin-Mediated Mitochondrial Autophagy in Rat Lung Injury Induced by Nano Lanthanum Oxide. NANOMATERIALS 2022; 12:nano12152594. [PMID: 35957031 PMCID: PMC9370160 DOI: 10.3390/nano12152594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Nano lanthanum oxide particles (La2O3 NPs) are important nanoparticle materials which are widely used in photoelectric production, but their potential health hazards to the respiratory system are not clear. The purpose of this study was to explore the possible mechanism of lung injury induced by La2O3 NPs. In this study, 40 SPF male SD rats were randomly divided into low-, medium-, and high-dose groups and control groups, with 10 animals in each group. Rats were poisoned by tracheal injection. The low-, medium-, and high-dose groups were given La2O3 NPs suspension of 25, 50, and 100 mg/kg, respectively, and the control group was given an equal volume of high-temperature sterilized ultrapure water. The rats in each group were exposed once a week for 12 consecutive times. The gene transcription and protein expression levels of PINK1 and parkin in rat lung tissue were mainly detected. Compared with the control group, the gene transcription and protein expression levels of PINK1 and Parkin in the exposed group were significantly higher (p < 0.05). La2O3 NPs may activate PINK1/parkin-induced mitochondrial autophagy.
Collapse
Affiliation(s)
- Chunyu Chen
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (C.C.); (H.L.); (M.W.); (F.L.); (Q.L.)
| | - Chenxi Zhou
- Lin Yi Center for Disease Control and Prevention, Linyi 276100, China;
| | - Wenli Zhang
- Comprehensive Testing and Analyzing Center, North China University of Science and Technology, Tangshan 063200, China;
| | - Haiping Liu
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (C.C.); (H.L.); (M.W.); (F.L.); (Q.L.)
| | - Mengfei Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (C.C.); (H.L.); (M.W.); (F.L.); (Q.L.)
| | - Feng Li
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (C.C.); (H.L.); (M.W.); (F.L.); (Q.L.)
| | - Qingzhao Li
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (C.C.); (H.L.); (M.W.); (F.L.); (Q.L.)
| | - Yanhua Cao
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (C.C.); (H.L.); (M.W.); (F.L.); (Q.L.)
- Correspondence:
| |
Collapse
|
32
|
Yousefi AM, Pourbagheri-Sigaroodi A, Fakhroueian Z, Salari S, Fateh K, Momeny M, Bashash D. Anticancer Effects of ZnO/CNT@Fe 3O 4 in AML-Derived KG1 Cells: Shedding Light on Promising Potential of Metal Nanoparticles in Acute Leukemia. Int J Hematol Oncol Stem Cell Res 2022; 16:140-150. [PMID: 36694699 PMCID: PMC9831873 DOI: 10.18502/ijhoscr.v16i3.10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/07/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Therapeutic approaches for acute myeloid leukemia (AML) have remained largely unchanged for over 40 years and cytarabine and an anthracycline (e.g., daunorubicin) backbone is the main induction therapy for these patients. Resistance to chemotherapy is the major clinical challenge and contributes to short-term survival with a high rate of disease recurrence. Given the established efficacy of nanoparticles in cancer treatment, this study was designed to evaluate the anticancer property of our novel nanocomposite in the AML-derived KG1 cells. Materials and Methods: To assess the anti-leukemic effects of our nanocomposite on AML cells, we used MTT and trypan blue assays. Flow cytometric analysis and q-RT-PCR were also applied to evaluate the impact of nanocomposite on cell cycle and apoptosis. Results: Our results outlined that ZnO/CNT@Fe3O4 decreased viability and metabolic activity of KG1 cells through induction of G1 arrest by increasing the expression of p21 and p27 cyclin-dependent kinase inhibitors and decreasing c-Myc transcription. Moreover, ZnO/CNT@Fe3O4 markedly elevated the percentage of apoptotic cells which was coupled with a significant alteration of Bax and Bcl-2 expressions. Synergistic experiments showed that ZnO/CNT@Fe3O4 enhances the cytotoxic effects of Vincristine on KG1 cells. Conclusion: In conclusion, this study sheds light on the potent anti-leukemic effects of ZnO/CNT@Fe3O4 and provides evidence for the application of this agent in the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Amir-Mohammad Yousefi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fakhroueian
