1
|
Maghraby Y, Ibrahim AH, El-Shabasy RM, Azzazy HMES. Overview of Nanocosmetics with Emphasis on those Incorporating Natural Extracts. ACS OMEGA 2024; 9:36001-36022. [PMID: 39220491 PMCID: PMC11360025 DOI: 10.1021/acsomega.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The cosmetic industry is rapidly rising worldwide. To overcome certain deficiencies of conventional cosmetics, nanomaterials have been introduced to formulations of nails, lips, hair, and skin for treating/alleviating hyperpigmentation, hair loss, acne, dandruff, wrinkles, photoaging, etc. Innovative nanocarrier materials applied in the cosmetic sector for carrying the active ingredients include niosomes, fullerenes, liposomes, carbon nanotubes, and nanoemulsions. These exhibit several advantages, such as elevated stability, augmented skin penetration, specific site targeting, and sustained release of active contents. Nevertheless, continuous exposure to nanomaterials in cosmetics may pose some health hazards. This review features the different new nanocarriers applied for delivering cosmetics, their positive impacts and shortcomings, currently marketed nanocosmetic formulations, and their possible toxic effects. The role of natural ingredients, including vegetable oils, seed oils, essential oils, fats, and plant extracts, in the formulation of nanocosmetics is also reviewed. This review also discusses the current trend of green cosmetics and cosmetic regulations in selected countries.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, Sixth
of October,12578 Giza, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, 32512 Shebin El-Kom, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute of
Photonic Technology, Jena 07745, Germany
| |
Collapse
|
2
|
Agrawal R, Jurel P, Deshmukh R, Harwansh RK, Garg A, Kumar A, Singh S, Guru A, Kumar A, Kumarasamy V. Emerging Trends in the Treatment of Skin Disorders by Herbal Drugs: Traditional and Nanotechnological Approach. Pharmaceutics 2024; 16:869. [PMID: 39065566 PMCID: PMC11279890 DOI: 10.3390/pharmaceutics16070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Since the earliest days, people have been employing herbal treatments extensively around the world. The development of phytochemical and phytopharmacological sciences has made it possible to understand the chemical composition and biological properties of a number of medicinal plant products. Due to certain challenges like large molecular weight and low bioavailability, some components of herbal extracts are not utilized for therapeutic purposes. It has been suggested that herbal medicine and nanotechnology can be combined to enhance the benefits of plant extracts by lowering dosage requirements and adverse effects and increasing therapeutic activity. Using nanotechnology, the active ingredient can be delivered in an adequate concentration and transported to the targeted site of action. Conventional therapy does not fulfill these requirements. This review focuses on different skin diseases and nanotechnology-based herbal medicines that have been utilized to treat them.
Collapse
Affiliation(s)
- Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura 281001, Uttar Pradesh, India; (R.A.); (A.G.)
| | - Priyanka Jurel
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India; (P.J.); (R.D.); (R.K.H.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India; (P.J.); (R.D.); (R.K.H.)
| | - Ranjit Kumar Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India; (P.J.); (R.D.); (R.K.H.)
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura 281001, Uttar Pradesh, India; (R.A.); (A.G.)
| | - Ashwini Kumar
- Research and Development Cell, Department of Mechanical Engineering, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad 121003, Haryana, India;
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201306, Uttar Pradesh, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Li H, Dai F, Liu H, Tao Q, Hu J, Zhang Y, Xiao Z, Rupenthal ID, Li H, Yang F, Li W, Lin H, Hou D. Physicochemical properties and micro-interaction between micro-nanoparticles and anterior corneal multilayer biological interface film for improving drug delivery efficacy: the transformation of tear film turnover mode. Drug Deliv 2023; 30:2184312. [PMID: 36866574 PMCID: PMC9987732 DOI: 10.1080/10717544.2023.2184312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Recently, various novel drug delivery systems have been developed to overcome ocular barriers in order to improve drug efficacy. We have previously reported that montmorillonite (MT) microspheres (MPs) and solid lipid nanoparticles (SLNs) loaded with the anti-glaucoma drug betaxolol hydrochloride (BHC) exhibited sustained drug release and thus intraocular pressure (IOP) lowering effects. Here, we investigated the effect of physicochemical particle parameters on the micro-interactions with tear film mucins and corneal epithelial cells. Results showed that the MT-BHC SLNs and MT-BHC MPs eye drops significantly prolonged the precorneal retention time due to their higher viscosity and lower surface tension and contact angle compared with the BHC solution, with MT-BHC MPs exhibiting the longest retention due to their stronger hydrophobic surface. The cumulative release of MT-BHC SLNs and MT-BHC MPs was up to 87.78% and 80.43% after 12 h, respectively. Tear elimination pharmacokinetics study further confirmed that the prolonged precorneal retention time of the formulations was due to the micro-interaction between the positively charged formulations and the negatively charged tear film mucins. Moreover, the area under the IOP reduction curve (AUC) of MT-BHC SLNs and MT-BHC MPs was 1.4 and 2.5 times that of the BHC solution. Accordingly, the MT-BHC MPs also exhibit the most consistent and long-lasting IOP-lowering effect. Ocular irritation experiments showed no significant toxicity of either. Taken together, MT MPs may have the potential for more effective glaucoma treatment.
Collapse
Affiliation(s)
- Huamei Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Fuda Dai
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Hanyu Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qi Tao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, P.R. China
| | - Jie Hu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yangrong Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhenping Xiao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Huihui Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Fan Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wei Li
- Guangzhou Institute for Drug Control, Guangzhou, P.R. China
| | - Huaqing Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Dongzhi Hou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Sundar M, Lingakumar K. Investigating the efficacy of topical application of Ipomoea carnea herbal cream in preventing skin damage induced by UVB radiation in a rat model. Heliyon 2023; 9:e19161. [PMID: 37662739 PMCID: PMC10472012 DOI: 10.1016/j.heliyon.2023.e19161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Ultraviolet-B irradiation is a common environmental stressor that has detrimental effects on human skin. Natural sunscreens are well-known for their ability to benefit inflamed sunburn and dry skin. This study examined the effect of formulated Ipomoea carnea herbal cream on UVB-induced skin damage. We screened the bioactive compounds of I. carnea crude extract, showing significant antioxidant activity. Additionally, we evaluated the cytotoxicity, revealing that I. carnea extract has less toxicity to vero cells (IC50 98.45 μg/mL) than to A375 cells (IC50 48.95 μg/mL). Based on this, we formulated the I. carnea herbal cream (FIHC) at 50, 100 and 200 mg concentrations and evaluated its organoleptic characteristics. Then, the rats were exposed to UVB radiation (32,800 J/m2) four times/week (on alternate days) before the cream was applied topically to the dorsal skin surface. Under UVB stress without treatment, rats showed deep dermal damage. In contrast, rats treated with the FIHC exhibited significantly reduced sunburn. Moreover, the histopathological and biochemical assays were confirmed by the topical application of FIHC, which had potentially reduced the skin elasticity and maintained the imbalanced enzyme and non-enzymatic antioxidant activity. Our findings amply demonstrate that the FIHC significantly accelerated the recovery of UVB-induced lesions through antioxidant and down-regulation of skin photodamage.
