1
|
Imtiaz S, Ferdous UT, Nizela A, Hasan A, Shakoor A, Zia AW, Uddin S. Mechanistic study of cancer drug delivery: Current techniques, limitations, and future prospects. Eur J Med Chem 2025; 290:117535. [PMID: 40132495 DOI: 10.1016/j.ejmech.2025.117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Cancer drug delivery remains a critical challenge with systemic toxicity, poor drug bioavailability, and a lack of effective targeting. Overcoming these barriers is essential for improving treatment efficacy and patient outcomes. This review discusses current drug delivery techniques that reshape cancer therapy by offering precise, controlled-release tailored to tumor-specific features. Innovations in nanotechnology, immunotherapy, and gene therapy enable interventions at molecular and cellular levels. Radiomics and pathomics integrate high-dimensional data to optimize diagnostics and treatment planning. Combination therapy addresses the complexities of tumor heterogeneity by synergizing multiple agents within a single therapeutic framework, while peptide-drug conjugates enhance specificity and potency. Hydrogel-based systems and microneedle arrays offer localized, sustained release, significantly improving therapeutic outcomes. However, clinical translation of these advancements faces significant barriers such as drug resistance, off-target effects, scalability, cost, and ethical concerns. Moreover, regulatory complexities and the economic feasibility of these therapies highlight the need for innovative frameworks to make them accessible globally. Therefore, there is a need for innovation in gene and cell therapy, next-generation drug delivery platforms, and personalized medicine. This review focuses on recent advancements in drug delivery techniques over the past decade, evaluating their limitations and exploring potential future directions for transforming cancer treatment.
Collapse
Affiliation(s)
- Saiqa Imtiaz
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Umme Tamanna Ferdous
- Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Alexis Nizela
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Adnan Shakoor
- Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Department of Control & Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdul Wasy Zia
- Institute of Mechanical, Process, and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Shihab Uddin
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
2
|
Martorana A, Puleo G, Miceli GC, Cancilla F, Licciardi M, Pitarresi G, Tranchina L, Marrale M, Palumbo FS. Redox/NIR dual-responsive glutathione extended polyurethane urea electrospun membranes for synergistic chemo-photothermal therapy. Int J Pharm 2025; 669:125108. [PMID: 39708849 DOI: 10.1016/j.ijpharm.2024.125108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Despite advancements in cancer treatments, therapies frequently exhibit high cytotoxicity, and surgery remains the predominant method for treating most solid tumors, often with limited success in preventing post-surgical recurrence. Implantable biomaterials, designed to release drugs at a localised site in response to specific stimuli, represent a promising approach for enhancing tumour therapy. In this study, a redox-responsive glutathione extended polyurethane urea (PolyCEGS) was used to produce paclitaxel (PTX) and gold nanorods (AuNRs) loaded electrospun membranes for combined redox/near-infrared (NIR) light-responsive release chemotherapy and hyperthermic effect. Electrospinning conditions were optimized to fabricate AuNR-loaded scaffolds, at three different AuNRs concentrations. The obtained membranes were characterized by scanning electron microscopy (SEM) analyses and photothermal profiles were evaluated by a thermocamera, showing a temperature increase, up to 42.5 °C, when exposed to NIR light (810 nm) at 3 W/cm2. The AuNRs/PTX loaded scaffolds exhibited sustained PTX release, with 15 % released over 30 days and almost 1.8 times more in a simulated reductive environment. Moreover, their excellent photothermal effects and NIR light-triggered release led to significant synergic cytotoxicity in human colon cancer (HCT-116) and human breast cancer (MCF-7) cell lines. This system potentially enables controllable locoregional PTX release at the tumour site post-surgery, preventing recurrence and enhancing cytotoxicity through combined drug and PTT effects, highlighting its potential for future anticancer treatments.
Collapse
Affiliation(s)
- Annalisa Martorana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy; Fondazione Ri.MED, c/o IRCCS ISMETT, via E. Tricomi 5, 90127, Palermo, Italy(2)
| | - Giorgia Puleo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Edificio 18, Palermo, Italy; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
| | - Giovanni Carlo Miceli
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy; Department of Bioengineering, Imperial College London, London, SW7 2BX, UK(2)
| | - Francesco Cancilla
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy
| | - Mariano Licciardi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy
| | - Giovanna Pitarresi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy
| | - Luigi Tranchina
- Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze, edificio 18a, Palermo, 90128, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Viale delle Scienze, edificio 18, Palermo, 90128, Italy; National Institute for Nuclear Physics (INFN), Catania Division, Via Santa Sofia,64, Catania, 95123, Italy
| | - Fabio Salvatore Palumbo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy; Istituto per la Ricerca e Innovazione Biomedica (IRIB), CNR, Via Ugo La Malfa, 153, 90146, Palermo, Italy.
| |
Collapse
|
3
|
Feng C, Wang Y, Xu J, Zheng Y, Zhou W, Wang Y, Luo C. Precisely Tailoring Molecular Structure of Doxorubicin Prodrugs to Enable Stable Nanoassembly, Rapid Activation, and Potent Antitumor Effect. Pharmaceutics 2024; 16:1582. [PMID: 39771561 PMCID: PMC11679313 DOI: 10.3390/pharmaceutics16121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Achieving a balance between stable drug loading/delivery and on-demand drug activation/release at the target sites remains a significant challenge for nanomedicines. Carrier-free prodrug nanoassemblies, which rely on the design of prodrug molecules, offer a promising strategy to optimize both drug delivery efficiency and controlled drug release profiles. METHODS A library of doxorubicin (DOX) prodrugs was created by linking DOX to fatty alcohols of varying chain lengths via a tumor-responsive disulfide bond. In vitro studies assessed the stability and drug release kinetics of the nanoassemblies. In vivo studies evaluated their drug delivery efficiency, tumor accumulation, and antitumor activity in mouse models. RESULTS In vitro results demonstrated that longer fatty alcohol chains improved the stability of the nanoassemblies but slowed down the disassembly and drug release process. DSSC16 NAs (hexadecanol-modified DOX prodrug) significantly prolonged blood circulation time and enhanced tumor accumulation, with AUC values 14.2-fold higher than DiR Sol. In 4T1 tumor-bearing mouse models, DSSC16 NAs exhibited notably stronger antitumor activity, resulting in a final mean tumor volume of 144.39 ± 36.77 mm3, significantly smaller than that of all other groups (p < 0.05 by ANOVA at a 95% confidence interval). CONCLUSIONS These findings underscore the critical role of prodrug molecule design in the development of effective prodrug nanoassemblies. The balance between stability and drug release is pivotal for optimizing drug delivery and maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Chengcheng Feng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.F.); (Y.W.); (J.X.); (Y.Z.)
| | - Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.F.); (Y.W.); (J.X.); (Y.Z.)
| | - Jiaxu Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.F.); (Y.W.); (J.X.); (Y.Z.)
| | - Yanzi Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.F.); (Y.W.); (J.X.); (Y.Z.)
| | - Wenhu Zhou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Department of Pharmaceutics, School of Pharmaceutical Science, Changsha Medical University, Changsha 410219, China;
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.F.); (Y.W.); (J.X.); (Y.Z.)
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.F.); (Y.W.); (J.X.); (Y.Z.)
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
4
|
Reda D, Elfiky AA, Elnagdy M, Khalil MM. Molecular docking and molecular dynamics of hypoxia-inducible factor (HIF-1alpha): towards potential inhibitors. J Biomol Struct Dyn 2024:1-20. [PMID: 39520676 DOI: 10.1080/07391102.2024.2425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/18/2024] [Indexed: 11/16/2024]
Abstract
HIF-1α is a primary regulator in the adaptation of cancer cells to hypoxia. The aim was to find out new inhibitors of the HIF-1α. A molecular dynamic (MD) simulation performed on HIF-1α showed stable dynamic features. Virtual screening of 217 anticancer drugs was performed along with a positive control (2-Methoxyestradiolm, 2-ME2) on an optimized HIF-1α and dynamically simulated structure. Docking results produced two compounds namely pycnidione and nilotinib of high binding affinity -9.34 kcal/mol and -9.04 kcal/mol respectively, whereas 2-ME2 displayed a relatively lower affinity (-6.68 kcal/mol). For the three complexes, MD of 200 ns simulation was run. Data analysis showed that the three medications behaved similarly in the MD simulation. Nilotinib had a lower RMSD and higher SASA than the other complexes. In addition, the Nilotinib-HIF-1α combination had a lower RMSF value, a flatter Rg, and a number of hydrogen bonds similar to other complexes. MM-GBSA analysis revealed that nilotinib, pycnidione and 2-ME2 compounds had free binding energy of -23.77 ± 5.29, -21.85 ± 4.24 and -7.53 ± 6.62 kcal/mol respectively. Nilotinib and pycnidione bind competitively to HIF-1α, with nilotinib showing consistent molecular-dynamic properties. They relatively pass the blood-brain barrier, non-carcinogenic, and have IV-category acute oral toxicity. They have low CYP inhibitory characteristics. Further investigations are therefore warranted to elucidate their implications in hypoxia pathways, cell proliferation, apoptosis, survival, and metastatic potential.