- School of Chemical Engineering, College of Engineering, Institute of Petroleum Engineering, University of Tehran, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kosar Fateh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Kad A, Pundir A, Arya SK, Puri S, Khatri M. Meta-analysis of in-vitro cytotoxicity evaluation studies of zinc oxide nanoparticles: Paving way for safer innovations. Toxicol In Vitro 2022; 83:105418. [PMID: 35724836 DOI: 10.1016/j.tiv.2022.105418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
Nano-based products have shown their daunting presence in several sectors. Among them, Zinc Oxide (ZnO) nanoparticles wangled the reputation of providing "next-generation solutions" and are being utilized in plethora of products. Their widespread application has led to increased exposure of these particles, raising concerns regarding toxicological repercussions to the human health and environment. The diversity, complexity, and heterogeneity in the available literature, along with correlation of befitting attributes, makes it challenging to develop one systematic framework to predict this toxicity. The present study aims at developing predictive modelling framework to tap the prospective features responsible for causing cytotoxicity in-vitro on exposure to ZnO nanoparticles. Rigorous approach was used to mine the information from complete body of evidence published to date. The attributes, features and experimental conditions were systematically extracted to unmask the effect of varied features. 1240 data points from 76 publications were obtained, containing 14 qualitative and quantitative attributes, including physiochemical properties of nanoparticles, cell culture and experimental parameters to perform meta-analysis. For the first time, the efforts were made to investigate the degree of significance of attributes accountable for causing cytotoxicity on exposure to ZnO nanoparticles. We show that in-vitro cytotoxicity is closely related with dose concentration of nanoparticles, followed by exposure time, disease state of the cell line and size of these nanoparticles among other attributes.
Collapse
Affiliation(s)
- Anaida Kad
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Archit Pundir
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India; Wellcome trustTrust/DBT IA Early Career Fellow Panjab University, Chandigarh 160014, India.
| |
Collapse
|
34
|
Balachander K, Paramasivam A. Mitophagy: A therapeutic target for oral squamous cell carcinoma. Oral Oncol 2022; 129:105881. [DOI: 10.1016/j.oraloncology.2022.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
|
35
|
Mittag A, Singer A, Hoera C, Westermann M, Kämpfe A, Glei M. Impact of in vitro digested zinc oxide nanoparticles on intestinal model systems. Part Fibre Toxicol 2022; 19:39. [PMID: 35644618 PMCID: PMC9150335 DOI: 10.1186/s12989-022-00479-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO NP) offer beneficial properties for many applications, especially in the food sector. Consequently, as part of the human food chain, they are taken up orally. The toxicological evaluation of orally ingested ZnO NP is still controversial. In addition, their physicochemical properties can change during digestion, which leads to an altered biological behaviour. Therefore, the aim of our study was to investigate the fate of two different sized ZnO NP (< 50 nm and < 100 nm) during in vitro digestion and their effects on model systems of the intestinal barrier. Differentiated Caco-2 cells were used in mono- and coculture with mucus-producing HT29-MTX cells. The cellular uptake, the impact on the monolayer barrier integrity and cytotoxic effects were investigated after 24 h exposure to 123–614 µM ZnO NP. Results
In vitro digested ZnO NP went through a morphological and chemical transformation with about 70% free zinc ions after the intestinal phase. The cellular zinc content increased dose-dependently up to threefold in the monoculture and fourfold in the coculture after treatment with digested ZnO NP. This led to reactive oxygen species but showed no impact on cellular organelles, the metabolic activity, and the mitochondrial membrane potential. Only very small amounts of zinc (< 0.7%) reached the basolateral area, which is due to the unmodified transepithelial electrical resistance, permeability, and cytoskeletal morphology. Conclusions Our results reveal that digested and, therefore, modified ZnO NP interact with cells of an intact intestinal barrier. But this is not associated with serious cell damage.