Collapse
Affiliation(s)
- Madasamy Sundar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Affiliated to Madurai Kamaraj University, Madurai, Sivakasi, Tamil Nadu, 626124, India
| | - Krishnasamy Lingakumar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Affiliated to Madurai Kamaraj University, Madurai, Sivakasi, Tamil Nadu, 626124, India
| |
Collapse
|
5
|
Chow PS, Lim RTY, Cyriac F, Shah JC, Badruddoza AZM, Yeoh T, Yagnik CK, Tee XY, Wong ABH, Chia VD, Wang G. Influence of Manufacturing Process on the Microstructure, Stability, and Sensorial Properties of a Topical Ointment Formulation. Pharmaceutics 2023; 15:2219. [PMID: 37765188 PMCID: PMC10536044 DOI: 10.3390/pharmaceutics15092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The manufacturing process for ointments typically involves a series of heating, cooling, and mixing steps. Precise control of the level of mixing through homogenization and the cooling rate, as well as temperature at different stages, is important in delivering ointments with the desired quality attributes, stability, and performance. In this work, we investigated the influence of typical plant processing conditions on the microstructure, stability, and sensorial properties of a model ointment system through a Design of Experiments (DoE) approach. Homogenization speed at the cooling stage after the addition of the solvent (propylene glycol, PG) was found to be the critical processing parameter that affects stability and the rheological and sensorial properties of the ointment. A lower PG addition temperature was also found to be beneficial. The stabilization of the ointment at a lower PG addition temperature was hypothesized to be due to more effective encapsulation by crystallizing mono- and diglycerides at the lower temperature. The in vitro release profiles were found to be not influenced by the processing parameters, suggesting that for the ointment platform studied, processing affects the microstructure, but the effects do not translate into the release profile, a key performance indicator. Our systematic study represents a Quality-by-Design (QbD) approach to the design of a robust manufacturing process for delivering stable ointments with the desired performance attributes and properties.
Collapse
Affiliation(s)
- Pui Shan Chow
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (P.S.C.); (F.C.); (C.K.Y.); (X.Y.T.); (A.B.H.W.); (G.W.)
| | - Ron Tau Yee Lim
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (P.S.C.); (F.C.); (C.K.Y.); (X.Y.T.); (A.B.H.W.); (G.W.)
| | - Febin Cyriac
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (P.S.C.); (F.C.); (C.K.Y.); (X.Y.T.); (A.B.H.W.); (G.W.)
| | - Jaymin C. Shah
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA; (A.Z.M.B.); (T.Y.)
| | - Abu Zayed Md Badruddoza
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA; (A.Z.M.B.); (T.Y.)
| | - Thean Yeoh
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA; (A.Z.M.B.); (T.Y.)
| | - Chetan Kantilal Yagnik
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (P.S.C.); (F.C.); (C.K.Y.); (X.Y.T.); (A.B.H.W.); (G.W.)
| | - Xin Yi Tee
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (P.S.C.); (F.C.); (C.K.Y.); (X.Y.T.); (A.B.H.W.); (G.W.)
| | - Annie Bao Hua Wong
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (P.S.C.); (F.C.); (C.K.Y.); (X.Y.T.); (A.B.H.W.); (G.W.)
| | - Vernissa Dilys Chia
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (P.S.C.); (F.C.); (C.K.Y.); (X.Y.T.); (A.B.H.W.); (G.W.)
| | - Guan Wang
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (P.S.C.); (F.C.); (C.K.Y.); (X.Y.T.); (A.B.H.W.); (G.W.)
| |
Collapse
|
6
|
Yien RMK, Matos APDS, Gomes ACC, Garófalo DDA, Santos-Oliveira R, Simas NK, Ricci-Júnior E. Nanotechnology Promoting the Development of Products from the Biodiversity of the Asteraceae Family. Nutrients 2023; 15:nu15071610. [PMID: 37049452 PMCID: PMC10096939 DOI: 10.3390/nu15071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Biodiversity is a hallmark of the Asteraceae family. Several species are known for their pharmacological potential. The search for new substances has permeated the chemistry of natural products for years. However, the development of a final product is still a challenge. Plant extracts have physicochemical characteristics that sometimes hinder administration, requiring a formulation. In this context, nanotechnology emerges as a tool to improve the pharmacokinetic parameters of several pharmacologically active substances. Nanoemulsions, liposomes, and nanoparticles are used to carry the active ingredients and thus improve therapeutic action, especially for substances with solubility and absorption problems. This paper aimed at compiling all the studies that used nanotechnology to develop formulations from species of the Asteraceae family from 2010 to 2021 in a literature review. The search showed that nanoemulsions are the most developed formulation associated with essential oils. The use of nanotechnology promoted an improvement in the pharmacokinetic parameters of active substances.
Collapse
|
7
|
Preparation and optimization of medicated cold cream using Caralluma adscendens var. attenuata for the treatment of Candida skin infection. BIOTECHNOLOGIA 2022; 103:249-260. [PMID: 36605824 PMCID: PMC9642957 DOI: 10.5114/bta.2022.118668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022] Open
Abstract
Fungal skin infection is a major skin health issue worldwide. For the treatment of fungal infections, systematic antifungal therapies are frequently prescribed. The aim of this study is to prepare an antifungal cold cream from Caralluma adscendens var. attenuata to treat deep dermal fungal infection in the skin layer. To achieve this, different concentrations of plant extract-based cold cream were prepared, and their in vitro characteristic features such as color, texture, pH, viscosity, spreadability, stability, permeation, were analyzed together with ex vivo evaluation to identify their applicability in the treatment of acute rat skin irritation. After 72 h of induction of Candida albicans infection in rats (7 days, two times/day), C. adscendens var. attenuata cold cream was applied topically. In rats with C. albicans induction without any treatment, adverse skin damages were visible in the form of red rashes, whereas in those with the formulated cold cream application, significantly less skin damage and inflammation were observed on a dose-dependent basis. Moreover, the reduced microbial colonization and histopathology of the rat skin without any treatment indicated the successful invasion of C. albicans and showed the morphological changes caused by candidal infection. However, treatment with the C. adscendens var. attenuata cream significantly inhibited candida colonization and reversed the morphological changes. In addition, the formulated C. adscendens var. attenuata cold cream showed good spreadability, permeation, and viscosity. Hence, it can act as a potent antifungal topical agent for the treatment of C. albicans skin infection without any irritation, thus safeguarding the skin tissue.
Collapse
|
8
|
Ali S, Tiwari A, Yeoh T, Doshi P, Kelkar N, Shah JC, Seth JR. Crystallization and Rheology of Mono- and Diglycerides and Their Role in Stabilization of Emulsion Droplets in Model Topical Ointments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8502-8512. [PMID: 35797452 DOI: 10.1021/acs.langmuir.2c00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The crystallization behavior of commercial mono- and diglycerides (MDG) in paraffin oil is studied to develop an in-depth understanding of the polymorphic transitions useful for the physical stability of petroleum oil-based topical emulsions. Optical microscopy and differential scanning calorimetry measurements showed the formation of plate-like and spherulite crystals at high and low temperatures, in sequence, while cooling a solution of MDG dissolved in oil. High-resolution NMR and X-ray scattering demonstrate that 1-monoglycerides (mixture of 1-glyceride monostearate and 1-glyceride monopalmitate) cocrystallize to an inverse-lamellar structure (Lα polymorph) that mainly forms plate-like crystals at a higher temperature. The Lα polymorph is seen to exist up to room temperature during the cooling process. At lower temperatures, 1,3-diglycerides (mixture of 1,3-glyceryl distearate and 1,3-glyceryl dipalmitate) crystallize into β-polymorphs that form spherulites. The spherulites tend to assemble into elongated strands via aggregation, leading to the formation of a percolating network structure. The sizes of both types of crystals decrease with an increasing cooling rate, leading to a higher mechanical modulus due to the increased network connectivity of spherulites. In an emulsion, monoglycerides in the form of Lα polymorphs having plate-like crystal morphology show a higher affinity to the polar liquid/oil interface, thereby providing better interfacial stability compared to the spherulitic β-polymorphs. However, diglycerides in the form of spherulites form bulk network structures which provide network stabilization to the suspended droplets. This work demonstrates that MDG, a commercially available ingredient that combines the differential functionality of monoglycerides and diglycerides, is an effective, bifunctional, emulsifying agent for petrolatum-based topical emulsions.