Collapse
Affiliation(s)
- Dina Reda
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - M Elnagdy
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Magdy M Khalil
- School of Allied Health Sciences, Badr University in Cairo (BUC), Badr City and Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Mohanan S, Guan X, Liang M, Karakoti A, Vinu A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301113. [PMID: 36967548 DOI: 10.1002/smll.202301113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
6
|
Bhuniya S, Vrettos EI. Hypoxia-Activated Theragnostic Prodrugs (HATPs): Current State and Future Perspectives. Pharmaceutics 2024; 16:557. [PMID: 38675218 PMCID: PMC11054426 DOI: 10.3390/pharmaceutics16040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia is a significant feature of solid tumors and frequently poses a challenge to the effectiveness of tumor-targeted chemotherapeutics, thereby limiting their anticancer activity. Hypoxia-activated prodrugs represent a class of bio-reductive agents that can be selectively activated in hypoxic compartments to unleash the toxic warhead and thus, eliminate malignant tumor cells. However, their applicability can be further elevated by installing fluorescent modalities to yield hypoxia-activated theragnostic prodrugs (HATPs), which can be utilized for the simultaneous visualization and treatment of hypoxic tumor cells. The scope of this review is to summarize noteworthy advances in recent HATPs, highlight the challenges and opportunities for their further development, and discuss their potency to serve as personalized medicines in the future.
Collapse
Affiliation(s)
- Sankarprasad Bhuniya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India;
| | - Eirinaios I. Vrettos
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
8
|
Buravchenko GI, Shchekotikhin AE. Quinoxaline 1,4-Dioxides: Advances in Chemistry and Chemotherapeutic Drug Development. Pharmaceuticals (Basel) 2023; 16:1174. [PMID: 37631089 PMCID: PMC10459860 DOI: 10.3390/ph16081174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
N-Oxides of heterocyclic compounds are the focus of medical chemistry due to their diverse biological properties. The high reactivity and tendency to undergo various rearrangements have piqued the interest of synthetic chemists in heterocycles with N-oxide fragments. Quinoxaline 1,4-dioxides are an example of an important class of heterocyclic N-oxides, whose wide range of biological activity determines the prospects of their practical use in the development of drugs of various pharmaceutical groups. Derivatives from this series have found application in the clinic as antibacterial drugs and are used in agriculture. Quinoxaline 1,4-dioxides present a promising class for the development of new drugs targeting bacterial infections, oncological diseases, malaria, trypanosomiasis, leishmaniasis, and amoebiasis. The review considers the most important methods for the synthesis and key directions in the chemical modification of quinoxaline 1,4-dioxide derivatives, analyzes their biological properties, and evaluates the prospects for the practical application of the most interesting compounds.
Collapse
|
9
|
Adjei-Sowah E, Benoit DSW, Loiselle AE. Drug Delivery Approaches to Improve Tendon Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:369-386. [PMID: 36888543 PMCID: PMC10442691 DOI: 10.1089/ten.teb.2022.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
Tendon injuries disrupt the transmission of forces from muscle to bone, leading to chronic pain, disability, and a large socioeconomic burden. Tendon injuries are prevalent; there are over 300,000 tendon repair procedures a year in the United States to address acute trauma or chronic tendinopathy. Successful restoration of function after tendon injury remains challenging clinically. Despite improvements in surgical and physical therapy techniques, the high complication rate of tendon repair procedures motivates the use of therapeutic interventions to augment healing. While many biological and tissue engineering approaches have attempted to promote scarless tendon healing, there is currently no standard clinical treatment to improve tendon healing. Moreover, the limited efficacy of systemic delivery of several promising therapeutic candidates highlights the need for tendon-specific drug delivery approaches to facilitate translation. This review article will synthesize the current state-of-the-art methods that have been used for tendon-targeted delivery through both systemic and local treatments, highlight emerging technologies used for tissue-specific drug delivery in other tissue systems, and outline future challenges and opportunities to enhance tendon healing through targeted drug delivery.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Materials Science Program, University of Rochester, Rochester, New York, USA
- Knight Campus Department of Bioengineering, University of Oregon, Eugene, Oregan, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
| |
Collapse
|
10
|
Huynh KN, Rao S, Roth B, Bryan T, Fernando DM, Dayyani F, Imagawa D, Abi-Jaoudeh N. Targeting Hypoxia-Inducible Factor-1α for the Management of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2738. [PMID: 37345074 DOI: 10.3390/cancers15102738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a transcription factor that regulates the cellular response to hypoxia and is upregulated in all types of solid tumor, leading to tumor angiogenesis, growth, and resistance to therapy. Hepatocellular carcinoma (HCC) is a highly vascular tumor, as well as a hypoxic tumor, due to the liver being a relatively hypoxic environment compared to other organs. Trans-arterial chemoembolization (TACE) and trans-arterial embolization (TAE) are locoregional therapies that are part of the treatment guidelines for HCC but can also exacerbate hypoxia in tumors, as seen with HIF-1α upregulation post-hepatic embolization. Hypoxia-activated prodrugs (HAPs) are a novel class of anticancer agent that are selectively activated under hypoxic conditions, potentially allowing for the targeted treatment of hypoxic HCC. Early studies targeting hypoxia show promising results; however, further research is needed to understand the effects of HAPs in combination with embolization in the treatment of HCC. This review aims to summarize current knowledge on the role of hypoxia and HIF-1α in HCC, as well as the potential of HAPs and liver-directed embolization.
Collapse
Affiliation(s)
- Kenneth N Huynh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Sriram Rao
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Bradley Roth
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Theodore Bryan
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Dayantha M Fernando
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Farshid Dayyani
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA 92868, USA
| | - David Imagawa
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Nadine Abi-Jaoudeh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
11
|
Wang Z, Zhang S, Kong Z, Li S, Sun J, Zheng Y, He Z, Ye H, Luo C. Self-adaptive nanoassembly enabling turn-on hypoxia illumination and periphery/center closed-loop tumor eradication. Cell Rep Med 2023; 4:101014. [PMID: 37075700 PMCID: PMC10140616 DOI: 10.1016/j.xcrm.2023.101014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Solid tumors are regarded as complex evolving systems rather than simple diseases. Self-adaptive synthetic therapeutics are required to cope with the challenges of entire tumors; however, limitations in accurate positioning and destruction of hypoxic niches seriously hinder complete tumor eradication. In this study, we engineer a molecular nanoassembly of sorafenib and a hypoxia-sensitive cyanine probe (CNO) to facilitate periphery/center synergistic cancer therapies. The self-adaptive nanoassembly with cascade drug release features not only effectively kills the peripheral tumor cells in normoxic rims but precisely illuminates hypoxic niches following the reduction of CNO by nitroreductase. More important, CNO is found to synergistically induce tumor ferroptosis with sorafenib via nicotinamide adenine dinucleotide phosphate (NADPH) depletion in hypoxic niches. As expected, the engineered nanoassembly demonstrates self-adaptive hypoxic illumination and periphery/center synergetic tumor eradication in colon and breast cancer BALB/c mouse xenograft models. This study advances turn-on hypoxia illumination and chemo-ferroptosis toward clinical applicability.
Collapse
Affiliation(s)
- Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhiqiang Kong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Songhao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hao Ye
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, 8092 Zurich, Switzerland.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| |
Collapse
|
12
|
Hu Z, Wang G, Zhang R, Wang L, Wang J, Hu J, Reheman A. Construction of poly(amino acid)s nano-delivery system and sustained release with redox-responsive. Colloids Surf B Biointerfaces 2023; 224:113232. [PMID: 36868182 DOI: 10.1016/j.colsurfb.2023.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
A series of novel poly(amino acid)s materials were designed to prepare drug-loaded nanoparticles by physical encapsulation and chemical bonding. The side chain of the polymer contains a large number of amino groups, which effectively increases the loading rate of doxorubicin (DOX). The structure contains disulfide bonds that showing a strong response to the redox environment, which can achieve targeted drug release in the tumor microenvironment. Nanoparticles mainly present spherical morphology with the suitable size for participating in systemic circulation. cell experiments demonstrate the non-toxicity and good cellular uptake behavior of polymers. In vivo anti-tumor experiments shows nanoparticles could inhibit tumor growth and effectively reduce the side effects of DOX.
Collapse
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Gongshu Wang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Rui Zhang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Lijuan Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China; Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China.