Collapse
|
36
|
Mahalanobish S, Kundu M, Ghosh S, Das J, Sil PC. Fabrication of phenyl boronic acid modified pH-responsive zinc oxide nanoparticles as targeted delivery of chrysin on human A549 cells. Toxicol Rep 2022; 9:961-969. [PMID: 35875254 PMCID: PMC9301599 DOI: 10.1016/j.toxrep.2022.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 01/22/2023] Open
Abstract
Recently, different natural bioactive compounds have been used as anticancer agents for their various therapeutic benefits and non-toxic nature to other organs. However, they have various restrictions in preclinical and clinical studies due to their non-targeting nature and insufficient bioavailability. As a result, a zinc oxide nanoparticle (ZnO) based drug delivery medium was constructed which has good bio-compatibility and bio-degradability. It also displays cancer cell-specific drug delivery in a targeted and controlled way. In the present study, phenylboronic acid (PBA) tagged ZnO nanoparticles (ZnO-PBA) was fabricated and in the next step, chrysin (a natural bio-active molecule) was loaded to it to form the nanoconjugate (ZnO-PBA-Chry). Different characterization techniques were used to confirm the successful fabrication of ZnO-PBA-Chry. PBA-tagging to the nanoparticle helps in targeted delivery of chrysin in lung cancer cells (A549) as PBA binds with sialic acid receptors which are over-expressed on the surface of A549 cells. As ZnO dissociates in acidic pH, it shows stimuli-responsive release of chrysin in tumor microenvironment. Application of ZnO-PBA-Chry nanohybrid in lung cancer cell line A549 caused oxidative stress mediated intrinsic cell death and cell cycle arrest. ZnO-PBA-Chry downregulated MMP-2 and VE-Cadherin, thereby inhibiting metastasis and the invasive property of A549 cells.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| |
Collapse
|
37
|
Fan Y, Cheng Z, Mao L, Xu G, Li N, Zhang M, Weng P, Zheng L, Dong X, Hu S, Wang B, Qin X, Jiang X, Chen C, Zhang J, Zou Z. PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles. J Nanobiotechnology 2022; 20:149. [PMID: 35305662 PMCID: PMC8934125 DOI: 10.1186/s12951-022-01338-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/26/2022] [Indexed: 12/22/2022] Open
Abstract
Copper oxide nanoparticles (CuONPs) are widely used metal oxide NPs owing to their excellent physical–chemical properties. Circulation translocation of CuONPs after inhalation leads to vascular endothelial injury. Mitochondria, an important regulatory hub for maintaining cell functions, are signaling organelles in responses to NPs-induced injury. However, how mitochondrial dynamics (fission and fusion) and mitophagy (an autophagy process to degrade damaged mitochondria) are elaborately orchestrated to maintain mitochondrial homeostasis in CuONPs-induced vascular endothelial injury is still unclear. In this study, we demonstrated that CuONPs exposure disturbed mitochondrial dynamics through oxidative stress-dependent manner in vascular endothelial cells, as evidenced by the increase of mitochondrial fission and the accumulation of fragmented mitochondria. Inhibition of mitochondrial fission with Mdivi-1 aggravated CuONPs-induced mtROS production and cell death. Furthermore, we found that mitochondrial fission led to the activation of PINK1-mediated mitophagy, and pharmacological inhibition with wortmannin, chloroquine or genetical inhibition with siRNA-mediated knockdown of PINK1 profoundly repressed mitophagy, suggesting that the protective role of mitochondrial fission and PINK1-mediated mitophagy in CuONPs-induced toxicity. Intriguingly, we identified that TAX1BP1 was the primary receptor to link the ubiquitinated mitochondria with autophagosomes, since TAX1BP1 knockdown elevated mtROS production, decreased mitochondrial clearance and aggravated CuONPs-induced cells death. More importantly, we verified that urolithin A, a mitophagy activator, promoted mtROS clearance and the removal of damaged mitochondria induced by CuONPs exposure both in vitro and in vivo. Overall, our findings indicated that modulating mitophagy may be a therapeutic strategy for pathological vascular endothelial injury caused by NPs exposure. CuONPs disturb mitochondrial dynamics and trigger mitophagy in vascular endothelial cells and mouse blood vessel. PINK1/TAX1BP1-mediated mitophagy regulates the removal of excessive ROS and aberrant mitochondria in CuONPs-treated vascular endothelial cells. The mitophagy activator urolithin A attenuates CuONPs-induced vascular endothelial cells death and mice vascular injury.