Collapse
Affiliation(s)
- Samim Ali
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anju Tiwari
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Thean Yeoh
- Pfizer Inc., Groton, Connecticut 06340, United States
| | - Pankaj Doshi
- Pfizer Inc., Groton, Connecticut 06340, United States
| | - Narayani Kelkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jaymin C Shah
- Pfizer Inc., Groton, Connecticut 06340, United States
| | - Jyoti R Seth
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
9
|
Almeida F, Corrêa M, Zaera AM, Garrigues T, Isaac V. Influence of different surfactants on development of nanoemulsion containing fixed oil from an Amazon palm species. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Songkro S, Isnaini N, Sungkharak S, Tanmanee N, Maneenuan D, Kaewnopparat N. Characterization, Antioxidant and Antibacterial Potentials of Tamarindus indica L. Fruit Pulp Extract Loaded O/W Nanoemulsions. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sarunyoo Songkro
- Prince of Songkla University, Thailand; Prince of Songkla University, Thailand
| | | | | | - Niwan Tanmanee
- Prince of Songkla University, Thailand; Prince of Songkla University, Thailand
| | - Duangkhae Maneenuan
- Prince of Songkla University, Thailand; Prince of Songkla University, Thailand
| | - Nattha Kaewnopparat
- Prince of Songkla University, Thailand; Prince of Songkla University, Thailand
| |
Collapse
|
11
|
Formula Development of Red Palm (Elaeis guineensis) Fruit Extract Loaded with Solid Lipid Nanoparticles Containing Creams and Its Anti-Aging Efficacy in Healthy Volunteers. COSMETICS 2021. [DOI: 10.3390/cosmetics9010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Palm fruits (Elaeis guineensis) comprise antioxidants that can be used as skin care agents. This study developed a cosmeceutical cream containing E. guineensis extract, loaded with solid lipid nanoparticles (SLNs), and assessed its efficacy on female volunteers. The E. guineensis extract exhibited a good antioxidant activity with high levels of vitamin E, β-carotene, and palmitic acid. Day and night creams containing E. guineensis fruit extract, loaded with SLNs, were formulated and exhibited acceptable physical characteristics and good stability. Subsequently, their clinical efficacy and safety were evaluated on female volunteers. Both creams were non-irritating and had good cutaneous compatibility. Skin hydration, transepidermal water loss (TEWL), skin elasticity, melanin index, and skin texture were measured before and 30 min after the first application, as well as after 7, 14, and 30 days of daily application. A satisfactory survey was implemented using a questionnaire, and volunteer satisfaction scores were high for the product’s performance. Overall, the results showed that skin hydration, TEWL, cutaneous elasticity, and melanin index were improved, compared to the baseline data, after 30 days. Thus, the formulated facial day and night creams made the skin moist, reduced wrinkles, increased elasticity, and cleared the skin to the consumers’ satisfaction.
Collapse
|
12
|
Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. COSMETICS 2021. [DOI: 10.3390/cosmetics8040106] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, interest in the health effects of natural antioxidants has increased due to their safety and applicability in cosmetic formulation. Nevertheless, efficacy of natural antioxidants in vivo is less documented than their prooxidant properties in vivo. Plant extracts rich in vitamins, flavonoids, and phenolic compounds can induce oxidative damage by reacting with various biomolecules while also providing antioxidant properties. Because the biological activities of natural antioxidants differ, their effectiveness for slowing the aging process remains unclear. This review article focuses on the use of natural antioxidants in skincare and the possible mechanisms underlying their desired effect, along with recent applications in skincare formulation and their limitations.
Collapse
|
13
|
Vu Dang H, Tran Huu H, Nguyen HMT. Investigating the influence of excipient batch variation on the structure, consistency and physical stability of polysorbate 60-based topical vehicles. Int J Cosmet Sci 2021; 43:715-728. [PMID: 34714546 DOI: 10.1111/ics.12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
Fatty alcohol-polysorbate 60-water ternary systems were used as models to represent the continuous phases of the respective semisolid oil-in-water emulsions for topical delivery of cosmetic and medicinal agents. The influence of batch variation of polysorbate 60 and fatty alcohol on structure and consistency of these systems was investigated using microscopy, rheology, differential scanning calorimetry and X-ray scattering techniques. The polysorbate 60 : cetostearyl alcohol mixed emulsifying wax showed swelling in water, that is, the lamellar repeat distance continually augmented from 93 to 125 Å with water percentage 20-90%. Cetostearyl alcohol ternary systems were thicker than cetyl alcohol ones independently of polysorbate 60 batches used. All the ternary systems showed an initial increase in consistency over the first 2 weeks of storage, which was followed by slight changes in consistency (cetostearyl alcohol systems) due to the re-allocation of polysorbate 60 molecules in the gel network or significant breakdown of structure (cetyl alcohol systems) due to the transformation of swollen α-lamellar gel phase into β, γ crystals on 25°C storage. With all fatty alcohols, the consistency of polysorbate 60 ternary system was directly dependent upon interlamellar water thickness as governed by the length and distribution of polyoxyethylene groups within polysorbate 60 molecules. In relation with the composition of polysorbate 60 batches used, the consistency of ternary systems was higher when prepared with the polysorbate 60 batch containing a greater amount of sorbitan polyoxyethylene monoesters. It was proposed that the swollen α-crystalline gel phase could be better formed by sorbitan polyoxyethylene monoesters rather than sorbitan polyoxyethylene diesters.
Collapse
Affiliation(s)
- Hoang Vu Dang
- Department of Analytical Chemistry and Toxicology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Hung Tran Huu
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam
| | - Hue Minh Thi Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
14
|
Chen CY, Tsai TY, Chen BH. Effects of Black Garlic Extract and Nanoemulsion on the Deoxy Corticosterone Acetate-Salt Induced Hypertension and Its Associated Mild Cognitive Impairment in Rats. Antioxidants (Basel) 2021; 10:1611. [PMID: 34679745 PMCID: PMC8533483 DOI: 10.3390/antiox10101611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Organosulfur compounds, phenolic acids and flavonoids in raw and black garlic were determined, and followed by preparation of black garlic nanoemulsion for studying their effects on deoxycorticosterone acetate-salt-induced hypertension and associated mild cognitive impairment in rats. Three organosulfur compounds, including diallyl sulfide (87.8 μg/g), diallyl disulfide (203.9 μg/g) and diallyl trisulfide (282.6 μg/g) were detected in black garlic by GC-MS, while gallic acid (19.19 μg/g), p-coumaric acid (27.03 μg/g) and quercetin (22.77 μg/g) were detected by UPLC-MS/MS. High doses of both black garlic extract and nanoemulsion prepared using Tween-80, glycerol, grapeseed oil and water could decrease systolic blood pressure through the elevation of bradykinin and nitric oxide levels as well as diminish aldosterone and angiotensin II levels in rats. In Morris water maze test, they could significantly decrease escape latency and swimming distance and increase the time spent in the target quadrant, accompanied by a decline of acetylcholinesterase activity and malondialdehyde level in the hippocampus as well as a rise in glutathione level and activities of superoxide dismutase, catalase and glutathione peroxidase. In addition, the levels of tumor necrosis factor, interleukin-6 and interleukin-1β were reduced. Effects of lowering blood pressure and improving learning/memory ability in rats followed the order: lisinopril > black garlic nanoemulsion > black garlic extract.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (T.-Y.T.)