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China; Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China.
| |
Collapse
|
13
|
Yi M, Xiong B, Li Y, Guo W, Huang Y, Lu B. Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials. Eur J Med Chem 2023; 247:115084. [PMID: 36599230 DOI: 10.1016/j.ejmech.2022.115084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Due to its low adverse effects, minimal invasiveness, and outstanding patient compliance, photodynamic therapy (PDT) has drawn a great deal of interest, which is achieved through incomplete reduction of O2 by a photosensitizer under light illumination that produces amounts of reactive oxygen species (ROS). However, tumor hypoxia significantly hinders the therapeutic effect of PDT so that tumor cells cannot be eliminated, which results in tumor cells proliferating, invading, and metastasizing. Additionally, O2 consumption during PDT exacerbates hypoxia in tumors, leading to several adverse events after PDT treatment. In recent years, various investigations have focused on conquering or using tumor hypoxia by nanomaterials to amplify PDT efficacy, which is summarized in this review. This comprehensive review's objective is to present novel viewpoints on the advancement of oxygenation nanomaterials in this promising field, which is motivated by hypoxia-associated anti-tumor therapy.
Collapse
Affiliation(s)
- Mengqi Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bei Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuyang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
14
|
Du J, Sun J, Liu X, Wu Q, Shen W, Gao Y, Liu Y, Wu C. Preparation of C6 cell membrane-coated doxorubicin conjugated manganese dioxide nanoparticles and its targeted therapy application in glioma. Eur J Pharm Sci 2023; 180:106338. [PMID: 36410571 DOI: 10.1016/j.ejps.2022.106338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
In this study, we prepared a C6 cell membrane-coated doxorubicin conjugated manganese dioxide biomimetic nanomedicine system (MnO2-DOX-C6) for the treatment of glioma. In the glioma microenvironment, manganese dioxide could alleviate tumor hypoxia by promoting the decomposition of hydrogen peroxide (H2O2) to generate oxygen and, through a Fenton-like reaction, increase ROS levels in tumor cells, thus inducing oxidative stress to further kill cancer cells. Doxorubicin and manganese dioxide were connected through a hydrazone bond so that doxorubicin could be released only in the acidic environment of the tumor, which helped to reduce the toxicity and side effects of doxorubicin. Encapsulation of glioma C6 cancer cell membrane in MnO2-DOX-C6 made MnO2-DOX possess the homologous targeting ability and also regulated drug release rate. In vitro release experiments showed that the cumulative release of doxorubicin from MnO2-DOX-C6 at a pH of 5.0 for 48 h was 66.84 ± 3.81%, proving that it had pH sensitivity and a sustained-release effect. Cellular uptake experiments showed that MnO2-DOX-C6 had a good ability to target syngeneic tumor cells. MTT, flow cytometry, Western blot, cell immunofluorescence staining and in vivo antitumor experiments demonstrated that MnO2-DOX-C6 could promote C6 cell apoptosis and inhibit its proliferative ability. These results clearly suggested that MnO2-DOX-C6 may be a promising bionic nanosystem agent for the treatment of glioma.
Collapse
Affiliation(s)
- Jiaqun Du
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Junpeng Sun
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Wenwen Shen
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Yu Gao
- Department of Medical Oncology, the First Affiliated Hospital of Jinzhou Medical University, No.2, the Fifth Section of Renmin Street, Guta District, Jinzhou, Liaoning Province 121001, China.
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
15
|
Li X, Chen L, Huang M, Zeng S, Zheng J, Peng S, Wang Y, Cheng H, Li S. Innovative strategies for photodynamic therapy against hypoxic tumor. Asian J Pharm Sci 2023; 18:100775. [PMID: 36896447 PMCID: PMC9989661 DOI: 10.1016/j.ajps.2023.100775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Photodynamic therapy (PDT) is applied as a robust therapeutic option for tumor, which exhibits some advantages of unique selectivity and irreversible damage to tumor cells. Among which, photosensitizer (PS), appropriate laser irradiation and oxygen (O2) are three essential components for PDT, but the hypoxic tumor microenvironment (TME) restricts the O2 supply in tumor tissues. Even worse, tumor metastasis and drug resistance frequently happen under hypoxic condition, which further deteriorate the antitumor effect of PDT. To enhance the PDT efficiency, critical attention has been received by relieving tumor hypoxia, and innovative strategies on this topic continue to emerge. Traditionally, the O2 supplement strategy is considered as a direct and effective strategy to relieve TME, whereas it is confronted with great challenges for continuous O2 supply. Recently, O2-independent PDT provides a brand new strategy to enhance the antitumor efficiency, which can avoid the influence of TME. In addition, PDT can synergize with other antitumor strategies, such as chemotherapy, immunotherapy, photothermal therapy (PTT) and starvation therapy, to remedy the inadequate PDT effect under hypoxia conditions. In this paper, we summarized the latest progresses in the development of innovative strategies to improve PDT efficacy against hypoxic tumor, which were classified into O2-dependent PDT, O2-independent PDT and synergistic therapy. Furthermore, the advantages and deficiencies of various strategies were also discussed to envisage the prospects and challenges in future study.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Chen
- Department of Anesthesiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Miaoting Huang
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shaoting Zeng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Jiayi Zheng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuyi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Yuqing Wang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
16
|
Shi H, Chen L, Liu Y, Wen Q, Lin S, Wen Q, Lu Y, Dai J, Li J, Xiao S, Fu S. Bacteria-Driven Tumor Microenvironment-Sensitive Nanoparticles Targeting Hypoxic Regions Enhances the Chemotherapy Outcome of Lung Cancer. Int J Nanomedicine 2023; 18:1299-1315. [PMID: 36945255 PMCID: PMC10024911 DOI: 10.2147/ijn.s396863] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2023] [Indexed: 03/17/2023] Open
Abstract
Background Chemotherapy still plays a dominant role in cancer treatment. However, the inability of conventional chemotherapeutic drugs to reach the hypoxic zone of solid tumors significantly weakens their efficacy. Bacteria-mediated drug delivery systems can be an effective targeting strategy for improving the therapeutic outcomes in cancer. Anaerobic bacteria have the unique ability to selectively transport drug loads to the hypoxic regions of tumors. Methods We designed a Bifidobacterium infantis (Bif)-based biohybrid (Bif@PDA-PTX-NPs) to deliver polydopamine (PDA)-coated paclitaxel nanoparticles (PTX-NPs) to tumor tissues. Results The self-driven Bif@PDA-PTX-NPs maintained the toxicity of PTX as well as the hypoxic homing tendency of Bif. Furthermore, Bif@PDA-PTX-NPs significantly inhibited the growth of A549 xenografts in nude mice, and prolonged the survival of the tumor-bearing mice compared to the other PTX formulations without any systemic or localized toxicity. Conclusion The Bif@PDA-PTX-NPs biohybrids provide a new therapeutic strategy for targeted chemotherapy to solid tumors.
Collapse
Affiliation(s)
- Huan Shi
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Lan Chen
- Department of Oncology, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yanlin Liu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Sheng Lin
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jie Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jianmei Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Susu Xiao
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Correspondence: Shaozhi Fu, Tel +86 830-3165698, Fax +86 830-3165690, Email
| |
Collapse
|
17
|
Bai YT, Zhang XQ, Chen XJ, Zhou G. Nanomedicines in oral cancer: inspiration comes from extracellular vesicles and biomimetic nanoparticles. Nanomedicine (Lond) 2022; 17:1761-1778. [PMID: 36647844 DOI: 10.2217/nnm-2022-0142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Oral cancer is a common life-threatening malignancy having high mortality and morbidity rates. During the treatment process, individuals unavoidably experience severe side effects. It is essential to develop safer and more effective strategies. Currently, extracellular vesicles (EVs) and biomimetic nanoparticles are nanomedicines with long-term blood circulation and lower off-target toxicity that orchestrate immune responses and accumulate specifically in tumor sites. EVs create a synergetic effect by encapsulating drugs and collaborating with naturally loaded elements in the EVs. Biomimetic nanoparticles retain the characteristic features of the synthetic nanocarriers and inherit the intrinsic cell membrane functionalities. This review outlines the properties, applications, challenges, pros and cons of EVs and biomimetic nanoparticles, providing novel perspectives on oral cancer.
