1
|
Guo L, Chen W, Yue J, Gao M, Zhang J, Huang Y, Xiong H, Li X, Wang Y, Yuan Y, Chen L, Fei F, Xu R. Unlocking the potential of LHPP: Inhibiting glioma growth and cell cycle via the MDM2/p53 pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167509. [PMID: 39277057 DOI: 10.1016/j.bbadis.2024.167509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The recurrence of glioma after treatment has remained an intractable problem for many years. Recently, numerous studies have explored the pivotal role of the mouse double minute 2 (MDM2)/p53 pathway in cancer treatment. Lysine phosphate phosphohistidine inorganic pyrophosphate phosphatase (LHPP), a newly discovered tumor suppressor, has been confirmed in numerous studies on tumors, but its role in glioma remains poorly understood. Expression matrices in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were analyzed using gene set enrichment analysis (GSEA), revealing significant alterations in the p53 pathway among glioma patients with high LHPP expression. The overexpression of LHPP in glioma cells resulted in a reduction in cell proliferation, migration, and invasive ability, as well as an increase in apoptosis and alterations to the cell cycle. The present study has identified a novel inhibitory mechanism of LHPP against glioma, both in vivo and in vitro. The results demonstrate that LHPP exerts anti-glioma effects via the MDM2/p53 pathway. These findings may offer a new perspective for the treatment of glioma in the clinic.
Collapse
Affiliation(s)
- Lili Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiong Yue
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Gao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yukai Huang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Yuan
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Fan Fei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Nikitovic D, Kukovyakina E, Berdiaki A, Tzanakakis A, Luss A, Vlaskina E, Yagolovich A, Tsatsakis A, Kuskov A. Enhancing Tumor Targeted Therapy: The Role of iRGD Peptide in Advanced Drug Delivery Systems. Cancers (Basel) 2024; 16:3768. [PMID: 39594723 PMCID: PMC11592346 DOI: 10.3390/cancers16223768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Chemotherapy remains the primary therapeutic approach in treating cancer. The tumor microenvironment (TME) is the complex network surrounding tumor cells, comprising various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as ECM components, blood vessels, and signaling molecules. The often stiff and dense network of the TME interacts dynamically with tumor cells, influencing cancer growth, immune response, metastasis, and resistance to therapy. The effectiveness of the treatment of solid tumors is frequently reduced due to the poor penetration of the drug, which leads to attaining concentrations below the therapeutic levels at the site. Cell-penetrating peptides (CPPs) present a promising approach that improves the internalization of therapeutic agents. CPPs, which are short amino acid sequences, exhibit a high ability to pass cell membranes, enabling them to deliver drugs efficiently with minimal toxicity. Specifically, the iRGD peptide, a member of CPPs, is notable for its capacity to deeply penetrate tumor tissues by binding simultaneously integrins ανβ3/ανβ5 and neuropilin receptors. Indeed, ανβ3/ανβ5 integrins are characteristically expressed by tumor cells, which allows the iRGD peptide to home onto tumor cells. Notably, the respective dual-receptor targeting mechanism considerably increases the permeability of blood vessels in tumors, enabling an efficient delivery of co-administered drugs or nanoparticles into the tumor mass. Therefore, the iRGD peptide facilitates deeper drug penetration and improves the efficacy of co-administered therapies. Distinctively, we will focus on the iRGD mechanism of action, drug delivery systems and their application, and deliberate future perspectives in developing iRGD-conjugated therapeutics. In summary, this review discusses the potential of iRGD in overcoming barriers to drug delivery in cancer to maximize treatment efficiency while minimizing side effects.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ekaterina Kukovyakina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Alexandros Tzanakakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Anna Luss
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Elizaveta Vlaskina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Anne Yagolovich