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (T.-Y.T.)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (T.-Y.T.)
- Department of Nutrition, China Medical University, Taichung 40401, Taiwan
| |
Collapse
|
15
|
Alsabeelah N, Arshad MF, Hashmi S, Khan RA, Khan S. Nanocosmeceuticals for the management of ageing: Rigors and Vigors. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Romes NB, Abdul Wahab R, Abdul Hamid M. The role of bioactive phytoconstituents-loaded nanoemulsions for skin improvement: a review. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1915869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Nissha Bharrathi Romes
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Mariani Abdul Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| |
Collapse
|
17
|
Jiménez-Rodríguez A, Heredia-Olea E, Barba-Dávila BA, Gutiérrez-Uribe JA, Antunes-Ricardo M. Polysaccharides from Agave salmiana bagasse improves the storage stability and the cellular uptake of indomethacin nanoemulsions. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Kumar A, Behl T, Chadha S. A rationalized and innovative perspective of nanotechnology and nanobiotechnology in chronic wound management. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Syed Azhar SNA, Ashari SE, Ahmad S, Salim N. In vitro kinetic release study, antimicrobial activity and in vivo toxicity profile of a kojic acid ester-based nanoemulsion for topical application. RSC Adv 2020; 10:43894-43903. [PMID: 35519703 PMCID: PMC9058481 DOI: 10.1039/d0ra04807k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Nanoemulsions have emerged as novel vehicles for drug delivery that allow sustained or controlled release for topical application. In this study, kojic acid ester-based nanoemulsion (KAE-NA) was analyzed for in vitro permeation evaluation, kinetic release study, in vitro antimicrobial activity and in vivo toxicity profile on embryonic zebrafish (Danio rerio). Based on KAE-NA in vitro permeation evaluation, the percentage of permeation was significantly improved from 4.94% at 1 h to 59.64% at 8 h of application. The permeation rate of KAE-NA at 8 h was 4659.50 μg cm-2 h-1 (initial concentration, C 0 = 2000 μg mL-1) with a permeability coefficient (K p) value of 0.48 cm h-1. The kinetic release analysis showed the Korsmeyer-Peppas model was the best fitted kinetic model with high linearity [R 2 = 0.9964]. Antimicrobial activity of KAE-NA was studied against the skin pathogen bacteria Staphylococcus aureus ATCC 43300. The results indicated that the inhibition zone size of the KAE-NA (8.00 ± 0.0 mm) was slightly bigger than that of its active ingredient, kojic acid ester (6.5 ± 0.0 mm). The toxicity profile of KAE-NA on embryonic zebrafish revealed less toxicity with LC50 (50% lethal concentration) more than 500 μg mL-1. The survival rate of the embryonic zebrafish was more than 80% when treated at doses ranging from 7.81-250 μg mL-1 and showed normal development throughout the experiment without any observed deformation. Hence, KAE-NA proved to be less toxic on the embryonic zebrafish.
Collapse
Affiliation(s)
| | - Siti Efliza Ashari
- Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Norazlinaliza Salim
- Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| |
Collapse
|
20
|
Simões A, Miranda M, Cardoso C, Veiga F, Vitorino C. Rheology by Design: A Regulatory Tutorial for Analytical Method Validation. Pharmaceutics 2020; 12:pharmaceutics12090820. [PMID: 32872221 PMCID: PMC7558587 DOI: 10.3390/pharmaceutics12090820] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023] Open
Abstract
The increasing demand for product and process understanding as an active pursuit in the quality guideline Q8 and, more recently, on the draft guideline on quality and equivalence of topical products, has unveiled the tremendous potential of rheology methods as a tool for microstructure characterization of topical semisolid dosage forms. Accordingly, procedure standardization is a dire need. This work aimed at developing and validating a methodology tutorial for rheology analysis. A 1% hydrocortisone cream was used as model cream formulation. Through a risk assessment analysis, the impact of selected critical method variables (geometry, temperature and application mode) was estimated in a broad range of rheological critical analytical attributes-zero-shear viscosity, upper-shear thinning viscosity, lower-shear thinning viscosity, infinite-shear viscosity, rotational yield point, thixotropic relative area, linear viscoelastic region, oscillatory yield point, storage modulus, loss modulus, and loss tangent. The proposed validation of the approach included the rheometer qualification, followed by the validation of numerous operational critical parameters regarding a rheology profile acquisition. The thixotropic relative area, oscillatory yield point, flow point and viscosity related endpoints proved to be highly sensitive and discriminatory parameters. This rationale provided a standard framework for the development of a reliable and robust rheology profile acquisition.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.S.); (M.M.); (F.V.)
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV. REQUIMTE) Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Margarida Miranda
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.S.); (M.M.); (F.V.)
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Mortágua, Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal;
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.S.); (M.M.); (F.V.)
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV. REQUIMTE) Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.S.); (M.M.); (F.V.)
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
- Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-488-400
| |
Collapse
|
21
|
Santos RA, Rae M, Dartora VFMC, Matos JKR, Camarini R, Lopes LB. Bioresponsive nanostructured systems for sustained naltrexone release and treatment of alcohol use disorder: Development and biological evaluation. Int J Pharm 2020; 585:119474. [PMID: 32473371 DOI: 10.1016/j.ijpharm.2020.119474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/16/2023]
Abstract
In this study, microemulsions capable of transforming into nanostructured hexagonal phase gels in vivo upon uptake of biological fluids for naltrexone prolonged release were investigated as a strategy for management of alcohol use disorder (AUD). Microemulsions were prepared using monoolein, tricaprylin, water and propylene glycol; after preliminary characterization, one formulation was selected, which contained 55% of monoolein-tricaprylin (M-55). This microemulsion displayed size below 200 nm and Newtonian rheological behavior. Liquid crystalline gels formed in vitro upon 8 h of contact with water following a second order kinetics. After 120 h, <50% of naltrexone was released in vitro independently on drug loading (5 or 10%). In vivo, gels formed within 24 h of M-55 subcutaneous administration, and persisted locally for over 30 days providing slow release of the fluorescent marker Alexa fluor compared to a solution. Using the conditioned place preference paradigm, a test used to measure drug's rewarding effects, a single dose of M-55 containing 5% naltrexone reduced the time spent in the ethanol-paired compartment by 1.8-fold compared to saline; this effect was similar to that obtained with daily naltrexone injections, demonstrating the formulation efficacy and its ability to reduce dosing frequency. A more robust effect was observed following administration of M-55 containing 10% of naltrexone, which was compatible with aversion. These results support M-55 as a platform for sustained release of drugs that can be further explored for management of AUD to reduce dosing frequency and aid treatment adherence.