Collapse
Affiliation(s)
- Yinzhen Fan
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhenli Cheng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Ge Xu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mengling Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Ping Weng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siyao Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
38
|
Chen GH, Song CC, Zhao T, Hogstrand C, Wei XL, Lv WH, Song YF, Luo Z. Mitochondria-Dependent Oxidative Stress Mediates ZnO Nanoparticle (ZnO NP)-Induced Mitophagy and Lipotoxicity in Freshwater Teleost Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2407-2420. [PMID: 35107266 DOI: 10.1021/acs.est.1c07198] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to many special characteristics, zinc oxide nanoparticles (ZnO NPs) are widely used all over the world, leading to their wide distribution in the environment. However, the toxicities and mechanisms of environmental ZnO NP-induced changes of physiological processes and metabolism remain largely unknown. Here, we found that addition of dietary ZnO NPs disturbed hepatic Zn metabolism, increased hepatic Zn and lipid accumulation, downregulated lipolysis, induced oxidative stress, and activated mitophagy; N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, Zn2+ ions chelator) alleviated high ZnO NP-induced Zn and lipid accumulation, oxidative stress, and mitophagy. Mechanistically, the suppression of mitochondrial oxidative stress attenuated ZnO NP-activated mitophagy and ZnO NP-induced lipotoxicity. Taken together, our study elucidated that mitochondrial oxidative stress mediated ZnO NP-induced mitophagy and lipotoxicity; ZnO NPs could be dissociated to free Zn2+ ions, which partially contributed to ZnO NP-induced changes in oxidative stress, mitophagy, and lipid metabolism. Our study provides novel insights into the impacts and mechanism of ZnO NPs as harmful substances inducing lipotoxicity of aquatic organisms, and accordingly, metabolism-relevant parameters will be useful for the risk assessment of nanoparticle materials in the environment.
Collapse
Affiliation(s)
- Guang-Hui Chen
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London WC2R 2LS, U.K
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
39
|
Mittag A, Owesny P, Hoera C, Kämpfe A, Glei M. Effects of Zinc Oxide Nanoparticles on Model Systems of the Intestinal Barrier. TOXICS 2022; 10:49. [PMID: 35202236 PMCID: PMC8880068 DOI: 10.3390/toxics10020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Zinc oxide nanoparticles (ZnO NP) are often used in the food sector, among others, because of their advantageous properties. As part of the human food chain, they are inevitably taken up orally. The debate on the toxicity of orally ingested ZnO NP continues due to incomplete data. Therefore, the aim of our study was to examine the effects of two differently sized ZnO NP (<50 nm and <100 nm primary particle size; 123-614 µmol/L) on two model systems of the intestinal barrier. Differentiated Caco-2 enterocytes were grown on Transwell inserts in monoculture and also in coculture with the mucus-producing goblet cell line HT29-MTX. Although no comprehensive mucus layer was detectable in the coculture, cellular zinc uptake was clearly lower after a 24-h treatment with ZnO NP than in monocultured cells. ZnO NP showed no influence on the permeability, metabolic activity, cytoskeleton and cell nuclei. The transepithelial electrical resistance was significantly increased in the coculture model after treatment with ≥307 µmol/L ZnO NP. Only small zinc amounts (0.07-0.65 µg/mL) reached the basolateral area. Our results reveal that the cells of an intact intestinal barrier interact with ZnO NP but do not suffer serious damage.