Collapse
Affiliation(s)
- Yu-Ting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xue-Qiong Zhang
- School of Chemistry, Chemical Engineering & Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiao-Jie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
18
|
Zhou W, Wang C, Liu Z, Gou S. Hypoxia-Activated Prodrugs with Dual COX-2/CA Inhibitory Effects on Attenuating Cardiac Inflammation under Hypoxia. J Med Chem 2022; 65:13436-13451. [PMID: 36170566 DOI: 10.1021/acs.jmedchem.2c01355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cardiac inflammation is generally accompanied by hypoxia, while myocardial injury and an abnormal microenvironment caused by hypoxia tend to suppress the efficacy of common anti-inflammatory drugs. To improve the anti-inflammatory effect under hypoxia, a hypoxia-activated prodrug HAP1 consisting of a cyclooxygenase-2 (COX-2) inhibitor Ind and a carbonic anhydrase (CA) inhibitor Ace was synthesized. HAP1 was found to be activated by nitroreductase (NTR) under hypoxia to release two pharmacophores and achieve the combinatory medication intensively at the hypoxic site, better than Ind or Ace alone. When NTR activity was inhibited by Na2WO4 under hypoxia, no pharmacophores were found to release from HAP1 without exhibiting its activity. However, the efficacy of the Ind and Ace combination group (I&A) was not affected. Furthermore, HAP1 showed advantages over I&A in vivo not only in improving bioavailability but also in reducing side effects. The HAP approach turns out to inhibit cardiac inflammation efficiently and safely under hypoxia.
Collapse
Affiliation(s)
- Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, Jiangsu, P. R. China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| | - Chunping Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| | - Zhikun Liu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, Jiangsu, P. R. China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| |
Collapse
|
19
|
Yang DC, Wen LF, Du L, Luo CM, Lu ZY, Liu JY, Lin Z. A Hypoxia-Activated Prodrug Conjugated with a BODIPY-Based Photothermal Agent for Imaging-Guided Chemo-Photothermal Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40546-40558. [PMID: 36059107 DOI: 10.1021/acsami.2c09071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypoxia-activated prodrugs (HAPs) have drawn increasing attention for improving the antitumor effects while minimizing side effects. However, the heterogeneous distribution of the hypoxic region in tumors severely impedes the curative effect of HAPs. Additionally, most HAPs are not amenable to optical imaging, and it is difficult to precisely trace them in tissues. Herein, we carefully designed and synthesized a multifunctional therapeutic BAC prodrug by connecting the chemotherapeutic drug camptothecin (CPT) and the fluorescent photothermal agent boron dipyrromethene (BODIPY) via hypoxia-responsive azobenzene linkers. To enhance the solubility and tumor accumulation, the prepared BAC was further encapsulated into a human serum albumin (HSA)-based drug delivery system to form HSA@BAC nanoparticles. Since the CPT was caged by a BODIPY-based molecule at the active site, the BAC exhibited excellent biosafety. Importantly, the activated CPT could be quickly released from BAC and could perform chemotherapy in hypoxic cancer cells, which was ascribed to the cleavage of the azobenzene linker by overexpressed azoreductase. After irradiation with a 730 nm laser, HSA@BAC can efficiently generate hyperthermia to achieve irreversible cancer cell death by oxygen-independent photothermal therapy. Under fluorescence imaging-guided local irradiation, both in vitro and in vivo studies demonstrated that HSA@BAC exhibited superior antitumor effects with minimal side effects.
Collapse
Affiliation(s)
- De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lin-Feng Wen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liyang Du
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Miao Luo
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi-Yao Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
20
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Lee S, Kim Y, Lee ES. Hypoxia-Responsive Azobenzene-Linked Hyaluronate Dot Particles for Photodynamic Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14050928. [PMID: 35631514 PMCID: PMC9142920 DOI: 10.3390/pharmaceutics14050928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we developed ultra-small hyaluronate dot particles that selectively release phototoxic drugs into a hypoxic tumor microenvironment. Here, the water-soluble hyaluronate dot (dHA) was covalently conjugated with 4,4′-azodianiline (Azo, as a hypoxia-sensitive linker) and Ce6 (as a photodynamic antitumor agent), producing dHA particles with cleavable Azo bond and Ce6 (dHA-Azo-Ce6). Importantly, the inactive Ce6 (self-quenched state) in the dHA-Azo-Ce6 particles was switched to the active Ce6 (dequenched state) via the Azo linker (–N=N–) cleavage in a hypoxic environment. In vitro studies using hypoxia-induced HeLa cells (treated with CoCl2) revealed that the dHA-Azo-Ce6 particle enhanced photodynamic antitumor inhibition, suggesting its potential as an antitumor drug candidate in response to tumor hypoxia.
Collapse
Affiliation(s)
- Sohyeon Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea; (S.L.); (Y.K.)
| | - Yoonyoung Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea; (S.L.); (Y.K.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea; (S.L.); (Y.K.)
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea
- Correspondence: ; Tel.: +82-02-2164-4921
| |
Collapse
|
22
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
23
|
Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022; 51:1702-1728. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic-inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hairong Ma
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hongjun Liang
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
24
|
Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103444. [PMID: 34927373 PMCID: PMC8844476 DOI: 10.1002/advs.202103444] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Indexed: 05/10/2023]
Abstract
Cancer immunotherapy has achieved promising clinical progress over the recent years for its potential to treat metastatic tumors and inhibit their recurrences effectively. However, low patient response rates and dose-limiting toxicity remain as major dilemmas for immunotherapy. Stimuli-responsive nanoparticles (srNPs) combined with immunotherapy offer the possibility to amplify anti-tumor immune responses, where the weak acidity, high concentration of glutathione, overexpressions of enzymes, and reactive oxygen species, and external stimuli in tumors act as triggers for controlled drug release. This review highlights the design of srNPs based on tumor microenvironment and/or external stimuli to combine with different anti-tumor drugs, especially the immunoregulatory agents, which eventually realize synergistic immunotherapy of malignant primary or metastatic tumors and acquire a long-term immune memory to prevent tumor recurrence. The authors hope that this review can provide theoretical guidance for the construction and clinical transformation of smart srNPs for controlled drug delivery in synergistic cancer immunotherapy.
Collapse
Affiliation(s)
- Jin Zhang
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Yandai Lin
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Zhe Lin
- Ruisi (Fujian) Biomedical Engineering Research Center Co LtdFuzhou350100P. R. China
| | - Qi Wei
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Jiaqi Qian
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Renjie Ruan
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Xiancai Jiang
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Linxi Hou
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| |
Collapse
|
25
|
Ding X, Sun X, Cai H, Wu L, Liu Y, Zhao Y, Zhou D, Yu G, Zhou X. Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Front Oncol 2022; 11:786913. [PMID: 35070992 PMCID: PMC8770285 DOI: 10.3389/fonc.2021.786913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages play critical roles in tumor progression. In the tumor microenvironment, macrophages display highly diverse phenotypes and may perform antitumorigenic or protumorigenic functions in a context-dependent manner. Recent studies have shown that macrophages can be engineered to transport drug nanoparticles (NPs) to tumor sites in a targeted manner, thereby exerting significant anticancer effects. In addition, macrophages engineered to express chimeric antigen receptors (CARs) were shown to actively migrate to tumor sites and eliminate tumor cells through phagocytosis. Importantly, after reaching tumor sites, these engineered macrophages can significantly change the otherwise immune-suppressive tumor microenvironment and thereby enhance T cell-mediated anticancer immune responses. In this review, we first introduce the multifaceted activities of macrophages and the principles of nanotechnology in cancer therapy and then elaborate on macrophage engineering via nanotechnology or genetic approaches and discuss the effects, mechanisms, and limitations of such engineered macrophages, with a focus on using live macrophages as carriers to actively deliver NP drugs to tumor sites. Several new directions in macrophage engineering are reviewed, such as transporting NP drugs through macrophage cell membranes or extracellular vesicles, reprogramming tumor-associated macrophages (TAMs) by nanotechnology, and engineering macrophages with CARs. Finally, we discuss the possibility of combining engineered macrophages and other treatments to improve outcomes in cancer therapy.