Collapse
Affiliation(s)
- Rogério A Santos
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Mariana Rae
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Vanessa F M C Dartora
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Jenyffer K R Matos
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil.
| |
Collapse
|
22
|
Vergallo C. Nutraceutical Vegetable Oil Nanoformulations for Prevention and Management of Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1232. [PMID: 32599957 PMCID: PMC7353093 DOI: 10.3390/nano10061232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The scientific community is becoming increasingly interested in identifying, characterizing, and delivering nutraceuticals, which constitutes a multi-billion-dollar business. These bioactive agents are claimed to exhibit several health benefits, including the prevention and treatment of diseases such as arthritis, cancer, osteoporosis, cataracts, Alzheimer's, and Huntington's diseases, heart, brain and metabolic disorders, etc. Nutraceuticals are typically consumed as part of a regular human diet and are usually present within foods, comprising vegetable oil, although at low levels and variable composition. Thus, it is difficult to control the type, amount and frequency of their ingestion by individuals. Nanoformulations about vegetable oil-based bioactive compounds with nutraceutical properties are useful for overcoming these issues, while improving the uptake, absorption, and bioavailability in the body. The purpose of this current study is to review papers on such nanoformulations, particularly those relevant for health benefits and the prevention and management of diseases, as well as bioactives extracted from vegetable oils enhancing the drug effectiveness, retrieved through bibliographic databases by setting a timespan from January 2000 to April 2020 (about 1758 records).
Collapse
Affiliation(s)
- Cristian Vergallo
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, 73010 Lecce, Italy
| |
Collapse
|
23
|
Elshamy AI, Ammar NM, Hassan HA, Al-Rowaily SL, Ragab TI, El Gendy AENG, Abd-ElGawad AM. Essential oil and its nanoemulsion of Araucaria heterophylla resin: Chemical characterization, anti-inflammatory, and antipyretic activities. INDUSTRIAL CROPS AND PRODUCTS 2020; 148:112272. [DOI: 10.1016/j.indcrop.2020.112272] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
24
|
Kumar A, Behl T, Chadha S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol 2020; 149:1262-1274. [PMID: 32044364 DOI: 10.1016/j.ijbiomac.2020.02.048] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/18/2022]
Abstract
Limitation of antibacterial activity, low water vapour, oxygen permeation and mechanical strength are the disadvantages of existing wound dressings. The present research is focused on synthesis of Polyvinyl alcohol (PVA) and Chitosan (CH) hydrogels using freeze thaw process. The formation of AgNPs and PVA/CH hydrogels was confirmed by UV spectroscopy, particle size, morphology, spectral analysis, swelling studies, and in-vitro drug release studies. The particle size of AgNPs was found to be in the range of 20-35 nm with an intense peak at 430 nm. The results of spectral peaks showed that PVA/CH blend maintains characteristics peak of -OH and -NH in the spectrum with higher intensity. The morphology and tensile strength of hydrogels showed a wrinkled surface with an increase in force and extension values from 0.49 to 11.15 N and 45 to 129 mm, respectively. A controlled release of 84.3% (28 h) of Ocimum sanctum extract was noticed from hydrogel discs which scavenges 69.2% of free radicals as compared to raw extract 82.5% (16 h) which scavenges 63.1% of free radicals, respectively. The results of zone of inhibition (ZOI) against gram +ve and gram -ve bacteria was found to be 9.3 mm and 6.3 mm, respectively.
Collapse
Affiliation(s)
- Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
25
|
|
26
|
Puglia C, Santonocito D. Cosmeceuticals: Nanotechnology-Based Strategies for the Delivery of Phytocompounds. Curr Pharm Des 2019; 25:2314-2322. [DOI: 10.2174/1381612825666190709211101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Cosmeceuticals are innovative emerging health and beauty aid products that combine the benefits of
cosmetic active ingredients and often innovative technological solutions of formulation and delivery. For decades,
phytocompounds have been used in cosmetics as sunscreen, moisturizing, antiaging, and skin-based therapy.
When compared to synthetic cosmetic ingredients, phytocompounds are generally milder, have a more favourable
toxicity profile, and are biodegradable. The major concerns in the usage of phytocompounds are their low solubility,
low penetration and physico-chemical instability when applied on the skin. To overcome these issues, different
nanotechnology-based systems have been proposed and some of them are already on the market. Nanotechnologies
can improve the solubility of poorly water-soluble compounds, facilitate skin permeation and increase
their stability against light and temperature. Liposomes, solid lipid nanoparticles, transfersomes, ethosomes,
nanostructured lipid carriers, and cyclodextrins are examples of nanotechnology-based systems currently in use to
improve the performances of phytocompounds in skin care. This review focuses on cosmeceuticals that explore
nanotechnology-based systems for the delivery of phytocompounds and emphasizes how these approaches can
improve product performances with respect to conventional cosmetic formulations.
Collapse
Affiliation(s)
- Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy, Viale Andrea Doria n°6, 95125, Catania, Italy
| | - Debora Santonocito
- Department of Drug Sciences, University of Catania, Catania, Italy, Viale Andrea Doria n°6, 95125, Catania, Italy
| |
Collapse
|
27
|
Ishak WMW, Katas H, Yuen NP, Abdullah MA, Zulfakar MH. Topical application of omega-3-, omega-6-, and omega-9-rich oil emulsions for cutaneous wound healing in rats. Drug Deliv Transl Res 2019; 9:418-433. [PMID: 29667150 DOI: 10.1007/s13346-018-0522-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p < 0.05) being observed at day 14. EPO induced early deposition of collagen as evaluated by Masson trichrome staining that correlated well with the hydroxyproline content assay, with the highest level at days 3 and 7. Vascular endothelial growth factor (VEGF) showed greater amount of new microvasculature formed in the EPO-treated group, while moderate improvement occurs in the LO and OO groups. EPO increased both the expression of proinflammatory cytokines and growth factors in the early stage of healing and declined at the later stage of healing. LO modulates the proinflammatory cytokines and chemokine but did not affect the growth factors. In contrast, OO induced the expression of growth factors rather than proinflammatory cytokines. These data suggest that LO, EPO, and OO emulsions promote wound healing but they accomplish this by different mechanisms.