Collapse
Affiliation(s)
- Anna Mittag
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Patricia Owesny
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Christian Hoera
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Alexander Kämpfe
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Michael Glei
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| |
Collapse
|
40
|
Yang M, Zhang Y, Zhou Y, Zhao T, Li Z, Yue H, Piao Z. Analysis of the expression profiles of long noncoding RNAs and messenger RNAs in tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134:230-239. [PMID: 35725960 DOI: 10.1016/j.oooo.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are involved in the progression of tongue squamous cell carcinoma (TSCC). Therefore, it is necessary to comprehensively investigate the role of lncRNAs in TSCC. STUDY DESIGN In this study, RNA sequencing was performed to examine the expression profiles of lncRNAs and messenger RNAs (mRNAs) of patients with TSCC. The expression of selected lncRNAs in TSCC and paired adjacent tissues as well as in cell lines was validated via quantitative real-time polymerase chain reaction (qRT-PCR). The cell function of lncRNA iodothyronine deiodinase 2 antisense RNA 1 (DIO2-AS1) overexpression was assessed through 5-(3-carboxymethoxyphenyl)-2-(4.5-dimethyl-thiazoly)-3-(4-sulfophenyl) tetrazolium inner salt and Transwell assays. RESULTS A total of 342 lncRNAs and 6392 mRNAs were differentially expressed in TSCC tissues compared with paired adjacent tissues. qRT-PCR revealed the increased expression of AC093818.1 and reduced expression of CYP4F35P and DIO2-AS1 in TSCC. Furthermore, DIO2-AS1 overexpression inhibited Cal-27 cell proliferation, migration, and invasion. CONCLUSIONS We provide evidence that DIO2-AS1 is involved in TSCC progression. This study provides a direction for subsequent research.
Collapse
Affiliation(s)
- Mi Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Yumin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Yang Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Tianyu Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Zhicong Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Haiqiong Yue
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Zhengguo Piao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China.
| |
Collapse
|
41
|
Guo D, Wang Z, Guo L, Yin X, Li Z, Zhou M, Li T, Chen C, Bi H. Zinc oxide nanoparticle-triggered oxidative stress and autophagy activation in human tenon fibroblasts. Eur J Pharmacol 2021; 907:174294. [PMID: 34217712 DOI: 10.1016/j.ejphar.2021.174294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide due to elevated intraocular pressure, and filtering surgery can efficiently control intraocular pressure of glaucoma patients. However, failure of filtering surgery commonly results from scarring formation at the surgical site, in which fibroblast proliferation plays an essential role in the scarring process. Our previous study has demonstrated that zinc oxide (ZnO) nanoparticles could efficiently inhibit human tenon fibroblasts (HTFs) proliferation. The present study aimed to explore the underlying mechanism involved in oxidative stress and autophagy signaling in zinc oxide (ZnO) nanoparticles-induced inhibition of HTFs proliferation. In this study, we investigated the effect of ZnO nanoparticles on HTFs proliferation, mitochondrial function, ATP production and nuclear morphology. Moreover, we also explored the interactions between ZnO nanoparticles and HTFs, investigated the influence of ZnO nanoparticles on the autophagosome formation, the expression of autophagy-related 5 (Atg5), Atg12 and Becn1 (Beclin 1), and the level of light chain 3 (LC3). The results suggested that ZnO nanoparticles can efficiently inhibit HTFs proliferation, disrupt the mitochondrial function, attenuate the adenosine triphosphate (ATP) generation, and damage the nuclear morphology of HTFs. Exposure of HTFs to ZnO nanoparticles can also induce the shifted peak, elevate the expression of Atg5, Atg12 and Becn1, enhance the autophagosome formation, and promote the LC3 expression, and thus activate autophagy signaling. Overall, ZnO nanoparticles can apparently trigger oxidative stress and activate autophagy signaling in HTFs, and thus inhibit HTFs proliferation and mediate HTFs apoptosis.