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Aristides Tsatsakis
- Forensic Medicine Department, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| |
Collapse
|
3
|
Zhou P, Zhang J, Feng J, Wang G. Construction of an oxidative phosphorylation-related gene signature for predicting prognosis and identifying immune infiltration in osteosarcoma. Aging (Albany NY) 2024; 16:5311-5335. [PMID: 38506898 PMCID: PMC11006489 DOI: 10.18632/aging.205650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Osteosarcoma is a prevalent malignant tumor that originates from mesenchymal tissue. It typically affects children and adolescents. Although it is known that the growth of osteosarcoma relies on oxidative phosphorylation for energy production, limited attention has been paid to exploring the potential of oxidative phosphorylation-related genes in predicting the prognosis of individuals suffering from osteosarcoma. METHODS All the data were retrieved from the UCSC Xena and GEO (GENE EXPRESSION OMNIBUS). Identification of the oxidative phosphorylation genes linked to the prognosis of individuals with osteosarcoma was done by means of univariate COX and LASSO regression analyses. Following that, patients were categorized into a high-risk group and a low-risk group as per the risk score determined by the identified oxidative phosphorylation genes. Furthermore, a comparison was made in terms of the survival and immune infiltration between both groups, and the prognostic model was established. RESULTS Five oxidative phosphorylation genes (ATP6V0D1, LHPP, COX6A2, MTHFD2, NDUFB9) associated with the prognosis of individuals with osteosarcoma were identified and the risk prognostic models were constructed. In the current research, the analysis of the ROC curves indicated a superior predictive accuracy exhibited by the risk model. The prognosis was adversely affected by immune infiltration in the high-risk group in comparison with the low-risk group. The function of the oxidative phosphorylation-related prognostic gene set was verified by GO and KEGG analysis. Furthermore, the link between oxidative phosphorylation-related genes and osteosarcoma immune infiltration was examined by GSEA analysis. CONCLUSIONS In this study, a prognostic model that demonstrated good predictive performance was constructed. Additionally, this study highlighted a correlation between oxidative phosphorylation-related genes and immune infiltration.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jinyan Feng
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
4
|
Lin Y, Su H, Zou B, Huang M. EZH2 Promotes Corneal Endothelial Cell Apoptosis by Mediating H3K27me3 and Inhibiting HO-1 Transcription. Curr Eye Res 2023; 48:1122-1132. [PMID: 37800319 DOI: 10.1080/02713683.2023.2257401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE This paper aims to explore the molecular mechanism of Enhancer of Zeste Homolog 2 (EZH2)-mediated H3K27me3 in human corneal endothelial cells (HCEC) apoptosis by inhibiting Heme oxygenase-1 (HO-1) transcription to provide a potential target for the treatment of corneal apoptosis. METHODS HCECs were cultured in vitro and transfected with si-EZH2, pcDNA3.1-EZH2, pcDNA3.1-HO-1, GSK-J4 (an effective H3K27me3 demethylase inhibitor), and corresponding controls. Western Blot assay was used to detect the levels of EZH2, HO-1, H3K27me3, and apoptosis-related proteins (Bcl-2, Bax, and Cleaved-caspase-3) in HCECs; CCK-8 assay was conducted to detect cell viability and flow cytometry to analyze the apoptosis. HO-1 mRNA levels were detected by RT-qPCR and changes in H3K27me3 levels on the HO-1 promoter were detected by chromatin immunoprecipitation. RESULTS HCECs transfected with si-EZH2 showed significantly lower EZH2 mRNA and protein levels, higher HCEC viability, lower apoptosis rates, higher antiapoptotic protein Bcl-2 expression, lower proapoptotic protein (Bax and Cleaved-caspase-3) levels, and significantly higher HO-1 expression. HCECs transfected with pcDNA3.1-EZH2 showed the opposite results. EZH2 repressed HO-1 transcription by mediating H3K27me3. H3K27me27 was enriched in the HO-1 promoter and overexpression of EZH2 increased H3K27me27 levels. Promotion of H3K27me3 partially reversed the mitigating effect of si-EZH2 on HCEC apoptosis. Overexpression of HO-1 partially reversed the apoptosis-promoting effects of EZH2 and H3K27me3 on HCECs. CONCLUSIONS EZH2 promotes HCE cell apoptosis by mediating H3K27me3 to inhibit HO-1 transcription.