Collapse
Affiliation(s)
- Wan Maznah Wan Ishak
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Ng Pei Yuen
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Hanif Zulfakar
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
28
|
Ugur Kaplan AB, Cetin M, Orgul D, Taghizadehghalehjoughi A, Hacımuftuoglu A, Hekimoglu S. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Tou KAS, Rehman K, Ishak WMW, Zulfakar MH. Influence of omega fatty acids on skin permeation of a coenzyme Q10 nanoemulsion cream formulation: characterization, in silico and ex vivo determination. Drug Dev Ind Pharm 2019; 45:1451-1458. [DOI: 10.1080/03639045.2019.1628042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kylie Ang She Tou
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khurram Rehman
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Wan Maznah Wan Ishak
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Hanif Zulfakar
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Simões A, Veiga F, Vitorino C. Developing Cream Formulations: Renewed Interest in an Old Problem. J Pharm Sci 2019; 108:3240-3251. [PMID: 31216450 DOI: 10.1016/j.xphs.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
This work aimed at establishing a framework to screen and understand the product variability deeming from factors that affect the quality features of cream formulations. As per Quality by Design - based approach, cream quality target profile and critical quality attributes were identified, and a risk assessment analysis was conducted to qualitatively detect the most critical variables for cream design and development. A Plackett-Burman design was used to screen out unimportant factors, avoiding collecting large amounts of data. Accordingly, 2 designs of experiments (DoE-1 and DoE-2) were performed, and the effects of independent variables on the cream formulations responses were estimated. At different factor combinations, significant variability was observed in droplet size, consistency, hardness, compressibility, and adhesiveness with values ranging from 2.6 ± 0.9 to 10 ± 6 μm, 7.93 ± 0.05 to 13.53 ± 0.14 mm, 27.6 ± 0.3 to 58.4 ± 1.1 g, 38 ± 6 to 447 ± 37 g.s, and 25.7 ± 2.1 to 286 ± 33 g.s, respectively. The statistical analysis allowed determining the most influent factors. This study revealed the potential of Quality by Design methodology in understanding product variability, recognizing the most critical independent variables for the final product quality. This systematic approach in the pharmaceutical field will yield more robust products and processes, provisioning time and cost effective developments.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; LAQV. REQUIMTE, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; LAQV. REQUIMTE, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal; Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
31
|
Wang X, Zhang Y, Huang J, Xia M, Liu L, Tian C, Hu R, Gui S, Chu X. Self-assembled hexagonal liquid crystalline gels as novel ocular formulation with enhanced topical delivery of pilocarpine nitrate. Int J Pharm 2019; 562:31-41. [PMID: 30878587 DOI: 10.1016/j.ijpharm.2019.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 01/04/2023]
Abstract
The aim of this paper was to develop hexagonal liquid crystalline (HII) gels that can be used as a novel ocular delivery system for pilocarpine nitrate (PN). HII gels were prepared by a vortex method using phytantriol/triglyceride/water (71.15: 3.85: 26, w/w) ternary system. The gels were characterized by crossed polarized light microscopy, small-angle X-ray scattering, differential scanning calorimetry and rheology. And, in vitro drug release behavior and ex vivo corneal permeation were investigated. Finally, preocular residence time evaluation, eye irritation test, histological examination and miotic tests were studied in vivo and compared with carbopol gel. Based on various characterization techniques, the inner structure of the gels were HII mesophase and exhibited a pseudoplastic fluid behaviour. In vitro release results revealed that PN could be released continuously from HII gel over a period of 24 h. The ex vivo apparent permeability coefficient of HII gel was 3.15-fold (P < 0.01) higher than that of the Carbopol gel. Compared with Carbopol gel, HII gel displayed longer residence time on the eyeballs surface using fluorescent labeling technology. Furthermore, the HII gel caused no ocular irritation was estimated by corneal hydration levels, Draize test and histological inspection. Additionally, in vivo miotic study showed that HII gel had a remarkably long-lasting decrease in the pupil diameter of rabbits. In conclusion, HII gels would be a promising sustained-release formulation for ocular drug delivery.
Collapse
Affiliation(s)
- Xingqi Wang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Yong Zhang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Jie Huang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Mengqiu Xia
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Liu Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Chunling Tian
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Rongfeng Hu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Xiaoqin Chu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China.
| |
Collapse
|
32
|
Chaulmoogra oil based methotrexate loaded topical nanoemulsion for the treatment of psoriasis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Junqueira Garcia MT, Pedralino Gonçalves T, São Félix Martins É, Silva Martins T, Carvalho de Abreu Fantini M, Regazi Minarini PR, Costa Fernandez S, Cassone Salata G, Biagini Lopes L. Improvement of cutaneous delivery of methylene blue by liquid crystals. Int J Pharm 2018; 548:454-465. [DOI: 10.1016/j.ijpharm.2018.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
|
34
|
Mossa ATH, Afia SI, Mohafrash SMM, Abou-Awad BA. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10526-10537. [PMID: 29181754 DOI: 10.1007/s11356-017-0752-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Green and nanoacaricides including essential oil (EO) nanoemulsions are important compounds to provide new, active, safe acaricides and lead to improvement of avoiding the risk of synthetic acaricides. This study was carried out for the first time on eriophyid mites to develop nanoemulsion of garlic essential oil by ultrasonic emulsification and evaluate its acaricidal activity against the two eriophyid olive mites Aceria oleae Nalepa and Tegolophus hassani (Keifer). Acute toxicity of nanoemulsion was also studied on male rats. Garlic EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and the major compounds were diallyl sulfide (8.6%), diallyl disulfide (28.36%), dimethyl tetrasulfide (15.26%), trisulfide,di-2-propenyl (10.41%), and tetrasulfide,di-2-propenyl (9.67%). Garlic oil nanoemulsion with droplet size 93.4 nm was formulated by ultrasonic emulsification for 35 min. Emulsification time and oil and surfactant ratio correlated to the emulsion droplet size and stability. The formulated nanoemulsion showed high acaricidal activity against injurious eriophyid mites with LC50 298.225 and 309.634 μg/ml, respectively. No signs of nanoemulsion toxicity were noted in treating rats; thus, it may be considered non-toxic to mammals. Stability of garlic oil nanoemulsion, high acaricidal activity, and the absence of organic toxic solvents make the formulation that may be a possible acaricidal product. Results suggest the possibility of developing suitable natural nanoacaricide from garlic oil.
Collapse
Affiliation(s)
- Abdel-Tawab H Mossa
- Pesticide Chemistry Department, National Research Centre (NRC), 33 El Bohouth Street (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Sahar I Afia
- Plant Protection Department, National Research Centre (NRC), 33 El Bohouth Street (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Samia M M Mohafrash
- Pesticide Chemistry Department, National Research Centre (NRC), 33 El Bohouth Street (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Badawi A Abou-Awad
- Plant Protection Department, National Research Centre (NRC), 33 El Bohouth Street (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
35
|
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 2017; 270:203-225. [PMID: 29199062 DOI: 10.1016/j.jconrel.2017.11.049] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
The use of nanoemulsion in augmenting dermal and transdermal effectiveness of drugs has now well established. The development of nanoemulsion based semisolid dosage forms is an active area of present research. However, thickening or liquid-to-semisolid conversion of the nanoemulsions provides opportunities to the formulation scientist to explore novel means of solving instability issues during transformation. Extending knowledge about the explicit role of nature/magnitude of zeta potential, types of emulsifiers and selection of appropriate semisolid bases could place these versatile carriers from laboratory to industrial scale. This article reviews the progressive advancement in the delivery of medicament via nanoemulsion with special reference to the dermal and transdermal administration. It is attempted to explore the most suitable semi solid dosage form for the particular type of nanoemulsion (o/w, w/o and others) and effect of particle size and zeta potential on the delivery of drugs through dermal or transdermal route. Finally, this review also highlights the basic principles and fundamental considerations of nanoemulsion manufacture, application of nanoemulsion based semisolid dosage forms in the dermal/transdermal administration and basic considerations during the nanoemulsion absorption into and through skin.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India
| | - Nidhi Mishra
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India
| | - Kuldeep Singh Yadav
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India
| | - Narayan Prasad Yadav
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India.
| |
Collapse
|
36
|
Choupanian Choupanian MM, Omar Omar DD, Basri Basri MM, Asib Asib NN. Preparation and characterization of neem oil nanoemulsion formulations against Sitophilus oryzae and Tribolium castaneum adults. JOURNAL OF PESTICIDE SCIENCE 2017; 42:158-165. [PMID: 30363095 PMCID: PMC6140637 DOI: 10.1584/jpestics.d17-032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/08/2017] [Indexed: 06/08/2023]
Abstract
This study aimed to improve the efficacy of azadirachtin (Azadirachta indica. A. Juss) against two serious pest species of stored products, Sitophilus oryzae (L.) and Tribolium castaneum (Herbst), through nano-emulsion formulations. Pseudoternary phase diagrams were constructed consisting of an emulsion system of an active ingredient (neem oil), surfactant (polysorbate or alkylpolyglucoside), and water. Isotropic regions were formed in the pseudoternary phase diagrams, and four formulations were selected from the isotropic regions and characterized according to particle size, particle aging, zeta potential, stability and thermostability, surface tension, viscosity, and pH. The selected formulations showed particle sizes of 208-507 nm in diameter. The result of contact toxicity demonstrated excellent mortality of S. oryzae and T. castaneum adults, with a mortality range of 85-100% and 74-100%, respectively, at a 1% azadirachtin concentration after only 2 days of exposure. Compared to non-formulated neem oil, the nano-emulsion formulations significantly increased the mortality of the tested species.