Collapse
Affiliation(s)
- Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Zhe Wang
- Department of Ophthalmology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, 277000, China
| | - Lijie Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xuewei Yin
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zonghong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Mengxian Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tuling Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chen Chen
- Department of Ophthalmology, Linyi People's Hospital, Linyi, 276000, China.
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
42
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
43
|
Singh TA, Sharma A, Tejwan N, Ghosh N, Das J, Sil PC. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci 2021; 295:102495. [PMID: 34375877 DOI: 10.1016/j.cis.2021.102495] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Recently, zinc oxide nanoparticles (ZnONPs) are gaining much interest of nanobiotechnologists due to their profound biomedical applications. ZnONPs are used as antibacterial agents, which cause both gram-positive and negative bacterial cell death through the generation of reactive free radicals as well as membrane rupture. ZnONPs show excellent antioxidant properties in normal mammalian cells via the scavenging of reactive free radicals and up-regulation of antioxidant enzyme activities. Besides, it also shows hypoglycaemic effect in diabetic animals via pancreatic β-cells mediated increased insulin secretion and glucose uptake by liver, skeletal muscles and adipose tissues. Among the other potential applications, ZnONPs-induced bone and soft-tissue regeneration open a new horizon in the field of tissue engineering. Here, first we reviewed the complete synthesis routes of ZnONPs by physical, chemical, and biological pathways as well as outlined the advantages and disadvantages of the techniques. Further, we discussed the several important aspects of physicochemical analysis of ZnONPs. Additionally, we extensively reviewed the important biomedical applications of ZnONPs as antibacterial, antioxidant, and antidiabetic agents, and in the field of tissue engineering with special emphasis on their mechanisms of actions. Furthermore, the future perspectives of the ZnONPs are also discussed.
Collapse
Affiliation(s)
- Th Abhishek Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Anirudh Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Neeraj Tejwan
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
44
|
Using Gold-Nanorod-Filled Mesoporous Silica Nanobeads for Enhanced Radiotherapy of Oral Squamous Carcinoma. NANOMATERIALS 2021; 11:nano11092235. [PMID: 34578551 PMCID: PMC8472528 DOI: 10.3390/nano11092235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Radiotherapy (RT), in combination with surgery, is an essential treatment strategy for oral cancer. Although irradiation provides effective control over tumor growth, the surrounding normal tissues are almost inevitably affected. With further understanding of the molecular mechanisms involved in radiation response and recent advances in nanotechnology, using gold nanoparticles as a radiosensitizer provides the preferential sensitization of tumor cells to radiation and minimizes normal tissue damage. Herein, we developed gold nano-sesame-beads (GNSbs), a gold-nanorod-seeded mesoporous silica nanoparticle, as a novel radioenhancer to achieve radiotherapy with a higher therapeutic index. GNSbs in combination with 2 Gy irradiation effectively enhanced the cytotoxic activity CAL-27 cells. The well-designed structure of GNSbs showed preferential cellular uptake by CAL-27 cells at 24 h after incubation. Gold nanorods with high density modified on mesoporous silica nanoparticles resulted in significant reactive oxygen species (ROS) formation after irradiation exposure compared with irradiation alone. Furthermore, GNSbs and irradiation induced more prominent DNA double-strand breaks and G2/M phase arrest in CAL-27 than those in L929. In animal studies, radiotherapy using GNSbs as a radiosensitizer showed significant suppression of tumor growth in an orthotopic model of oral cancer. These results demonstrate that using GNSbs as a radiosensitizer could possess clinical potential for the treatment of oral squamous carcinoma.