Collapse
Affiliation(s)
- Xiaoling Ding
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xinchen Sun
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, Taizhou Peoples' Hospital, Taizhou, China
| | - Huihui Cai
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, The Sixth Nantong People's Hospital, Nantong, China
| | - Lei Wu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Ying Liu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yu Zhao
- Department of Immunology, Southeast University, School of Medicine, Nanjing, China
| | - Dingjingyu Zhou
- Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
26
|
Le TN, Lin CJ, Shen YC, Lin KY, Lee CK, Huang CC, Rao NV. Hyaluronic Acid Derived Hypoxia-Sensitive Nanocarrier for Tumor Targeted Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:8325-8332. [PMID: 35005953 DOI: 10.1021/acsabm.1c00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) is conjugated with BHQ3 moiety with azo bonds to prepare hypoxia-responsive polymer conjugate. Because of the amphiphilic nature, the polymer conjugate self-assembles to HA-BHQ3 nanoparticles (NPs). The anticancer drug doxorubicin (DOX) is loaded into the NPs. In the physiological environment, DOX is released slowly. In contrast, under hypoxic conditions, the azo bond in BHQ3 is cleaved, thus significantly enhancing the DOX release rate. For instance, after 24 h, 25% of DOX is released under normal conditions, while 74% of DOX is released under hypoxic conditions. In vitro cytotoxicity demonstrates higher toxicity in the hypoxic conditions. DOX@HA-BHQ3 NPs exhibit greater toxicity levels against 4T1 cells in hypoxic conditions. The fluorescent microscope images confirm the oxygen-dependent intracellular DOX release from the NPs. The in vivo biodistribution results suggest the tumor targetability of HA-BHQ3 NPs in 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yen Chen Shen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Kuan-Yu Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - N Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| |
Collapse
|
27
|
Cao S, Lin C, Li X, Liang Y, Saw PE. TME-Responsive Multistage Nanoplatform for siRNA Delivery and Effective Cancer Therapy. Int J Nanomedicine 2021; 16:5909-5921. [PMID: 34475756 PMCID: PMC8407678 DOI: 10.2147/ijn.s322901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of RNA interference (RNAi), RNAi technology has rapidly developed into an efficient tool for post-transcriptional gene silencing, which has been widely used for clinical or preclinical treatment of various diseases including cancer. Small interfering RNA (siRNA) is the effector molecule of RNAi technology. However, as polyanionic macromolecules, naked siRNAs have a short circulatory half-life (<15 min) and is rapidly cleared by renal filtration, which greatly hinders their clinical application. Furthermore, the anionic and macromolecular characteristics of naked siRNAs impede their readiness to cross the cell membrane and therefore delivery vehicles are required to facilitate the cellular uptake and cytosolic delivery of naked siRNAs. In the past decade, numerous nanoparticles (NPs) such as liposomes have been employed for in vivo siRNA delivery, which have achieved favorable therapeutic outcomes in clinical disease treatment. In particular, because tumor microenvironment (TME) or tumor cells show several distinguishing biological/endogenous factors (eg, pH, enzymes, redox, and hypoxia) compared to normal tissues or cells, much attention has recently paid to design and construct TME-responsive NPs for multistaged siRNA delivery, which can respond to biological stimuli to achieve efficient in vivo gene silencing and better anticancer effect. In this review, we summarize recent advances in TME-responsive siRNA delivery systems, especially multistage delivery NPs, and discuss their design principles, functions, effects, and prospects.
Collapse
Affiliation(s)
- Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiuling Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
28
|
Kumari R, R V, Sunil D, Ningthoujam RS, Pandey BN, Kulkarni SD, Varadavenkatesan T, Venkatachalam G, V AKN. A Nitronaphthalimide Probe for Fluorescence Imaging of Hypoxia in Cancer Cells. J Fluoresc 2021; 31:1665-1673. [PMID: 34383168 PMCID: PMC8545720 DOI: 10.1007/s10895-021-02800-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
The bioreductive enzymes typically upregulated in hypoxic tumor cells can be targeted for developing diagnostic and drug delivery applications. In this study, a new fluorescent probe 4-(6-nitro-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)benzaldehyde (NIB) based on a nitronaphthalimide skeleton that could respond to nitroreductase (NTR) overexpressed in hypoxic tumors is designed and its application in imaging tumor hypoxia is demonstrated. The docking studies revealed favourable interactions of NIB with the binding pocket of NTR-Escherichia coli. NIB, which is synthesized through a simple and single step imidation of 4-nitro-1,8-naphthalic anhydride displayed excellent reducible capacity under hypoxic conditions as evidenced from cyclic voltammetry investigations. The fluorescence measurements confirmed the formation of identical products (NIB-red) during chemical as well as NTR-aided enzymatic reduction in the presence of NADH. The potential fluorescence imaging of hypoxia based on NTR-mediated reduction of NIB is confirmed using in-vitro cell culture experiments using human breast cancer (MCF-7) cells, which displayed a significant change in the fluorescence colour and intensity at low NIB concentration within a short incubation period in hypoxic conditions.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vasumathy R
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Raghumani Singh Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Suresh D Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, 630003, Tamil Nadu, India
| | - Anil Kumar N V
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
29
|
Zheng X, Fan H, Liu Y, Wei Z, Li X, Wang A, Chen W, Lu Y. Hypoxia boosts aerobic glycolysis of carcinoma:a complex process for tumor development. Curr Mol Pharmacol 2021; 15:487-501. [PMID: 34382521 DOI: 10.2174/1874467214666210811145752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
Hypoxia, a common feature in malignant tumors, is mainly caused by insufficient oxygen supply. Hypoxia is closely related to cancer development, affecting cancer invasion and metastasis, energy metabolism and other pathological processes, and is not conducive to cancer treatment and prognosis. Tumor cells exacerbate metabolic abnormalities to adapt to the hypoxic microenvironment, especially to enhance aerobic glycolysis. Glycolysis leads to an acidic microenvironment in cancer tissues, enhancing cancer metastasis, deterioration and drug resistance. Therefore, hypoxia is a therapeutic target that cannot be ignored in cancer treatment. The adaptation of tumor cells to hypoxia is mainly regulated by hypoxia inducible factors (HIFs), and the stability of HIFs is improved under hypoxic conditions. HIFs can promote the glycolysis of tumors by regulating glycolytic enzymes, transporters, and participates in regulating the TCA (tricarboxylic acid) cycle. In addition, HIFs indirectly affect glycolysis through its interaction with non-coding RNAs. Therefore, targeting hypoxia and HIFs are important tumor therapies.
Collapse
Affiliation(s)
- Xiuqin Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Hui Fan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Yang Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| |
Collapse
|
30
|
Apilan AG, Mothersill C. Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment? Int J Mol Sci 2021; 22:8651. [PMID: 34445354 PMCID: PMC8395506 DOI: 10.3390/ijms22168651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE A major issue in radiotherapy is the relative resistance of hypoxic cells to radiation. Historic approaches to this problem include the use of oxygen mimetic compounds to sensitize tumour cells, which were unsuccessful. This review looks at modern approaches aimed at increasing the efficacy of targeting and radiosensitizing hypoxic tumour microenvironments relative to normal tissues and asks the question of whether non-targeted effects in radiobiology may provide a new "target". Novel techniques involve the integration of recent technological advancements such as nanotechnology, cell manipulation, and medical imaging. Particularly, the major areas of research discussed in this review include tumour hypoxia imaging through PET imaging to guide carbogen breathing, gold nanoparticles, macrophage-mediated drug delivery systems used for hypoxia-activate prodrugs, and autophagy inhibitors. Furthermore, this review outlines several features of these methods, including the mechanisms of action to induce radiosensitization, the increased accuracy in targeting hypoxic tumour microenvironments relative to normal tissue, preclinical/clinical trials, and future considerations. CONCLUSIONS This review suggests that the four novel tumour hypoxia therapeutics demonstrate compelling evidence that these techniques can serve as powerful tools to increase targeting efficacy and radiosensitizing hypoxic tumour microenvironments relative to normal tissue. Each technique uses a different way to manipulate the therapeutic ratio, which we have labelled "oxygenate, target, use, and digest". In addition, by focusing on emerging non-targeted and out-of-field effects, new umbrella targets are identified, which instead of sensitizing hypoxic cells, seek to reduce the radiosensitivity of normal tissues.
Collapse
|
31
|
Omran Z, Guise CP, Chen L, Rauch C, Abdalla AN, Abdullah O, Sindi IA, Fischer PM, Smaill JB, Patterson AV, Liu Y, Wang Q. Design, Synthesis and In-Vitro Biological Evaluation of Antofine and Tylophorine Prodrugs as Hypoxia-Targeted Anticancer Agents. Molecules 2021; 26:3327. [PMID: 34206005 PMCID: PMC8199124 DOI: 10.3390/molecules26113327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022] Open
Abstract
Phenanthroindolizidines, such as antofine and tylophorine, are a family of natural alkaloids isolated from different species of Asclepiadaceas. They are characterized by interesting biological activities, such as pronounced cytotoxicity against different human cancerous cell lines, including multidrug-resistant examples. Nonetheless, these derivatives are associated with severe neurotoxicity and loss of in vivo activity due to the highly lipophilic nature of the alkaloids. Here, we describe the development of highly polar prodrugs of antofine and tylophorine as hypoxia-targeted prodrugs. The developed quaternary ammonium salts of phenanthroindolizidines showed high chemical and metabolic stability and are predicted to have no penetration through the blood-brain barrier. The designed prodrugs displayed decreased cytotoxicity when tested under normoxic conditions. However, their cytotoxic activity considerably increased when tested under hypoxic conditions.
Collapse
Affiliation(s)
- Ziad Omran
- Department of Pharmaceutical Sciences, Pharmacy Department, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Chris P. Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (C.P.G.); (J.B.S.); (A.V.P.)
| | - Linwei Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.C.); (Y.L.); (Q.W.)