Collapse
|
37
|
Ghaderi L, Moghimi R, Aliahmadi A, McClements DJ, Rafati H. Development of antimicrobial nanoemulsion-based delivery systems against selected pathogenic bacteria using a thymol-rich Thymus daenensis essential oil. J Appl Microbiol 2017; 123:832-840. [PMID: 28714250 DOI: 10.1111/jam.13541] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/28/2022]
Abstract
AIMS Thymol-rich medicinal plants have been used in traditional medicine to relieve infectious diseases. However, the application of essential oils as medicine is limited by its low water solubility and high vapour pressure. The objective of this study was to produce stable nanoemulsions of Thymus daenensis oil in water by preventing Ostwald ripening and phase separation. METHODS AND RESULTS The antibacterial activity of bulk and emulsified essential oil against selected pathogenic bacteria including Gram-negative (Haemophilus influenzae, Pseudomonas aeruginosa) and Gram-positive (Streptococcus pneumoniae) were investigated in the liquid and vapour phase. The optimum formulation (L2) contained 2% Tween 80 (surfactant) and 0·1% lecithin (cosurfactant) had a mean droplet diameter of 131 nm. In the liquid phase, the optimized nanoemulsion exhibited good antibacterial activity against S. pneumonia with MIC value of 0·0039 mg mL-1 . In the vapour phase, the MIC values against S. pneumonia were similar (<7·35 μL L-1 ) for both bulk and emulsified essential oil. However, there was no antibacterial activity in the vapour phase against H. influenzae and P. aeruginosa. Analysis of thymol concentration in the head space indicated that the nanoemulsion retarded the release of thymol into the vapour phase. CONCLUSIONS These findings highlight the potential applications of nanoemulsions containing essential oils as antibacterial products. SIGNIFICANCE AND IMPACT OF THE STUDY The results of the current study highlight the advantages of nanoemulsification for improvement of the physicochemical properties and the antibacterial activity of T. daenensis EOs in the liquid and vapour phase for therapeutic purposes.
Collapse
Affiliation(s)
- L Ghaderi
- Department of Phytochemistry & Chemical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - R Moghimi
- Department of Phytochemistry & Chemical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - A Aliahmadi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - D J McClements
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - H Rafati
- Department of Phytochemistry & Chemical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
38
|
Carvalho VF, de Lemos DP, Vieira CS, Migotto A, Lopes LB. Potential of Non-aqueous Microemulsions to Improve the Delivery of Lipophilic Drugs to the Skin. AAPS PharmSciTech 2017; 18:1739-1749. [PMID: 27757922 DOI: 10.1208/s12249-016-0643-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, non-aqueous microemulsions were developed because of the challenges associated with finding pharmaceutically acceptable solvents for topical delivery of drugs sparingly soluble in water. The formulation irritation potential and ability to modulate the penetration of lipophilic compounds (progesterone, α-tocopherol, and lycopene) of interest for topical treatment/prevention of skin disorders were evaluated and compared to solutions and aqueous microemulsions of similar composition. The microemulsions (ME) were developed with BRIJ, vitamin E-TPGS, and ethanol as surfactant-co-surfactant blend and tributyrin, isopropyl myristate, and oleic acid as oil phase. As polar phase, propylene glycol (MEPG) or water (MEW) was used (26% w/w). The microemulsions were isotropic and based on viscosity and conductivity assessment, bicontinuous. Compared to drug solutions in lipophilic vehicles, MEPG improved drug delivery into viable skin layers by 2.5-38-fold; the magnitude of penetration enhancement mediated by MEPG into viable skin increased with drug lipophilicity, even though the absolute amount of drug delivered decreased. Delivery of progesterone and tocopherol, but not lycopene (the most lipophilic compound), increased up to 2.5-fold with MEW, and higher amounts of these two drugs were released from MEW (2-2.5-fold). Both microemulsions were considered safe for topical application, but MEPG-mediated decrease in the viability of reconstructed epidermis was more pronounced, suggesting its higher potential for irritation. We conclude that MEPG is a safe and suitable nanocarrier to deliver a variety of lipophilic drugs into viable skin layers, but the use of MEW might be more advantageous for drugs in the lower range of lipophilicity.
Collapse
|
39
|
Samson S, Basri M, Fard Masoumi HR, Abdul Malek E, Abedi Karjiban R. An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide. PLoS One 2016; 11:e0157737. [PMID: 27383135 PMCID: PMC4934903 DOI: 10.1371/journal.pone.0157737] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/04/2016] [Indexed: 11/18/2022] Open
Abstract
A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.
Collapse
Affiliation(s)
- Shazwani Samson
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: (SS); (MB)
| | - Mahiran Basri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: (SS); (MB)
| | - Hamid Reza Fard Masoumi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Roghayeh Abedi Karjiban
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
40
|
Jaiswal M, Kumar A, Sharma S. Nanoemulsions loaded Carbopol® 934 based gel for intranasal delivery of neuroprotective Centella asiatica extract: in–vitro and ex–vivo permeation study. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0228-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Samson S, Basri M, Fard Masoumi HR, Abedi Karjiban R, Abdul Malek E. Design and development of a nanoemulsion system containing copper peptide by D-optimal mixture design and evaluation of its physicochemical properties. RSC Adv 2016. [DOI: 10.1039/c5ra24379c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The particle size of Virgin coconut oil nanoemulsions was optimized using D-optimal mixture design and the optimum formulation was physicochemically characterized.
Collapse
Affiliation(s)
- Shazwani Samson
- Department of Chemistry
- Faculty of Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Mahiran Basri
- Department of Chemistry
- Faculty of Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Hamid Reza Fard Masoumi
- Department of Chemistry
- Faculty of Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Roghayeh Abedi Karjiban
- Department of Chemistry
- Faculty of Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry
- Faculty of Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| |
Collapse
|
42
|
Che Sulaiman IS, Basri M, Fard Masoumi HR, Ashari SE, Ismail M. Design and development of a nanoemulsion system containing extract of Clinacanthus nutans (L.) leaves for transdermal delivery system by D-optimal mixture design and evaluation of its physicochemical properties. RSC Adv 2016. [DOI: 10.1039/c6ra12930g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
C. nutansis a well-known medicinal plant in South-East Asia that has attracted attention for its therapeutic characteristics. In this work, nanoemulsion has been chosen to be a carrier in encapsulation ofC. nutansextract for its potential in nanotechnology application.
