1
|
Ibrahim YO, Maalej N, Raja AY, Qurashi A, Rahmani M, Venkatachalam T, Abdullah O, Paterson HJ, Das G, Bradley CC, Nasser RA, Pitsalidis C. Multifunctional Poly(Acrylic Acid)-Coated EuBiGd 2O 3 Nanocomposite as an Effective Contrast Agent in Spectral Photon Counting CT, MRI, and Fluorescence Imaging. Int J Nanomedicine 2025; 20:4759-4775. [PMID: 40255670 PMCID: PMC12007612 DOI: 10.2147/ijn.s506187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/11/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Recently, diagnostic methods based on multimodal and non-invasive imaging, such as MRI and CT scanners, have been developed for accurate cancer diagnosis. A key limitation of these imaging systems is their low contrast. Therefore, developing stable, non-toxic, and efficient multimodal imaging contrast agents is desirable. In this work, we demonstrated the synthesis of a poly(acrylic acid) (PAA) - coated nanoparticles (NPs), PAA@EuBiGd2O3-NPs as an imaging agent for contrast enhancement in spectral photon-counting computed tomography (SPCCT), magnetic resonance imaging (MRI) and fluorescence imaging (FL). Methods We synthesized PAA-coated EuBiGd2O3-NPs using a polyol method by dissolving metal nitrates and PAA in triethylene glycol. NaOH solution was added under constant heating at 180°C. The nanoparticles were precipitated with the addition of ethanol, then washed, dried, calcined at 600°C, and redispersed in water for further studies. The nanoparticles were characterized using TEM, SEM, XRD, XPS, FTIR, and PL spectroscopy. PAA@EuBiGd2O3-NPs were tested in vitro for their cytocompatibility with lung cancer epithelial cells (A549). The nanocomposite image contrast enhancement was evaluated using SPCCT, MRI, and FL imaging. Results The cell viability study showed that PAA@EuBiGd2O3-NPs is safe up to 250 µg/mL, exhibiting IC50 values of 365.8 and 337.8 µg/mL after 24 and 48 hours, respectively. The NPs have strong X-ray attenuation with a slope of ~61 HUmL/mg, as determined from the SPCCT concentration-dependent analysis. The MRI of the NPs reveals a high T1 contrast with a relaxivity of 11.77 mM-1s-1. Fluorescence imaging of cells incubated with PAA@EuBiGd2O₃-NPs shows strong red luminescence. Conclusion The new nanocomposite has proven to be an effective trimodal contrast agent with high attenuation in CT, enhanced T1 signal in MRI, and strong red luminescence in FL imaging with promising diagnostic capabilities.
Collapse
Affiliation(s)
- Yusuf O Ibrahim
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
- Functional Biomaterials Group, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Nabil Maalej
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
- Functional Biomaterials Group, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Aamir Younis Raja
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Ahsanulhaq Qurashi
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mohamed Rahmani
- Department of Biological Sciences, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Department of Biological Sciences, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Osama Abdullah
- Core Technology Platform Operations, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Haidee J Paterson
- Core Technology Platform Operations, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Gobind Das
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Curtis C Bradley
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Rasha A Nasser
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
- Advanced Research and Innovation Center (ARIC) Khalifa University, Abu Dhabi, 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
2
|
Kashizadeh A, Pastras C, Rabiee N, Mohseni-Dargah M, Mukherjee P, Asadnia M. Potential nanotechnology-based diagnostic and therapeutic approaches for Meniere's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102599. [PMID: 36064032 DOI: 10.1016/j.nano.2022.102599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Meniere's disease (MD) is a progressive inner ear disorder involving recurrent and prolonged episodes or attacks of vertigo with associated symptoms, resulting in a significantly reduced quality of life for sufferers. In most cases, MD starts in one ear; however, in one-third of patients, the disorder progresses to the other ear. Unfortunately, the etiology of the disease is unknown, making the development of effective treatments difficult. Nanomaterials, including nanoparticles (NPs) and nanocarriers, offer an array of novel diagnostic and therapeutic applications related to MD. NPs have specific features such as biocompatibility, biochemical stability, targetability, and enhanced visualization using imaging tools. This paper provides a comprehensive and critical review of recent advancements in nanotechnology-based diagnostic and therapeutic approaches for MD. Furthermore, the crucial challenges adversely affecting the use of nanoparticles to treat middle ear disorders are investigated. Finally, this paper provides recommendations and future directions for improving the performances of nanomaterials on theragnostic applications of MD.