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK;
| | - Ashraf N. Abdalla
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.N.A.); (O.A.)
| | - Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.N.A.); (O.A.)
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Peter M. Fischer
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jeff B. Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (C.P.G.); (J.B.S.); (A.V.P.)
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (C.P.G.); (J.B.S.); (A.V.P.)
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.C.); (Y.L.); (Q.W.)
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.C.); (Y.L.); (Q.W.)
| |
Collapse
|
32
|
Jin Z, Zhao Q, Yuan S, Jiang W, Hu Y. Strategies of Alleviating Tumor Hypoxia and Enhancing Tumor Therapeutic Effect by Macromolecular Nanomaterials. Macromol Biosci 2021; 21:e2100092. [PMID: 34008312 DOI: 10.1002/mabi.202100092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Indexed: 01/03/2023]
Abstract
Hypoxia as one of the most prominent features in tumors, has presented negative effects on tumor therapies including photodynamic therapy, radiotherapy, and chemotherapies, leading to the tumor regeneration and metastasis. Recently, nanomedicines have been proposed to handle the hypoxia dilemma. Some nanomedicines alleviated hypoxia to enhance the therapeutic effect, others used hypoxia-sensitive substances to treat tumor. Among them, macromolecular nanomaterials-based nanomedicine has attracted increased research interest. However, the complicated tumor microenvironment disturbs the practical application of macromolecular nanomaterials to deal with hypoxia. This review highlights the influence of hypoxia on tumor therapy and some new strategies of using macromolecular nanomaterials to overcome hypoxia for effective tumor therapy.
Collapse
Affiliation(s)
- Zhenyu Jin
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Qingyu Zhao
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Shanmei Yuan
- Nantong Vocational University, Nantong, 226019, China
| | - Wei Jiang
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| |
Collapse
|
33
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
34
|
Skwarska A, Calder EDD, Sneddon D, Bolland H, Odyniec ML, Mistry IN, Martin J, Folkes LK, Conway SJ, Hammond EM. Development and pre-clinical testing of a novel hypoxia-activated KDAC inhibitor. Cell Chem Biol 2021; 28:1258-1270.e13. [PMID: 33910023 PMCID: PMC8460716 DOI: 10.1016/j.chembiol.2021.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/15/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Tumor hypoxia is associated with therapy resistance and poor patient prognosis. Hypoxia-activated prodrugs, designed to selectively target hypoxic cells while sparing normal tissue, represent a promising treatment strategy. We report the pre-clinical efficacy of 1-methyl-2-nitroimidazole panobinostat (NI-Pano, CH-03), a novel bioreductive version of the clinically used lysine deacetylase inhibitor, panobinostat. NI-Pano was stable in normoxic (21% O2) conditions and underwent NADPH-CYP-mediated enzymatic bioreduction to release panobinostat in hypoxia (<0.1% O2). Treatment of cells grown in both 2D and 3D with NI-Pano increased acetylation of histone H3 at lysine 9, induced apoptosis, and decreased clonogenic survival. Importantly, NI-Pano exhibited growth delay effects as a single agent in tumor xenografts. Pharmacokinetic analysis confirmed the presence of sub-micromolar concentrations of panobinostat in hypoxic mouse xenografts, but not in circulating plasma or kidneys. Together, our pre-clinical results provide a strong mechanistic rationale for the clinical development of NI-Pano for selective targeting of hypoxic tumors.
Collapse
Affiliation(s)
- Anna Skwarska
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ewen D D Calder
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Deborah Sneddon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Hannah Bolland
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Maria L Odyniec
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ishna N Mistry
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Jennifer Martin
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Lisa K Folkes
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
35
|
Devarajan N, Manjunathan R, Ganesan SK. Tumor hypoxia: The major culprit behind cisplatin resistance in cancer patients. Crit Rev Oncol Hematol 2021; 162:103327. [PMID: 33862250 DOI: 10.1016/j.critrevonc.2021.103327] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is the most commonly used first-line drug for cancer treatment. However, many patients develop resistance to cisplatin therapy which ultimately results in therapy failure and increased mortality. A growing body of evidence shows that the hypoxic microenvironment is the prime factor underlying tumor insensitivity to cisplatin treatment. Since tumors in the majority of cancer patients are under hypoxic stress (low oxygen supply), it becomes necessary to understand the pathobiology behind hypoxia-induced cisplatin resistance in cancer cells. Here, we discuss the molecular events that render hypoxic tumors insensitive to cisplatin therapy. Furthermore, various drugs and tumor oxygenation techniques have been developed to circumvent cisplatin resistance in hypoxic tumors. However, their pharmaceutical applications are limited due to failures in clinical investigations and a lack of preclinical studies in the hypoxic tumor microenvironment. This review addresses these challenges and provides new directions for the strategic deployment of cisplatin sensitizers in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Maduravoyal, Chennai, 600095, Tamilnadu, India.
| | - Reji Manjunathan
- Multidisciplinary Research Unit, Chengalpattu Government Medical College, Chengalpattu, 603001, Tamilnadu, India.
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, TRUE Campus, CN Block-6, Sector V, Salt Lake, Kolkata, 700 091, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
36
|
|
37
|
Kleynhans J, Kruger HG, Cloete T, Zeevaart JR, Ebenhan T. In Silico Modelling in the Development of Novel Radiolabelled Peptide Probes. Curr Med Chem 2020; 27:7048-7063. [DOI: 10.2174/0929867327666200504082256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
This review describes the usefulness of in silico design approaches in the design of
new radiopharmaceuticals, especially peptide-based radiotracers (including peptidomimetics).
Although not part of the standard arsenal utilized during radiopharmaceutical design, the use
of in silico strategies is steadily increasing in the field of radiochemistry as it contributes to a
more rational and scientific approach. The development of new peptide-based radiopharmaceuticals
as well as a short introduction to suitable computational approaches are provided in
this review. The first section comprises a concise overview of the three most useful computeraided
drug design strategies used, namely i) a Ligand-based Approach (LBDD) using pharmacophore
modelling, ii) a Structure-based Design Approach (SBDD) using molecular docking
strategies and iii) Absorption-Distribution-Metabolism-Excretion-Toxicity (ADMET)
predictions. The second section summarizes the challenges connected to these computer-aided
techniques and discusses successful applications of in silico radiopharmaceutical design in
peptide-based radiopharmaceutical development, thereby improving the clinical procedure in
Nuclear Medicine. Finally, the advances and future potential of in silico modelling as a design
strategy is highlighted.
Collapse
Affiliation(s)
- Janke Kleynhans
- Nuclear Medicine Research Infrastructure (NuMeRI) NPC, Pelindaba 0420, South Africa
| | | | - Theunis Cloete
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI) NPC, Pelindaba 0420, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure (NuMeRI) NPC, Pelindaba 0420, South Africa
| |
Collapse
|
38
|
Wu R, Zhang Z, Wang B, Chen G, Zhang Y, Deng H, Tang Z, Mao J, Wang L. Combination Chemotherapy of Lung Cancer - Co-Delivery of Docetaxel Prodrug and Cisplatin Using Aptamer-Decorated Lipid-Polymer Hybrid Nanoparticles. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2249-2261. [PMID: 32606595 PMCID: PMC7293388 DOI: 10.2147/dddt.s246574] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Purpose Lung cancer is the leading cause of cancer mortality worldwide. Drug resistance is the major barrier for the treatment of non-small cell lung cancer (NSCLC). The aim of this research is to develop an aptamer-decorated hybrid nanoparticle for the co-delivery of docetaxel prodrug (DTXp) and cisplatin (DDP) and to treat lung cancer. Materials and Methods Aptamer-conjugated lipid–polymer ligands and redox-sensitive docetaxel prodrug were synthesized. DTXp and DDP were loaded into the lipid–polymer hybrid nanoparticles (LPHNs). The targeted efficiency of aptamer-decorated, DTXp and DDP co-encapsulated LPHNs (APT-DTXp/DDP-LPHNs) was determined by performing a cell uptake assay by flow cytometry-based analysis. In vivo biodistribution and anticancer efficiency of APT-DTXp/DDP-LPHNs were evaluated on NSCLC-bearing mice xenograft. Results APT-DTXp/DDP-LPHNs had a particle size of 213.5 ± 5.3 nm, with a zeta potential of 15.9 ± 1.9 mV. APT-DTXp/DDP-LPHNs exhibited a significantly enhanced cytotoxicity (drug concentration causing 50% inhibition was 0.71 ± 0.09 μg/mL), synergy antitumor effect (combination index was 0.62), and profound tumor inhibition ability (tumor inhibition ratio of 81.4%) compared with the non-aptamer-decorated LPHNs and single drug-loaded LPHNs. Conclusion Since the synergistic effect of the drugs was found in this system, it would have great potential to inhibit lung tumor cells and in vivo tumor growth.