Collapse
Affiliation(s)
- Intan Soraya Che Sulaiman
- Nanodelivery Group
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
| | - Mahiran Basri
- Nanodelivery Group
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
| | - Hamid Reza Fard Masoumi
- Nanodelivery Group
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
| | - Siti Efliza Ashari
- Nanodelivery Group
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
| | - Maznah Ismail
- Laboratory of Molecular Biomedicine
- Institute of Bioscience
- Universiti Putra Malaysia
- 43400 Serdang
- Malaysia
| |
Collapse
|
43
|
Zainol NA, Ming TS, Darwis Y. Development and Characterization of Cinnamon Leaf Oil Nanocream for Topical Application. Indian J Pharm Sci 2015; 77:422-33. [PMID: 26664058 PMCID: PMC4649780 DOI: 10.4103/0250-474x.164785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cinnamon leaf oil contains a high percentage of eugenol and has antimicrobial, antioxidant and antiinflammatory properties. However, the undiluted oil can cause irritation to the skin. Therefore, the aims of this study were to develop and evaluate cinnamon leaf oil nanocream using palm oil. Nanocream base was prepared using different ratios of oil, surfactants and water. The surfactant used were mixture of Tween 80:Carbitol or Tween 80:Span 65 at different hydrophile-lipophile balance values. The pseudoternary phase diagrams were constructed to identify the nanocream base areas and the results showed that the nanocream bases using Span 65 as co-surfactant produced bigger cream area. Fifteen formulations using mixtures of Tween 80:Span 65 were further evaluated for accelerated stability test, droplet size, zeta potential, rheological properties and apparent viscosity. The nanocream base which had an average droplet size of 219 nm and had plastic flow with thixotropic behavior was selected for incorporation of 2% cinnamon leaf oil. The nanocream containing cinnamon leaf oil had the average size of 286 nm and good rheological characteristics. The in vitro release study demonstrated that eugenol as the main constituent of cinnamon leaf oil was released for about 81% in 10 h. The short-term stability study conducted for 6 months showed that the cinnamon leaf oil nanocream was stable at a temperature of 25° and thus, cinnamon leaf oil nanocream is a promising natural based preparation to be used for topical application.
Collapse
Affiliation(s)
- N A Zainol
- Discipline of Pharmaceutical Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - T S Ming
- Discipline of Pharmaceutical Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Y Darwis
- Discipline of Pharmaceutical Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
44
|
Kumar A, Jaiswal M. Design andin vitroinvestigation of nanocomposite hydrogel basedin situspray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. J Appl Polym Sci 2015. [DOI: 10.1002/app.43260] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Arun Kumar
- Department of Pharmacy; Jaypee University of Information Technology (JUIT); Waknaghat Solan, Himachal Pradesh 173234 India
| | - Maneesh Jaiswal
- Department of Pharmacy; Jaypee University of Information Technology (JUIT); Waknaghat Solan, Himachal Pradesh 173234 India
| |
Collapse
|
45
|
Zorzi GK, Carvalho ELS, von Poser GL, Teixeira HF. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.07.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Rodrigues EDC, Ferreira AM, Vilhena JC, Almeida FB, Cruz RA, Florentino AC, Souto RN, Carvalho JC, Fernandes CP. Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Joos A, Weiss J, McClements DJ. Fabrication of Lipophilic Nanoparticles by Spontaneous Emulsification: Stabilization by Cosurfactants. FOOD BIOPHYS 2014. [DOI: 10.1007/s11483-014-9364-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Fernandes CP, de Almeida FB, Silveira AN, Gonzalez MS, Mello CB, Feder D, Apolinário R, Santos MG, Carvalho JCT, Tietbohl LAC, Rocha L, Falcão DQ. Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J Nanobiotechnology 2014; 12:22. [PMID: 24886215 PMCID: PMC4032567 DOI: 10.1186/1477-3155-12-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plants have been recognized as a good source of insecticidal agents, since they are able to produce their own defensives to insect attack. Moreover, there is a growing concern worldwide to develop pesticides with low impact to environment and non-target organisms. Hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea and its triterpenes were considered active against a cotton pest (Dysdercus peruvianus). Several natural products with insecticidal activity have poor water solubility, including triterpenes, and nanotechnology has emerged as a good alternative to solve this main problem. On this context, the aim of the present study was to develop an insecticidal nanoemulsion containing apolar fraction from fruits of Manilkara subsericea. RESULTS It was obtained a formulation constituted by 5% of oil (octyldodecyl myristate), 5% of surfactants (sorbitan monooleate/polysorbate 80), 5% of apolar fraction from M. subsericea and 85% of water. Analysis of mean droplet diameter (155.2 ± 3.8 nm) confirmed this formulation as a nanoemulsion. It was able to induce mortality in D. peruvianus. It was observed no effect against acetylcholinesterase or mortality in mice induced by the formulation, suggesting the safety of this nanoemulsion for non-target organisms. CONCLUSIONS The present study suggests that the obtained O/A nanoemulsion may be useful to enhance water solubility of poor water soluble natural products with insecticidal activity, including the hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea.
Collapse
Affiliation(s)
- Caio Pinho Fernandes
- Programa de Pós, Graduação em Biotecnologia Vegetal, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro - UFRJ, Bloco K, 2° andar - sala 032, Av, Brigadeiro Trompowski s/n, CEP: 21941-590 Ilha do Fundão, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pepe D, McCall M, Zheng H, Lopes LB. Protein transduction domain-containing microemulsions as cutaneous delivery systems for an anticancer agent. J Pharm Sci 2013; 102:1476-87. [PMID: 23436680 DOI: 10.1002/jps.23482] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/07/2022]
Abstract
In this study, we developed cationic microemulsions containing a protein transduction domain (penetratin) for optimizing paclitaxel localization within the skin. Microemulsions were prepared by mixing a surfactant blend (BRIJ:ethanol:propylene glycol 2:1:1, w/w/w) with monocaprylin (oil phase) at 1.3:1 ratio, and adding water at 30% (ME-30), 43% (ME-43), and 50% (ME-50). Electrical conductivity and viscosity measurements indicated that ME-30 is most likely a bicontinuous system, whereas ME-43 and ME-50 are water continuous. Their irritation potential, studied in bioengineered skin equivalents, decreased as aqueous content increased. Because ME-50 was not stable in the presence of paclitaxel (0.5%), ME-43 was selected for penetratin incorporation (0.4%). The microemulsion containing penetratin (ME-P) displayed zeta potential of +5.2 mV, and promoted a 1.8-fold increase in paclitaxel cutaneous (but not transdermal) delivery compared with the plain ME-43, whereas the enhancement promoted by another cationic microemulsion containing phytosphingosine was 1.3-fold. Compared with myvacet oil, ME-P promoted a larger increase on transepidermal water loss (twofold) than the plain or the phytosphingosine-containing microemulsions (1.5-fold), suggesting that penetratin addition increases the barrier-disrupting and penetration-enhancing effects of microemulsions. The ratio Δcutaneous/Δtransdermal delivery promoted by ME-P was the highest among the formulations, suggesting its potential for drug localization within cutaneous tumor lesions.
Collapse
Affiliation(s)
- Dominique Pepe
- Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
50
|
Al Abood RM, Talegaonkar S, Tariq M, Ahmad FJ. Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting. Colloids Surf B Biointerfaces 2013; 101:143-51. [DOI: 10.1016/j.colsurfb.2012.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/08/2012] [Accepted: 06/19/2012] [Indexed: 12/01/2022]
|