Collapse
Affiliation(s)
- Afsaneh Kashizadeh
- School of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Christopher Pastras
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; The Menière's Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Masoud Mohseni-Dargah
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Payal Mukherjee
- RPA Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
3
|
Khan M, Liu H, Sacco P, Marsich E, Li X, Djaker N, Spadavecchia J. DOTAREM (DOTA)-Gold-Nanoparticles: Design, Spectroscopic Evaluation to Build Hybrid Contrast Agents to Applications in Nanomedecine. Int J Nanomedicine 2022; 17:4105-4118. [PMID: 36111314 PMCID: PMC9469803 DOI: 10.2147/ijn.s368458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The realization of MRI contrast agents through chemical protocols of functionalization is a strong domain of research. In this work, we developed and formulated a novel hybrid gold nanoparticle system in which a gold salt (HAuCl4) is combined with dotarem, an MRI contrast agent (DOTA) by chelation (Method IN) and stabilized by a lactose-modified chitosan polymer (CTL; Chitlac) to form DOTA IN-CTL AuNPs. Result and Discussion The authors demonstrate the biological efficiency of these nanoparticles in the case of three cell lines: Mia PaCa-2 (human pancreatic cancer cell line), TIB-75 (murine liver cell line) and KKU-M213 (cholangiocarcinoma cell line). DOTA IN-CTL AuNPs are stable under physiological conditions, are nontoxic, and are very efficient as PTT agents. The highlights, such as high stability and preliminary MRI in vitro and in vivo models, may be suitable for diagnosis and therapy. Conclusion We proved that DOTA IN-CTL AuNPs have several advantages: i) Biological efficacy on three cell lines: MIA PaCa-2 (human pancreatic cancer cell line), TIB-75 (murine liver cell line) and KKU-M213 (cholangiocarcinoma cell line); ii) high stability, and no-toxicity; iii) high efficiency as a PPT agent. The study conducted on MRI in vitro and in vivo models will be suitable for diagnosis and therapy.
Collapse
Affiliation(s)
- Memona Khan
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Hui Liu
- Department of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases& Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Trieste, I-34127, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, I-34129, Italy
| | - Eleonora Marsich
- Department of Life Sciences, University of Trieste, Trieste, I-34127, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, I-34129, Italy
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases& Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Nadia Djaker
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
4
|
Aziz T, Ullah A, Ali A, Shabeer M, Shah MN, Haq F, Iqbal M, Ullah R, Khan FU. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J Appl Polym Sci 2022; 139. [DOI: 10.1002/app.52624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/17/2022] [Indexed: 12/19/2022]
Abstract
AbstractIn recent years, bio‐based polymers have emerged as an alternative to petroleum‐based polymers in various industries. The bio‐based materials are made from raw materials originating from natural sources, such as starch, cellulose, chitin, or bio‐degradable synthetic polymers (i.e., polycaprolactone and polylactic acid). In spite of several desirable properties of biodegradable polymers, for example, fully renewable, non‐toxic. Some properties like melt and impact strength, thermal stability, permeability, and so forth, still do not meet the demands for end‐use applications. One way to improve the properties of biopolymers and greatly enhance their commercial potential is to incorporate nanosized reinforcement in the polymer. The access of nano‐carriers to smart polymeric and bio‐materials are limited by polymerization methods. Bio‐polymers are considered an alternative to petroleum‐based fibers. These are directly produced by organisms. Smart nanoparticles are used in different medicines and their applications are size‐dependent. Among the different techniques used for sensitivity, selectivity, and interactions among the nanoparticles. More so, different approaches were found for polymerization. Methodologies such as the preparation of nano‐gels, bio‐degradable, and bio‐polymers manufacturing in the pharmaceutical field are discussed in detail. Their applications, properties in gene delivery, smart imaging, and multivalency approach are also highlighted.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Engineering Westlake University Hangzhou China