Collapse
|
45
|
Yu H, Zhao Z, Cheng F. Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning. CHEMOSPHERE 2021; 276:130164. [PMID: 33725618 DOI: 10.1016/j.chemosphere.2021.130164] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Safety concerns of engineered nanoparticles (ENPs) hamper their applications and commercialization in many potential fields. Machine learning has been proved as a great tool to understand the complex ENP-organism-environment relationship. However, good-performance machine learning models usually exist as black boxes, which may be difficult to build trust and whose ways of expressing knowledge rarely directly map to forms familiar to scientists. Here, we present an approach for uncovering causal structure in nanotoxicity datasets by mutual-validated and model-agnostic interpretation methods. Model predictions can be explained from feature importance, feature effects, and feature interactions. The utility of this approach is demonstrated through two case studies, the cytotoxicity of cadmium-containing quantum dots and metal oxide nanoparticles. Further, these case studies indicate the efficacy and impacts at two scales: (i) model interpretation, where the most relevant features for correlating cytotoxicity are identified and their influence on model predictions and interactions with other features are then explained, and (ii) model validation, where the difference among interpretation results of different methods (or the difference between interpretation results and well-known toxicity mechanisms) may reflect some inherent problems in the used dataset (or the developed models). Our approach of integrating machine learning models and interpretation methods provides a roadmap for predicting the toxicity of ENPs in a translucent way.
Collapse
Affiliation(s)
- Hengjie Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhilin Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
46
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
47
|
Stepankova H, Swiatkowski M, Kruszynski R, Svec P, Michalkova H, Smolikova V, Ridoskova A, Splichal Z, Michalek P, Richtera L, Kopel P, Adam V, Heger Z, Rex S. The Anti-Proliferative Activity of Coordination Compound-Based ZnO Nanoparticles as a Promising Agent Against Triple Negative Breast Cancer Cells. Int J Nanomedicine 2021; 16:4431-4449. [PMID: 34234435 PMCID: PMC8257049 DOI: 10.2147/ijn.s304902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The present study deals with the in vitro evaluation of the potential use of coordination compound-based zinc oxide (ZnO) nanoparticles (NPs) for the treatment of triple negative breast cancer cells (TNBrCa). As BrCa is one of the most prevalent cancer types and TNBrCa treatment is difficult due to poor prognosis and a high metastasis rate, finding a more reliable treatment option should be of the utmost interest. METHODS Prepared by reacting zinc carboxylates (formate, acetate, propionate, butyrate, isobutyrate, valerate) and hexamethylenetetramine, 4 distinct coordination compounds were further subjected to two modes of conversion into ZnO NPs - ultrasonication with oleic acid or heating of pure precursors in an air atmosphere. After detailed characterization, the resulting ZnO NPs were subjected to in vitro testing of cytotoxicity toward TNBrCa and normal breast epithelial cells. Further, their biocompatibility was evaluated. RESULTS The resulting ZnO NPs provide distinct morphological features, size, biocompatibility, and selective cytotoxicity toward TNBrCa cells. They internalize into two types of TNBrCa cells and imbalance their redox homeostasis, influencing their metabolism, morphology, and ultimately leading to their death via apoptosis or necrosis. CONCLUSION The crucial properties of ZnO NPs seem to be their morphology, size, and zinc content. The ZnO NPs with the most preferential values of all three properties show great promise for a future potential use in the therapy of TNBrCa.