Collapse
Affiliation(s)
- Ying Lin
- Department of Ophthalmology, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Huanjun Su
- Department of Ophthalmology, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Baoyi Zou
- Department of Optometry, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Minli Huang
- Department of Optometry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Ruifang D, Changqing Y, Chenxia R, Ji L, Zibai W. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase suppresses human esophageal cancer cell growth by inducing mitotic catastrophe through the P27/cyclin A/CDK2 signaling pathway. Acta Histochem 2023; 125:152066. [PMID: 37348327 DOI: 10.1016/j.acthis.2023.152066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Esophageal cancer (ESCA) is a global dead malignancy with poor prognosis. However, its underlying molecular mechanism remains to be elucidated. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) has been reported as a tumor suppressor in multisystem cancer but its function in ESCA has not been reported. We analyzed LHPP expression between normal and tumor tissues of ESCA patients and performed LHPP overexpression on the ESCA cells KYSE-150 (K150). We did not observe significant differences in the expression level of LHPP between ESCA and normal tissue, and noticed that LHPP expression was not related to ESCA patient survival rate. However, increased expression of LHPP in K150 cells induced mitochondrial dysfunction, inhibited cell proliferation, migration, and cell cycle, and simultaneously increased cell apoptosis. Besides, we found that K150 cells underwent mitotic catastrophe after overexpressing LHPP, which may be regulated through the P27/cyclin A/cdk2 signaling pathway. Although the expression of LHPP may not be related to the progression and prognosis of ESCA, mitotic catastrophe, a new mechanism of tumor suppressor function of LHPP was found after overexpressing LHPP in ESCA cells. DATA AVAILABILITY: The data used to support the findings of this study are included within the article.
Collapse
Affiliation(s)
- Duan Ruifang
- College Central Laboratory, Changzhi Medical College, Changzhi, Shanxi, China
| | - Yang Changqing
- Department of Gastroenterology, He Ping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - Ren Chenxia
- College Central Laboratory, Changzhi Medical College, Changzhi, Shanxi, China
| | - Li Ji
- Department of Gastroenterology, He Ping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Wei Zibai
- Department of Gastroenterology, He Ping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
6
|
Xia Z, Zhao S, Gao X, Sun H, Yang F, Zhu H, Gao H, Lu J, Zhou X. LHPP Inhibits the Viability, Migration, and Proliferation of PDAC Cells and Significantly Affects the Expression of SDC1 and S100p. Technol Cancer Res Treat 2023; 22:15330338231177807. [PMID: 37321804 PMCID: PMC10278439 DOI: 10.1177/15330338231177807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor response to chemotherapy and an extremely poor prognosis. Recent studies have revealed that phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) can inhibit the growth of various cancers. Therefore, the current study was conducted to investigate the antitumor effects of LHPP in PDAC and to explore its mechanism using proteomics analysis. METHODS AND RESULTS Immunohistochemical analysis of clinical samples demonstrated that LHPP expression levels were lower in tumor tissues compared to adjacent nontumor tissues. Moreover, multivariate COX regression analysis showed that LHPP expression level was an independent prognostic factor for the patients with PDAC. Patients with high LHPP expression had a better prognosis. The lentiviral vectors for normal control (NC), LHPP knockdown (KD), and LHPP overexpression (OE) were infected with BxPC-3 and PANC-1 cell lines. Cell counting kit-8 assay, Transwell assay, and flow cytometry analyses showed that LHPP overexpression significantly inhibited the cell viability, migration, and proliferation of BxPC-3 and PANC-1 cells. Moreover, xenograft tumor model demonstrated that LHPP overexpression inhibited xenograft tumor growth in vivo. Subsequently, proteins with significantly altered expression in BxPC-3 cells after lentivirus infection were detected using proteomics analyses. Interestingly, compared to the NC group, the expression of Syndecan 1 (SDC1) was significantly upregulated in the KD group, while that of S100P was significantly downregulated in the OE group. CONCLUSION LHPP might emerge as an important target for delaying the advancement of PDAC, thereby providing a novel therapeutic approach for the treatment of PDAC.