| | - Asmat Ullah
- School of Pharmacy Xi'an Jiaotong University Shaanxi China
| | - Amjad Ali
- Institute of Polymer Material, School of Material Science & Engineering Jiangsu University Zhenjiang China
| | | | - Muhammad Naeem Shah
- College of Electronics and Information Engineering Shenzhen University Shenzhen China
| | - Fazal Haq
- Department of Chemistry Gomal University D I Khan KPK Pakistan
| | - Mudassir Iqbal
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Roh Ullah
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (BIT) Beijing China
| | - Farman Ullah Khan
- Department of Chemistry University of Science & Technology, Bannu KPK Pakistan
| |
Collapse
|
5
|
Fluorescently Labeled Gadolinium Ferrate/Trigadolinium Pentairon(III) Oxide Nanoparticles: Synthesis, Characterization, In Vivo Biodistribution, and Application for Visualization of Myocardial Ischemia-Reperfusion Injury. MATERIALS 2022; 15:ma15113832. [PMID: 35683129 PMCID: PMC9181512 DOI: 10.3390/ma15113832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Various gadolinium compounds have been proposed as contrasting agents for magnetic resonance imaging (MRI). In this study, we suggested a new synthesis method of gadolinium ferrate/trigadolinium pentairon(III) oxide nanoparticles (GF/TPO NPs). The specific surface area of gadolinium ferrate (GdFeO3) and trigadolinium pentairon(III) oxide (Gd3Fe5O12) nanoparticles was equal to 42 and 66 m2/g, respectively. The X-ray diffraction analysis confirmed that the synthesized substances were GdFeO3 and Gd3Fe5O12. The gadolinium content in the samples was close to the theoretically calculated value. The free gadolinium content was negligible. Biodistribution of the GF/TPO NPs was studied in rats by fluorescent imaging and Fe2+/Fe3+ quantification demonstrating predominant accumulation in such organs as lung, kidney, and liver. We showed in the in vivo rat model of myocardial ischemia–reperfusion injury that GF/TPO NPs are able to target the area of myocardial infarction as evidenced by the significantly greater level of fluorescence. In perspective, the use of fluorescently labeled GF/TPO NPs in multimodal imaging may provide basis for high-resolution 3D reconstruction of the infarcted heart, thereby serving as unique theranostic platform.
Collapse
|
6
|
Yan Q, Sun YS, An R, Liu F, Fang Q, Wang Z, Xu T, Chen L, Du J. Application and progress of the detection technologies in hepatocellular carcinoma. Genes Dis 2022. [PMID: 37492708 PMCID: PMC10363596 DOI: 10.1016/j.gendis.2022.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a very high incidence and fatality rate, and in most cases, it is already at an advanced stage when diagnosed. Therefore, early prevention and detection of HCC are two of the most effective strategies. However, the methods recommended in the practice guidelines for the detection of HCC cannot guarantee high sensitivity and specificity except for the liver biopsy, which is known as the "gold standard". In this review, we divided the detection of HCC into pre-treatment diagnosis and post-treatment monitoring, and found that in addition to the traditional imaging detection and liver biopsy, alpha fetoprotein (AFP), lens culinaris-agglutinin-reactive fraction of AFP (AFP-L3), protein induced by vitamin K absence or antagonist-II (PIVKA-II) and other biomarkers are excellent biomarkers for HCC, especially when they are combined together. Most notably, the emerging liquid biopsy shows great promise in detecting HCC. In addition, lactic dehydrogenase (LDH), suppressor of cytokine signaling (SOCS) and other relevant biomarkers may become promising biomarkers for HCC post-treatment monitoring. Through the detailed introduction of the diagnostic technology of HCC, we can have a detailed understanding of its development process and then obtain some enlightenment from the diagnosis, to improve the diagnostic rate of HCC and reduce its mortality.