Collapse
Affiliation(s)
- Hana Stepankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Marcin Swiatkowski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Vendula Smolikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Mendel University in Brno, Brno, Czechia
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
48
|
Moradpoor H, Safaei M, Mozaffari HR, Sharifi R, Imani MM, Golshah A, Bashardoust N. An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Adv 2021; 11:21189-21206. [PMID: 35479373 PMCID: PMC9034121 DOI: 10.1039/d0ra10789a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology is an emerging field of science, engineering, and technology concerning the materials in nanoscale dimensions. Several materials are used in dentistry, which can be modified by applying nanotechnology. Nanotechnology has various applications in dentistry to achieve reliable treatment outcomes. The most common nanometals used in dental materials are gold, silver, copper oxide, magnesium oxide, iron oxide, cerium oxide, aluminum oxide, titanium dioxide, and zinc oxide (ZnO). ZnO nanoparticles (NPs), with their unparalleled properties such as high selectivity, enhanced cytotoxicity, biocompatibility, and easy synthesis as important materials were utilized in the field of dentistry. With this background, the present review aimed to discuss the current progress and gain an insight into applications of ZnO NPs in nanodentistry, including restorative, endodontic, implantology, periodontal, prosthodontics, and orthodontics fields.
Collapse
Affiliation(s)
- Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohsen Safaei
- Advanced Dental Sciences Research Center, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Negin Bashardoust
- Students Research Committee, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
49
|
Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells. TOXICS 2021; 9:toxics9050096. [PMID: 33925422 PMCID: PMC8146923 DOI: 10.3390/toxics9050096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Due to their beneficial properties, the use of zinc oxide nanoparticles (ZnO NP) is constantly increasing, especially in consumer-related areas, such as food packaging and food additives, which is leading to an increased oral uptake of ZnO NP. Consequently, the aim of our study was to investigate the cellular uptake of two differently sized ZnO NP (<50 nm and <100 nm; 12–1229 µmol/L) using two human intestinal cell lines (Caco-2 and LT97) and to examine the possible resulting toxic effects. ZnO NP (<50 nm and <100 nm) were internalized by both cell lines and led to intracellular changes. Both ZnO NP caused time- and dose-dependent cytotoxic effects, especially at concentrations of 614 µmol/L and 1229 µmol/L, which was associated with an increased rate of apoptotic and dead cells. ZnO NP < 100 nm altered the cell cycle of LT97 cells but not that of Caco-2 cells. ZnO NP < 50 nm led to the formation of micronuclei in LT97 cells. The Ames test revealed no mutagenicity for both ZnO NP. Our results indicate the potential toxicity of ZnO NP after oral exposure, which should be considered before application.
Collapse
|
50
|
Wu D, Lu J, Ma Y, Cao Y, Zhang T. Mitochondrial dynamics and mitophagy involved in MPA-capped CdTe quantum dots-induced toxicity in the human liver carcinoma (HepG2) cell line. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115681. [PMID: 33308872 DOI: 10.1016/j.envpol.2020.115681] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Quantum dots (QDs) are nanoparticles of inorganic semiconductors and have great promise in various applications. Many studies have indicated that mitochondria are the main organelles for the distribution and toxic effects of QDs. However, the underlying mechanism of QDs interacting with mitochondria and affecting their function is unknown. Here, we report the mechanism of toxic effects of 3-mercaptopropionic acid (MPA)-capped CdTe QDs on mitochondria. Human liver carcinoma (HepG2) cells were exposed to 25, 50 and 100 μmol/L of MPA-capped CdTe QDs. The results indicated that MPA-capped CdTe QDs inhibited HepG2 cell proliferation and increased the extracellular release of LDH in a concentration-dependent manner. Furthermore, MPA-capped CdTe QDs caused reactive oxygen species (ROS) generation and cell damage through intrinsic apoptotic pathway. MPA-capped CdTe QDs can also lead to the destruction of mitochondrial cristae, elevation of intracellular Ca2+ levels, decreased mitochondrial transmembrane potential and ATP production. Finally, we showed that MPA-capped CdTe QDs inhibited mitochondrial fission, mitochondrial inner membrane fusion and mitophagy. Taken together, MPA-capped CdTe QDs induced significant mitochondrial dysfunction, which may be caused by imbalanced mitochondrial fission/fusion and mitophagy inhibition. These findings provide insights into the regulatory mechanisms involved in MPA-capped CdTe QDs-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Jie Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| |
Collapse
|