Collapse
Affiliation(s)
- Zhaozhi Xia
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuchao Zhao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongrui Sun
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Guo K, Tian W, Wang H, Chang D, Dou Y, Yuan J, Chen Y, Hou B. Does the LHPP gene share a common biological function in pancancer progression? BMC Med Genomics 2022; 15:239. [PMCID: PMC9661738 DOI: 10.1186/s12920-022-01396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractAlthough emerging evidence has revealed that LHPP, a histidine phosphatase protein, suppresses the progression of different cancers, a pan-cancer analysis still remains unavailable. Therefore, we first utilized different bioinformatics tools to explore the tumor inhibitory role of LHPP protein across 33 tumor types based on the TCGA project. Additionally, HGC-27 gastric cancer cells were used to evaluate the biological functions of LHPP after stable transfection with lentiviruses. Consequently, LHPP mRNA and protein expression were down-regulated in the most cancer tissues corresponding to normal tissues. The data showed that patients with higher LHPP performance had a better prognosis of overall survival (OS) and disease-free survival (DFS) in brain glioma and renal carcinoma. In addition, we found that enhancement of LHPP expression attenuated the proliferation, migration and invasion of gastric cancer cells. The expression levels of cell-cycle-related and EMT-related molecules, such as CDK4, CyclinD1, Vimentin and Snail, were clearly reduced. Moreover, a genetic alteration analysis showed that the most frequent mutation types in LHPP protein was amplification. The patients without LHPP mutation showed a better tendency of prognosis in UCEC, STAD and COAD. Cancer-associated fibroblast infiltration was also observed in head and neck squamous cell carcinoma, stomach adenocarcinoma and testicular germ cell tumors. In summary, our pancancer analysis among various tumor types could provide a comprehensive understanding of LHPP biological function in the progression of malignant diseases and promote the development of novel therapeutic targets.
Collapse
|
8
|
Wu F, Ma H, Wang X, Wei H, Zhang W, Zhang Y. The histidine phosphatase LHPP: an emerging player in cancer. Cell Cycle 2022; 21:1140-1152. [PMID: 35239447 PMCID: PMC9103355 DOI: 10.1080/15384101.2022.2044148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cancers continue to have high incidence and mortality rates worldwide. Therefore, cancer control remains the main public health goal. Growing research evidence suggests that phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) plays an important role in inhibiting tumor cell progression. It has been reported in the literature that LHPP is expressed at low levels in tumor tissues and cells and that patients with low LHPP expression have a poorer prognosis. Functional studies have shown that LHPP can inhibit tumor cell proliferation, metastasis, and apoptosis by affecting different target genes. In addition, researchers have used iDPP nanoparticles to deliver LHPP plasmids to treat tumors, demonstrating the great potential of LHPP plasmids for cancer therapy. In our review, we highlight the biological functions and important downstream target genes of LHPP in tumors, providing a theoretical basis for the treatment of human cancers. Although not thoroughly studied in terms of tumor mechanisms, LHPP still represents a promising and effective anticancer drug target.
Collapse
Affiliation(s)
- Fahong Wu
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hanwei Ma
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoli Wang
- Department of Gynaecology and Obstetrics, The Third Hospital of Xiamen, Xiamen, China
| | - Hangzhi Wei
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wei Zhang
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Youcheng Zhang
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China,CONTACT Youcheng Zhang Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, 730030Gansu, China
| |
Collapse
|
9
|
Chen WJ, Chen LH, Wang J, Wang ZT, Wu CY, Sun K, Ding BY, Liu N, Xu RX. LHPP impedes energy metabolism by inducing ubiquitin-mediated degradation of PKM2 in glioblastoma. Am J Cancer Res 2021; 11:1369-1390. [PMID: 33948363 PMCID: PMC8085851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023] Open
Abstract
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a new-found tumor suppressor in a variety of tumors. While, it is still unknown about its role in glioma. In this study, we found that LHPP is abnormally decreasing or absent in glioblastoma, and the low expression of LHPP is associated with poor median survival in glioma patients. Functional assay revealed that LHPP-overexpression significantly inhibited U87MG and U118MG growth in vitro and in vivo. As to the mechanism, mass-spectrometric analysis indicated that the LHPP interacting proteins were mainly enriched in regulation of energy metabolism, including Carbon metabolism, Oxidative phosphorylation, and Glycolysis. Seahorse assay and metabolites detection confirmed that LHPP-overexpression obviously impeded glycolysis and respiration in U87MG and U118MG cells. For the further study, western blot assay showed that the protein level of PKM2 at dimeric, tetrameric, and total protein, were all decreased significantly, and its enzymatic activity was decreased as well. ChIP and RNAseq integrated analysis indicated that the decreased protein level of PKM2 was independent of PKM2 transcription, and LHPP did not reprogram transcription level of metabolic genome. Co-IP and immunofluorescence assay manifested that LHPP interacted with PKM2, and this interaction interfered the protein stability, then induced ubiquitin-mediated degradation of PKM2. Rescue assay confirmed that restoring the expression of PKM2 effectively reversed the restrained energy metabolism and the inhibited cancer cell growth caused by LHPP-overexpression in U87MG and U118MG cells. Taking together, we demonstrated that LHPP impedes the glycolysis and respiration during energy metabolic process via inducing ubiquitin-mediated degradation of PKM2, thus inhibits the growth of glioblastoma.