Collapse
|
7
|
How Could Nanomedicine Improve the Safety of Contrast Agents for MRI during Pregnancy? SCI 2022. [DOI: 10.3390/sci4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pregnancy is a delicate state, during which timely investigation of possible physiological anomalies is essential to reduce the risk of maternal and fetal complications. Medical imaging encompasses different technologies to image the human body for the diagnosis, course of treatment management, and follow-up of diseases. Ultrasound (US) is currently the imaging system of choice for pregnant patients. However, sonographic evaluations can be non-effective or give ambiguous results. Therefore, magnetic resonance imaging (MRI), due to its excellent tissue penetration, the possibility of acquisition of three-dimensional anatomical information, and its high spatial resolution, is considered a valid diagnostical alternative. Nevertheless, currently employed contrast agents to improve the MRI image quality are harmful to the fetus. Because of their ability to cross the placenta, their use on pregnant patients is avoided. This review will firstly recapitulate the most common non-obstetrical, obstetrical, and fetal indications for magnetic resonance imaging on pregnant women. Fetal safety risks, due to the use of strong magnetic fields and exogenous contrast agents, will be presented. Then, possible advantages of nanostructured contrast agents compared to current molecular ones are explored. Nanosystems’ characteristics affecting contrast efficiency, and their potential for improving contrast-enhanced MRI’s safety in pregnant women, are discussed. Lastly, promising examples of nanoparticles as safer alternatives to current MRI contrast agents in pregnancy are discussed.
Collapse
|
8
|
Xie J, Zhou Z, Ma S, Luo X, Liu J, Wang S, Chen Y, Yan J, Luo F. Facile Fabrication of BiF 3: Ln (Ln = Gd, Yb, Er)@PVP Nanoparticles for High-Efficiency Computed Tomography Imaging. NANOSCALE RESEARCH LETTERS 2021; 16:131. [PMID: 34390420 PMCID: PMC8364619 DOI: 10.1186/s11671-021-03591-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
X-ray computed tomography (CT) has been widely used in clinical practice, and contrast agents such as Iohexol are often used to enhance the contrast of CT imaging between normal and diseased tissue. However, such contrast agents can have some toxicity. Thus, new CT contrast agents are urgently needed. Owing to the high atomic number (Z = 83), low cost, good biological safety, and great X-ray attenuation property (5.74 cm2 kg-1 at 100 keV), bismuth has gained great interest from researchers in the field of nano-sized CT contrast agents. Here, we synthesized BiF3: Ln@PVP nanoparticles (NPs) with an average particle size of about 380 nm. After coating them with polyvinylpyrrolidone (PVP), the BiF3: Ln@PVP NPs possessed good stability and great biocompatibility. Meanwhile, compared with the clinical contrast agent Iohexol, BiF3: Ln@PVP NPs showed superior in vitro CT imaging contrast. Subsequently, after in situ injection with BiF3: Ln@PVP NPs, the CT value of the tumor site after the injection was significantly higher than that before the injection (the CT value of the pre-injection and post-injection was 48.9 HU and 194.58 HU, respectively). The morphology of the gastrointestinal (GI) tract can be clearly observed over time after oral administration of BiF3: Ln@PVP NPs. Finally, the BiF3: Ln@PVP NPs were completely discharged from the GI tract of mice within 48 h of oral administration with no obvious damage to the GI tract. In summary, our easily synthesized BiF3: Ln@PVP NPs can be used as a potential clinical contrast agent and may have broad application prospects in CT imaging.
Collapse
Affiliation(s)
- Jun Xie
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Zonglang Zhou
- The 174th Clinical College of People's Liberation Army, Anhui Medical University, Hefei, 230032, China
| | - Sihan Ma
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Xian Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Jiajing Liu
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Shengyu Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Yuqiang Chen
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China.