Collapse
Affiliation(s)
- Ruifeng Wu
- Department of Thoracic Surgery, Baoding No.1 Central Hospital, Baoding, Hebei Province, People's Republic of China
| | - Zhiqiang Zhang
- Department of Thoracic Surgery, Baoding No.1 Central Hospital, Baoding, Hebei Province, People's Republic of China
| | - Baohua Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Ge Chen
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Yaozhong Zhang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Haowen Deng
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Zilong Tang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Junjie Mao
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
39
|
Meaney C, Rhebergen S, Kohandel M. In silico analysis of hypoxia activated prodrugs in combination with anti angiogenic therapy through nanocell delivery. PLoS Comput Biol 2020; 16:e1007926. [PMID: 32463836 PMCID: PMC7282674 DOI: 10.1371/journal.pcbi.1007926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/09/2020] [Accepted: 05/05/2020] [Indexed: 01/22/2023] Open
Abstract
Tumour hypoxia is a well-studied phenomenon with implications in cancer progression, treatment resistance, and patient survival. While a clear adverse prognosticator, hypoxia is also a theoretically ideal target for guided drug delivery. This idea has lead to the development of hypoxia-activated prodrugs (HAPs): a class of chemotherapeutics which remain inactive in the body until metabolized within hypoxic regions. In theory, these drugs have the potential for increased tumour selectivity and have therefore been the focus of numerous preclinical studies. Unfortunately, HAPs have had mixed results in clinical trials, necessitating further study in order to harness their therapeutic potential. One possible avenue for the improvement of HAPs is through the selective application of anti angiogenic agents (AAs) to improve drug delivery. Such techniques have been used in combination with other conventional chemotherapeutics to great effect in many studies. A further benefit is theoretically achieved through nanocell administration of the combination, though this idea has not been the subject of any experimental or mathematical studies to date. In the following, a mathematical model is outlined and used to compare the predicted efficacies of separate vs. nanocell administration for AAs and HAPs in tumours. The model is experimentally motivated, both in mathematical form and parameter values. Preliminary results of the model are highlighted throughout which qualitatively agree with existing experimental evidence. The novel prediction of our model is an improvement in the efficacy of AA/HAP combination therapies when administered through nanocells as opposed to separately. While this study specifically models treatment on glioblastoma, similar analyses could be performed for other vascularized tumours, making the results potentially applicable to a range of tumour types. Tumour hypoxia is a well-documented phenomenon with adverse effects for the progression of the cancer. Accordingly, various therapeutic strategies have emerged in recent years to combat its effects. Herein, we present an experimentally-motivated mathematical model used to assess the feasibility of the therapeutic combination of anti angiogenic agents with hypoxia-activated prodrugs. Analysis of the combination therapy shows that delivery through drug nanocells provides the optimal anticancer effect: a novel result which should inspire further examination.
Collapse
Affiliation(s)
- Cameron Meaney
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| | - Sander Rhebergen
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
40
|
Anduran E, Aspatwar A, Parvathaneni NK, Suylen D, Bua S, Nocentini A, Parkkila S, Supuran CT, Dubois L, Lambin P, Winum JY. Hypoxia-Activated Prodrug Derivatives of Carbonic Anhydrase Inhibitors in Benzenesulfonamide Series: Synthesis and Biological Evaluation. Molecules 2020; 25:E2347. [PMID: 32443462 PMCID: PMC7287649 DOI: 10.3390/molecules25102347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia, a common feature of solid tumours' microenvironment, is associated with an aggressive phenotype and is known to cause resistance to anticancer chemo- and radiotherapies. Tumour-associated carbonic anhydrases isoform IX (hCA IX), which is upregulated under hypoxia in many malignancies participating to the microenvironment acidosis, represents a valuable target for drug strategy against advanced solid tumours. To overcome cancer cell resistance and improve the efficacy of therapeutics, the use of bio-reducible prodrugs also known as Hypoxia-activated prodrugs (HAPs), represents an interesting strategy to be applied to target hCA IX isozyme through the design of selective carbonic anhydrase IX inhibitors (CAIs). Here, we report the design, synthesis and biological evaluations including CA inhibition assays, toxicity assays on zebrafish and viability assays on human cell lines (HT29 and HCT116) of new HAP-CAIs, harboring different bio-reducible moieties in nitroaromatic series and a benzenesulfonamide warhead to target hCA IX. The CA inhibition assays of this compound series showed a slight selectivity against hCA IX versus the cytosolic off-target hCA II and hCA I isozymes. Toxicity and viability assays have highlighted that the compound bearing the 2-nitroimidazole moiety possesses the lowest toxicity (LC50 of 1400 µM) and shows interesting results on viability assays.
Collapse
Affiliation(s)
- Emilie Anduran
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology and Fimlab Ltd., University of Tampere and Tampere University Hospital, 33520 Tampere, Finland; (A.A.); (S.P.)
| | - Nanda-Kumar Parvathaneni
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Dennis Suylen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands;
| | - Silvia Bua
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Alessio Nocentini
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology and Fimlab Ltd., University of Tampere and Tampere University Hospital, 33520 Tampere, Finland; (A.A.); (S.P.)
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
| |
Collapse
|
41
|
Oddone N, Boury F, Garcion E, Grabrucker AM, Martinez MC, Da Ros F, Janaszewska A, Forni F, Vandelli MA, Tosi G, Ruozi B, Duskey JT. Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Front Pharmacol 2020; 11:574. [PMID: 32425795 PMCID: PMC7212708 DOI: 10.3389/fphar.2020.00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor of the brain and averages a life expectancy in diagnosed patients of only 15 months. Hence, more effective therapies against this malignancy are urgently needed. Several diseases, including cancer, are featured by high levels of reactive oxygen species (ROS), which are possible GBM hallmarks to target or benefit from. Therefore, the covalent linkage of drugs to ROS-responsive molecules can be exploited aiming for a selective drug release within relevant pathological environments. In this work, we designed a new ROS-responsive prodrug by using Melphalan (MPH) covalently coupled with methoxy polyethylene glycol (mPEG) through a ROS-cleavable group thioketal (TK), demonstrating the capacity to self-assembly into nanosized micelles. Full chemical-physical characterization was conducted on the polymeric-prodrug and proper controls, along with in vitro cytotoxicity assayed on different GBM cell lines and “healthy” astrocyte cells confirming the absence of any cytotoxicity of the prodrug on healthy cells (i.e. astrocytes). These results were compared with the non-ROS responsive counterpart, underlining the anti-tumoral activity of ROS-responsive compared to the non-ROS-responsive prodrug on GBM cells expressing high levels of ROS. On the other hand, the combination treatment with this ROS-responsive prodrug and X-ray irradiation on human GBM cells resulted in an increase of the antitumoral effect, and this might be connected to radiotherapy. Hence, these results represent a starting point for a rationale design of innovative and tailored ROS-responsive prodrugs to be used in GBM therapy and in combination with radiotherapy.
Collapse
Affiliation(s)
- Natalia Oddone
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | | | - Federica Da Ros
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Flavio Forni
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason T Duskey
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Umberto Veronesi Foundation, Milano, Italy
| |
Collapse
|
42
|
|
43
|
Zhou M, Xie Y, Xu S, Xin J, Wang J, Han T, Ting R, Zhang J, An F. Hypoxia-activated nanomedicines for effective cancer therapy. Eur J Med Chem 2020; 195:112274. [PMID: 32259703 DOI: 10.1016/j.ejmech.2020.112274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022]
Abstract
Hypoxia, a common characteristic in solid tumors, is found in phenotypically aggressive cancers that display resistance to typical cancer interventions. Due to its important role in tumor progression, tumor hypoxia has been considered as a primary target for cancer diagnosis and treatment. An advantage of hypoxia-activated nanomedicines is that they are inactive in normoxic cells. In hypoxic tumor tissues and cells, these nanomedicines undergo reduction by activated enzymes (usually through 1 or 2 electron oxidoreductases) to produce cytotoxic substances. In this review, we will focus on approaches to design nanomedicines that take advantage of tumor hypoxia. These approaches include: i) inhibitors of hypoxia-associated signaling pathways; ii) prodrugs activated by hypoxia; iii) nanocarriers responsive to hypoxia, and iv) bacteria mediated hypoxia targeting therapy. These strategies have guided and will continue to guide nanoparticle design in the near future. These strategies have the potential to overcome tumor heterogeneity to improve the efficiency of radiotherapy, chemotherapy and diagnosis.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Yuqi Xie
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Shujun Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China
| | - Tao Han
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University, Chengdu, 611130, PR China
| | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY, 10065, USA
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
44
|
Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Peng
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Jitender Bariwal
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Virender Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University MS 38677 USA
| | - Ram I. Mahato
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
45
|
Dell’Oro M, Short M, Wilson P, Bezak E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12010163. [PMID: 31936565 PMCID: PMC7017270 DOI: 10.3390/cancers12010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction: Despite improvements in radiation therapy, chemotherapy and surgical procedures over the last 30 years, pancreatic cancer 5-year survival rate remains at 9%. Reduced stroma permeability and heterogeneous blood supply to the tumour prevent chemoradiation from making a meaningful impact on overall survival. Hypoxia-activated prodrugs are the latest strategy to reintroduce oxygenation to radioresistant cells harbouring in pancreatic cancer. This paper reviews the current status of photon and particle radiation therapy for pancreatic cancer in combination with systemic therapies and hypoxia activators. Methods: The current effectiveness of management of pancreatic cancer was systematically evaluated from MEDLINE® database search in April 2019. Results: Limited published data suggest pancreatic cancer patients undergoing carbon ion therapy and proton therapy achieve a comparable median survival time (25.1 months and 25.6 months, respectively) and 1-year overall survival rate (84% and 77.8%). Inconsistencies in methodology, recording parameters and protocols have prevented the safety and technical aspects of particle therapy to be fully defined yet. Conclusion: There is an increasing requirement to tackle unmet clinical demands of pancreatic cancer, particularly the lack of synergistic therapies in the advancing space of radiation oncology.