Collapse
Affiliation(s)
- Wen-Jin Chen
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510000, P. R. China
- Department of Neurosurgery, The Seventh Medical Center of General Hospital of PLABeijing 100010, P. R. China
| | - Li-Hua Chen
- The Department of Neurosurgery, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of ChinaChengdu 610072, P. R. China
| | - Ji Wang
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510000, P. R. China
- Department of Neurosurgery, The Seventh Medical Center of General Hospital of PLABeijing 100010, P. R. China
| | - Zhao-Tao Wang
- The Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510000, P. R. China
| | - Cui-Ying Wu
- Department of Neurosurgery, The Seventh Medical Center of General Hospital of PLABeijing 100010, P. R. China
| | - Kai Sun
- Department of Neurosurgery, The Seventh Medical Center of General Hospital of PLABeijing 100010, P. R. China
| | - Bo-Yun Ding
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510000, P. R. China
| | - Ning Liu
- Department of Neurosurgery, The Seventh Medical Center of General Hospital of PLABeijing 100010, P. R. China
| | - Ru-Xiang Xu
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510000, P. R. China
- Department of Neurosurgery, The Seventh Medical Center of General Hospital of PLABeijing 100010, P. R. China
| |
Collapse
|
10
|
LHPP suppresses proliferation, migration, and invasion and promotes apoptosis in pancreatic cancer. Biosci Rep 2021; 40:222412. [PMID: 32186702 PMCID: PMC7103587 DOI: 10.1042/bsr20194142] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PaCa) is a common malignant tumor of the digestive system with poor prognosis and no ideal treatment for inoperable patients, which is partly due to delayed diagnoses. It is recently reported that the protein histidine phosphatase LHPP is a tumor suppressor in hepatocellular carcinoma, cervical cancer, and bladder cancer. So far, there is no study on the expression level of LHPP in PaCa, and its mechanism of action on tumors is unclear. In this experiment, LHPP expression was lower in cancer tissues than that in normal pancreatic tissue, and clinicopathological results showed that LHPP expression was correlated with the degree of differentiation and lymphatic metastasis of pancreatic carcinoma. The biological characteristics of LHPP in PaCa cells were examined by the cell counting kit-8 assay, transwell assay, and monoclonal formation test. The inhibitory mechanism of LHPP in PaCa cells was determined using Western blotting and flow cytometry. The results showed that LHPP restrained PaCa cell proliferation, migration, and invasion. Increased LHPP expression promoted the apoptosis of PaCa cells through higher activation of cleaved-PARP and cleaved-Casp3 and lower activation of cIAP1. Importantly, the increase in LHPP enhanced PTEN expression and decreased the phosphorylated AKT level. Moreover, LHPP-induced apoptosis was diminished by SC79 (AKT activator) in PaCa cells. In conclusion, LHPP blocks proliferation, migration, and invasion and enhances apoptosis in PaCa cells through the PTEN/AKT signaling pathway.