- The 174th Clinical College of People's Liberation Army, Anhui Medical University, Hefei, 230032, China.
| | - Jianghua Yan
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China.
| | - Fanghong Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Lin YC, Shih CP, Chen HC, Chou YL, Sytwu HK, Fang MC, Lin YY, Kuo CY, Su HH, Hung CL, Chen HK, Wang CH. Ultrasound Microbubble-Facilitated Inner Ear Delivery of Gold Nanoparticles Involves Transient Disruption of the Tight Junction Barrier in the Round Window Membrane. Front Pharmacol 2021; 12:689032. [PMID: 34262458 PMCID: PMC8273281 DOI: 10.3389/fphar.2021.689032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022] Open
Abstract
The application of ultrasound microbubbles (USMBs) enhances the permeability of the round window membrane (RWM) and improves drug delivery to the inner ear. In this study, we investigated the efficiency of USMB-aided delivery of chitosan-coated gold nanoparticles (CS-AuNPs) and the mechanism of USMB-mediated enhancement of RMW permeability. We exposed mouse inner ears to USMBs at an intensity of 2 W/cm2 and then filled the tympanic bulla with CS-AuNPs or fluorescein isothiocyanate-decorated CS-AuNPs (FITC-CS-AuNPs). The membrane uptake of FITC-CS-AuNPs and their depth of permeation into the three-layer structure of the RWM, with or without prior USMB treatment, were visualized by z-stack confocal laser scanning microscopy. Ultrastructural changes in the RWM due to USMB-mediated cavitation appeared as sunburn-like peeling and various degrees of depression in the RWM surface, with pore-like openings forming in the outer epithelium. This disruption of the outer epithelium was paralleled by a transient reduction in tight junction (TJ)-associated protein levels in the RWM and an enhanced delivery of FITC-CS-AuNPs into the RWM. Without prior USMB exposure, the treatment with CS-AuNPs also caused a noticeable reduction in TJ proteins of the RWM. Our findings indicated that the combined treatment with USMBs and CS-AuNPs represents a promising and efficient drug and gene delivery vehicle for a trans-RWM approach for inner ear therapy. The outer epithelial layer of the RWM plays a decisive role in controlling the transmembrane transport of substances such as CS-AuNPs following the administration of USMBs. Most importantly, the enhanced permeation of AuNPs involved the transient disruption of the TJ-created paracellular barrier in the outer epithelium of the RWM.
Collapse
Affiliation(s)
- Yi-Chun Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Liang Chou
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Huey-Kang Sytwu
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Cho Fang
- Laboratory Animal Center, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Yung Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Han Su
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lien Hung
- Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Chih-Hung Wang
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
10
|
|
11
|
Aminolroayaei F, Shahbazi‐Gahrouei D, Shahbazi‐Gahrouei S, Rasouli N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol 2021; 15:247-256. [PMID: 34694670 PMCID: PMC8675832 DOI: 10.1049/nbt2.12021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Nanotheranostics has attracted much attention due to its widespread application in molecular imaging and cancer therapy. Molecular imaging using nanoparticles has attracted special attention in the diagnosis of cancer at early stages. With the progress made in nanotheranostics, studying drug release, accumulation in the target tissue, biodistribution, and treatment effectiveness are other important factors. However, according to the studies conducted in this regard, each nanoparticle has some advantages and limitations that should be examined and then used in clinical applications. The main goal of this review is to explore the recent advancements in nanotheranostics for cancer therapy and diagnosis. Then, it is attempted to present recent studies on nanotheranostics used as a contrast agent in various imaging modalities and a platform for cancer therapy.