Collapse
Affiliation(s)
- Mikaela Dell’Oro
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- Correspondence: ; Tel.: +61-435214264
| | - Michala Short
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- School of Engineering, University of South Australia, Adelaide SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
46
|
Kapitanova KS, Naumenko VA, Garanina AS, Melnikov PA, Abakumov MA, Alieva IB. Advances and Challenges of Nanoparticle-Based Macrophage Reprogramming for Cancer Immunotherapy. BIOCHEMISTRY (MOSCOW) 2019; 84:729-745. [PMID: 31509725 DOI: 10.1134/s0006297919070058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the progress of modern medicine, oncological diseases are still among the most common causes of death of adult populations in developed countries. The current therapeutic approaches are imperfect, and the high mortality of oncological patients under treatment, the lack of personalized strategies, and severe side effects arising as a result of treatment force seeking new approaches to therapy of malignant tumors. During the last decade, cancer immunotherapy, an approach that relies on activation of the host antitumor immune response, has been actively developing. Cancer immunotherapy is the most promising trend in contemporary fundamental and practical oncology, and restoration of the pathologically altered tumor microenvironment is one of its key tasks, in particular, the reprogramming of tumor macrophages from the immunosuppressive M2-phenotype into the proinflammatory M1-phenotype is pivotal for eliciting antitumor response. This review describes the current knowledge about macrophage classification, mechanisms of their polarization, their role in formation of the tumor microenvironment, and strategies for changing the functional activity of M2-macrophages, as well as problems of targeted delivery of immunostimulatory signals to tumor macrophages using nanoparticles.
Collapse
Affiliation(s)
- K S Kapitanova
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - V A Naumenko
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.
| | - A S Garanina
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - P A Melnikov
- Serbsky Federal Medical Research Center of Psychiatry and Narcology, Department of Fundamental and Applied Neurobiology, Ministry of Health of the Russian Federation, Moscow, 119034, Russia
| | - M A Abakumov
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.,Russian National Research Medical University, Department of Medical Nanobiotechnology, Moscow, 117997, Russia
| | - I B Alieva
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
47
|
Filippi M, Nguyen DV, Garello F, Perton F, Bégin-Colin S, Felder-Flesch D, Power L, Scherberich A. Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues. NANOSCALE 2019; 11:22559-22574. [PMID: 31746914 DOI: 10.1039/c9nr08436c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Being crucial under several pathological conditions, tumors, and tissue engineering, the MRI tracing of hypoxia within cells and tissues would be improved by the use of nanosystems allowing for direct recognition of low oxygenation and further treatment-oriented development. In the present study, we functionalized dendron-coated iron oxide nanoparticles (dendronized IONPs) with a bioreductive compound, a metronidazole-based ligand, to specifically detect the hypoxic tissues. Spherical IONPs with an average size of 10 nm were obtained and then decorated with the new metronidazole-conjugated dendron. The resulting nanoparticles (metro-NPs) displayed negligible effects on cell viability, proliferation, and metabolism, in both monolayer and 3D cell culture models, and a good colloidal stability in bio-mimicking media, as shown by DLS. Overtime quantitative monitoring of the IONP cell content revealed an enhanced intracellular retention of metro-NPs under anoxic conditions, confirmed by the in vitro MRI of cell pellets where a stronger negative contrast generation was observed in hypoxic primary stem cells and tumor cells after labeling with metro-NPs. Overall, these results suggest desirable properties in terms of interactions with the biological environment and capability of selective accumulation into the hypoxic tissue, and indicate that metro-NPs have considerable potential for the development of new nano-platforms especially in the field of anoxia-related diseases and tissue engineered models.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123, Allschwil, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jung S, Jung S, Kim DM, Lim SH, Shim YH, Kwon H, Kim DH, Lee CM, Kim BH, Jeong YI. Hyaluronic Acid-Conjugated with Hyperbranched Chlorin e6 Using Disulfide Linkage and Its Nanophotosensitizer for Enhanced Photodynamic Therapy of Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3080. [PMID: 31546620 PMCID: PMC6803876 DOI: 10.3390/ma12193080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 11/29/2022]
Abstract
The main purpose of this study is to synthesize novel types of nanophotosensitizers that are based on hyperbranched chlorin e6 (Ce6) via disulfide linkages. Moreover, hyperbranched Ce6 was conjugated with hyaluronic acid (HA) for CD44-receptor mediated delivery and redox-sensitive photodynamic therapy (PDT) against cancer cells. Hyperbranched Ce6 was considered to make novel types of macromolecular photosensitizer since most of the previous studies regarding nanophotosensizers are concerned with simple conjugation between monomeric units of photosensitizer and polymer materials. Hyperbranched Ce6 was synthesized by conjugation of Ce6 each other while using disulfide linkage. To synthesize Ce6 tetramer, carboxyl groups of Ce6 were conjugated with cystamine and three equivalents of Ce6 were then conjugated again with the end of amine groups of Ce6-cystamine. To synthesize Ce6 decamer as a hyperbranched Ce6, six equivalents of Ce6 was conjugated with the end of Ce6 tetramer via cystamine linkage. Furthermore, HA-cystamine was attached with Ce6 tetramer or Ce6 decamer to synthesize HA-Ce6 tetramer (Ce6tetraHA) or HA-Ce6 decamer (Ce6decaHA) conjugates. Ce6tetraHA and Ce6decaHA nanophotosensitizers showed small diameters of less than 200 nm. The addition of dithiothreitol (DTT) and hyaluronidase (HAse) induced a faster Ce6 release rate in vitro drug release study, which indicated that Ce6tetraHA nanophotosensitizers possess redox-sensitive and HAse-sensitive release properties. Ce6tetraHA nanophotosensitizers showed higher intracellular Ce6 accumulation, higher ROS generation, and higher PDT efficacy than that of Ce6 alone. Ce6tetraHA nanophotosensitizers responded to the CD44 receptor of cancer cell surface, i.e., the pre-treatment of HA blocked CD44 receptor of U87MG or HCT116 cells and then inhibited delivery of nanophotosensitizers in vitro cell culture study. Furthermore, in vivo tumorxenograft study showed that fluorescence intensity in the tumor tissues was stronger than those of other organs, while CD44 receptor blocking by HA pretreatment induced a decrease of fluorescence intensity in tumor tissues when compared to liver. These results indicated that Ce6tetraHA nanophotosensitizers delivered to tumors by redox-sensitive and CD44-sensitive manner.
Collapse
Affiliation(s)
- Shin Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
- Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Seunggon Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
| | - Doo Man Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Sa-Hoe Lim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
- Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | | | - Hanjin Kwon
- UltraV Co. Ltd. R&D Center, Seoul 04779, Korea.
| | - Do Hoon Kim
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Chang-Min Lee
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea.
| | - Byung Hoon Kim
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea.
| | - Young-Il Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea.
| |
Collapse
|
49
|
Dal Corso A, Pignataro L, Belvisi L, Gennari C. Innovative Linker Strategies for Tumor‐Targeted Drug Conjugates. Chemistry 2019; 25:14740-14757. [DOI: 10.1002/chem.201903127] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Alberto Dal Corso
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
50
|
Luo T, Han J, Zhao F, Pan X, Tian B, Ding X, Zhang J. Redox-sensitive micelles based on retinoic acid modified chitosan conjugate for intracellular drug delivery and smart drug release in cancer therapy. Carbohydr Polym 2019; 215:8-19. [DOI: 10.1016/j.carbpol.2019.03.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022]
|