Collapse
|
11
|
Li Z, Zhou X, Zhu H, Song X, Gao H, Niu Z, Lu J. Purpurin binding interacts with LHPP protein that inhibits PI3K/AKT phosphorylation and induces apoptosis in colon cancer cells HCT-116. J Biochem Mol Toxicol 2021; 35:e22665. [PMID: 33368780 DOI: 10.1002/jbt.22665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is the leading type of diagnosed cancer; globally, it resides in the fourth-leading origin of cancer-interrelated mortality in the globe. The treatment strategies were chemotherapy and potent radiotherapy. Although chemotherapy treatment can eliminate tumor cells, it remains with unnecessary toxic effects in cancer patients. Therefore, the identification of natural-based compounds, which have selectively inhibiting target proteins with limited toxicity that can facilitate the therapeutic approaches against CRC. In this existing approach, which highlights the binding efficacy of our anthraquinone compound, purpurin against phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) protein restrains the CRC cell growth by inhibiting phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), cell proliferation, and inducing apoptosis signaling. Primarily, purpurin (36 μM) exposed to HCT-116 cells and incubated for 24 and 48 h could induce reactive oxygen species production, subsequently alter mitochondrion membrane, and increase the apoptotic cells in HCT-116. LHPP, a kind of histidine phosphatase protein, has been considered as a tumor suppressor in numerous carcinomas. However, purpurin-mediated LHPP proteins and its associated molecular events in CRC remain unclear. In our docking studies revealed that purpurin has been strongly interacts with LHPP via hydrophobic and hydrophilic binding interaction. Western blot results confirmed that purpurin enhances the expression of LHPP protein, thereby inhibits the expression of phosphorylated-PI3K/AKT, EGFR, cyclin-D1, PCNA in HCT-116 cells. Moreover, purpurin induces messenger RNA expression of apoptotic genes (Bax, CASP-9, and CASP-3) in HCT-116 cells. Thus, we conclude that purpurin could be a natural and useful compound, which inhibits the growth of CRC cells through the activation of LHPP proteins.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Colorectal and Anal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xie Song
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
12
|
Li C, Yang J, Wang W, Li R. LHPP exerts a tumor-inhibiting role in glioblastoma via the downregulation of Akt and Wnt/β-catenin signaling. J Bioenerg Biomembr 2021; 53:61-71. [PMID: 33394310 DOI: 10.1007/s10863-020-09866-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) has been recently identified as a novel inhibitor of multiple tumors; however, its role in glioblastoma (GBM) has not been investigated. This study aimed to evaluate whether LHPP exerts a potential tumor-inhibiting role in GBM. Compared with that in normal tissues, LHPP expression was lower in GBM tissues and various GBM cell lines. LHPP up-regulation in GBM cells markedly reduced their proliferation and invasion, and its knockdown had an oncogenic effect on these cells. Further studies revealed that overexpressed LHPP decreased the levels of Akt and glycogen synthase-3β phosphorylation and down-regulated Wnt/β-catenin signaling. By contrast, LHPP knockdown produced opposite effects. Akt suppression markedly abrogated the activation of Wnt/β-catenin signaling induced by LHPP knockdown. The reactivation of Wnt/β-catenin signaling partially reversed the inhibition of tumor growth in GBM mediated by LHPP overexpression. In addition, LHPP overexpression markedly retarded the tumorigenesis of GBM cells in vivo. These findings revealed that LHPP acts a potential inhibitor of tumor growth in GBM, and its overexpression represses GBM proliferation and invasion by down-regulating Akt and Wnt/β-catenin signaling. This work highlights the crucial role of LHPP in GBM progression and suggests its potential as an anticancer target for the treatment of this disease.
Collapse
Affiliation(s)
- Chuankun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Jingya Yang
- The Department of Operation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| |
Collapse
|
13
|
Taylor LW, French JE, Robbins ZG, Boyer JC, Nylander-French LA. Influence of Genetic Variance on Biomarker Levels After Occupational Exposure to 1,6-Hexamethylene Diisocyanate Monomer and 1,6-Hexamethylene Diisocyanate Isocyanurate. Front Genet 2020; 11:836. [PMID: 32973864 PMCID: PMC7466756 DOI: 10.3389/fgene.2020.00836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
We evaluated the impact of genetic variance on biomarker levels in a population of workers in the automotive repair and refinishing industry who were exposed to respiratory sensitizers 1,6-hexamethylene diisocyanate (HDI) monomer and one of its trimers, HDI isocyanurate. The exposures and respective urine and plasma biomarkers 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) were measured in 33 workers; and genome-wide microarrays (Affymetrix 6.0) were used to genotype the workers' single-nucleotide polymorphisms (SNPs). Linear mixed model analyses have indicated that interindividual variations in both inhalation and skin exposures influenced these biomarker levels. Using exposure values as covariates and a false discovery rate < 0.10 to assess statistical significance, we observed that seven SNPs were associated with HDA in plasma, five were associated with HDA in urine, none reached significance for TAHI in plasma, and eight were associated with TAHI levels in urine. The different genotypes for the 20 significant SNPs accounted for 4- to 16-fold changes observed in biomarker levels. Associated gene functions include transcription regulation, calcium ion transport, vascular morphogenesis, and transforming growth factor beta signaling pathway, which may impact toxicokinetics indirectly by altering inflammation levels. Additionally, in an expanded analysis using a minor allele cutoff of 0.05 instead of 0.10, there were biomarker-associated SNPs within three genes that have been associated with isocyanate-induced asthma: ALK, DOCK2, and LHPP. We demonstrate that genetic variance impacts the biomarker levels in workers exposed to HDI monomer and HDI isocyanurate and that genetics can be used to refine exposure predictions in small cohorts when quantitative personal exposure and biomarker measurements are included in the models.