Collapse
Affiliation(s)
- Fahimeh Aminolroayaei
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | | | | | - Naser Rasouli
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
12
|
Khan M, Boumati S, Arib C, Thierno Diallo A, Djaker N, Doan BT, Spadavecchia J. Doxorubicin (DOX) Gadolinium-Gold-Complex: A New Way to Tune Hybrid Nanorods as Theranostic Agent. Int J Nanomedicine 2021; 16:2219-2236. [PMID: 33762822 PMCID: PMC7982711 DOI: 10.2147/ijn.s295809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/06/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION In this paper, we have designed and formulated, a novel synthesis of doxorubicin (DOX) loaded bimetallic gold nanorods in which gold salt (HAuCl4) is chelated with anthracycline (DOX), diacid polyethylene-glycol (PEG-COOH) and gadolinium salt (GdCl3 * 6 H2O) to form DOX IN-Gd-AuNRs compared with DOX ON-Gd-AuNRs in which the drug was grafted onto the bimetallic pegylated nanoparticle surface by electrostatic adsorption. MATERIAL AND METHOD The physical and chemical evaluation was performed by spectroscopic analytical techniques (Raman spectroscopy, UV-Visible and transmission electron microscopy (TEM)). Magnetic features at 7T were also measured. Photothermal abilities were assessed. Cytotoxicity studies on MIA PaCa-2, human pancreatic carcinoma and TIB-75 hepatocytes cell lines were carried out to evaluate their biocompatibility and showed a 320 fold higher efficiency for DOX after encapsulation. RESULTS Exhaustive physicochemical characterization studies were conducted showing a mid size of 20 to 40 nm diameters obtained with low polydispersity, efficient synthesis using seed mediated synthesis with chelation reaction with high scale-up, long duration stability, specific doxorubicin release with acidic pH, strong photothermal abilities at 808 nm in the NIR transparency window, strong magnetic r1 relaxivities for positive MRI, well adapted for image guided therapy and therapeutical purpose in biological tissues. CONCLUSION In this paper, we have developed a novel theranostic nanoparticle composed of gadolinium complexes to gold ions, with a PEG biopolymer matrix conjugated with antitumoral doxorubicin, providing multifunctional therapeutic features. Particularly, these nano conjugates enhanced the cytotoxicity toward tumoral MIAPaCa-2 cells by a factor of 320 compared to doxorubicin alone. Moreover, MRI T1 features at 7T enables interesting positive contrast for bioimaging and their adapted size for potential passive targeting to tumors by Enhanced Permeability Retention. Given these encouraging antitumoral and imaging properties, this bimetallic theranostic nanomaterial system represents a veritable promise as a therapeutic entity in the field of medicinal applications.
Collapse
Affiliation(s)
- Memona Khan
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Sarah Boumati
- CNRS UMR 8060, iCLeHS, Synthèse, Electrochimie, Imagerie et Systèmes Analytiques Pour le Diagnostic SEISAD, Chimie ParisTech, Université PSL, Paris, 75231, France
| | - Celia Arib
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Amadou Thierno Diallo
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Nadia Djaker
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Bich-thuy Doan
- CNRS UMR 8060, iCLeHS, Synthèse, Electrochimie, Imagerie et Systèmes Analytiques Pour le Diagnostic SEISAD, Chimie ParisTech, Université PSL, Paris, 75231, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| |
Collapse
|
13
|
Oyarzún MP, Tapia-Arellano A, Cabrera P, Jara-Guajardo P, Kogan MJ. Plasmonic Nanoparticles as Optical Sensing Probes for the Detection of Alzheimer's Disease. SENSORS (BASEL, SWITZERLAND) 2021; 21:2067. [PMID: 33809416 PMCID: PMC7998661 DOI: 10.3390/s21062067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), considered a common type of dementia, is mainly characterized by a progressive loss of memory and cognitive functions. Although its cause is multifactorial, it has been associated with the accumulation of toxic aggregates of the amyloid-β peptide (Aβ) and neurofibrillary tangles (NFTs) of tau protein. At present, the development of highly sensitive, high cost-effective, and non-invasive diagnostic tools for AD remains a challenge. In the last decades, nanomaterials have emerged as an interesting and useful tool in nanomedicine for diagnostics and therapy. In particular, plasmonic nanoparticles are well-known to display unique optical properties derived from their localized surface plasmon resonance (LSPR), allowing their use as transducers in various sensing configurations and enhancing detection sensitivity. Herein, this review focuses on current advances in in vitro sensing techniques such as Surface-enhanced Raman scattering (SERS), Surface-enhanced fluorescence (SEF), colorimetric, and LSPR using plasmonic nanoparticles for improving the sensitivity in the detection of main biomarkers related to AD in body fluids. Additionally, we refer to the use of plasmonic nanoparticles for in vivo imaging studies in AD.