Collapse
Affiliation(s)
- Laura W. Taylor
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John E. French
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary G. Robbins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jayne C. Boyer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Sun W, Qian K, Guo K, Chen L, Xiang J, Li D, Wu Y, Ji Q, Sun T, Wang Z. LHPP inhibits cell growth and migration and triggers autophagy in papillary thyroid cancer by regulating the AKT/AMPK/mTOR signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2020; 52:382-389. [PMID: 32227107 DOI: 10.1093/abbs/gmaa015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
In recent decades, the incidence rate of papillary thyroid carcinoma (PTC) has been rapidly increasing. However, the molecular mechanism of the physiological and pathological processes of PTC is still largely unknown. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a tumor suppressor and exerts anti-tumor effect in several human cancers, while the role and underlying mechanism of LHPP in PTC remain vague. In this study, we firstly evaluated the roles of LHPP in PTC and explored its underlying mechanism. Using clinical tissue samples, we detected the level of LHPP in PTC tissues and in matched adjacent normal tissues. Lower level of LHPP was found in PTC tissues than in matched adjacent normal tissues. Similar LHPP expression pattern was found in PTC cell lines when compared with that in normal human thyroid follicular epithelial cells. Then, we over-expressed LHPP in three PTC cell lines and results showed that ectopic LHPP expression consistently reduced cell viability, proliferation, and migration and triggered cell autophagy. Furthermore, over-expression of LHPP inhibited the activation of the AKT/mTOR pathway and promoted the AMPK signaling pathway. In addition, the activation of AKT/mTOR and inhibition of AMPK signaling pathways restored the role of ectopic LHPP expression in PTC cell lines, indicating that LHPP exerts its anti-tumor activity through regulating the AKT/AMPK/mTOR pathway. Ultimately, we illustrated that ectopic LHPP expression inhibited PTC tumor growth in vivo. In conclusion, we revealed that LHPP has an anti-tumor effect in PTC and indicated that LHPP might serve as an effective diagnostic and therapeutic target for PTC.
Collapse
Affiliation(s)
- Wenyu Sun
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Kai Qian
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Kai Guo
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Lili Chen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Duanshu Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yi Wu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Tuanqi Sun
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhuoying Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
15
|
Beiu C, Giurcaneanu C, Grumezescu AM, Holban AM, Popa LG, Mihai MM. Nanosystems for Improved Targeted Therapies in Melanoma. J Clin Med 2020; 9:jcm9020318. [PMID: 31979325 PMCID: PMC7073828 DOI: 10.3390/jcm9020318] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer, with limited therapeutic options. Since its incidence has been rapidly rising in recent years, the study of new targeted therapeutic strategies has increased. The implication of nanoscience in the development of alternative targeted therapies for melanoma has multiple benefits and could significantly improve the outcome of melanoma patients. In this paper, we review the most recent progress in the field of targeted therapies, emphasizing the impact of nanoscale materials on the targeting and controlled release of anti-tumor drugs. The applications of nanomedicine in the management of melanoma are extensive and refer to sentinel lymph node mapping, chemotherapy, and RNA interference; each of these applications harboring the potential to develop efficient and personalized diagnostic techniques and therapies. Further research, especially in clinical trials, is needed to establish whether fighting melanoma on the nanoscale level represents the key to reaching a critical inflection point in mankind’s battle with metastatic melanoma.
Collapse
Affiliation(s)
- Cristina Beiu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania;
| | - Alina Maria Holban
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania;
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
- Correspondence: ; Tel.: +40-721-600-737
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| | - Mara Mădălina Mihai
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| |
Collapse
|