Collapse
Affiliation(s)
- María Paz Oyarzún
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Andreas Tapia-Arellano
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Pablo Cabrera
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Pedro Jara-Guajardo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| |
Collapse
|
14
|
Barbey C, Bouchemal N, Retailleau P, Dupont N, Spadavecchia J. Idarubicin-Gold Complex: From Crystal Growth to Gold Nanoparticles. ACS OMEGA 2021; 6:1235-1245. [PMID: 33490782 PMCID: PMC7818310 DOI: 10.1021/acsomega.0c04501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/29/2020] [Indexed: 05/25/2023]
Abstract
Idarubicin (IDA) is the analog of daunorubicin (DNR). The absence of the methoxy group at position 4 of IDA remarkably improved lipophilicity, which is responsible for extra cellular uptake, higher DNA-binding ability, and considerable cytotoxicity in correlation with doxorubicin (DOX) and DNR. In this paper, we conceived two principal objectives: we realized the crystal structure of IDA by X-ray diffraction measurements on single crystals at room temperature (monoclinic, space group P21, a = 5.1302(2) Å, b = 9.9122(5) Å, c = 24.8868(11) Å; β = 91.425(4)°; V = 1265.14(10) Å3) with refinements of the structure converged to the final R = 3.87%. The second objective has been to develop gold nanoparticles encapsulated with idarubicin through an original methodology in which gold salt (HAuCl4) is chelated with IDA and diacid polymer (PEG) to form hybrid nanoparticles called IDA IN PEG-AuNPs in which drug solubility was enhanced. The computational studies were in agreement with the experimental observations. These hybrid nanoparticles and their precursors were analyzed by Raman, UV-Vis, 1H NMR, and transmission electron microscopy (TEM). The main results are completed by a theoretical approach to understand the whole process.
Collapse
Affiliation(s)
- Carole Barbey
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés
de Biomatériaux et d’Agents Thérapeutiques Université
Sorbonne Paris Nord, 1 Rue de Chablis, Bobigny 93000, France
| | - Nadia Bouchemal
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés
de Biomatériaux et d’Agents Thérapeutiques Université
Sorbonne Paris Nord, 1 Rue de Chablis, Bobigny 93000, France
| | - Pascal Retailleau
- CNRS,
UPR 2301, Service de Cristallochimie, Institut des Substances Naturelles, 1, Avenue de la Terrasse, Gif sur Yvette 91190, France
| | - Nathalie Dupont
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés
de Biomatériaux et d’Agents Thérapeutiques Université
Sorbonne Paris Nord, 1 Rue de Chablis, Bobigny 93000, France
| | - Jolanda Spadavecchia
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés
de Biomatériaux et d’Agents Thérapeutiques Université
Sorbonne Paris Nord, 1 Rue de Chablis, Bobigny 93000, France
| |
Collapse
|
15
|
Crist RM, Dasa SSK, Liu CH, Clogston JD, Dobrovolskaia MA, Stern ST. Challenges in the development of nanoparticle-based imaging agents: Characterization and biology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1665. [PMID: 32830448 DOI: 10.1002/wnan.1665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Despite imaging agents being some of the earliest nanomedicines in clinical use, the vast majority of current research and translational activities in the nanomedicine field involves therapeutics, while imaging agents are severely underrepresented. The reasons for this lack of representation are several fold, including difficulties in synthesis and scale-up, biocompatibility issues, lack of suitable tissue/disease selective targeting ligands and receptors, and a high bar for regulatory approval. The recent focus on immunotherapies and personalized medicine, and development of nanoparticle constructs with better tissue distribution and selectivity, provide new opportunities for nanomedicine imaging agent development. This manuscript will provide an overview of trends in imaging nanomedicine characterization and biocompatibility, and new horizons for future development. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Siva Sai Krishna Dasa
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Christina H Liu
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
16
|
Sahli F, Courcelle M, Palama T, Djaker N, Savarin P, Spadavecchia J. Temozolomide, Gemcitabine, and Decitabine Hybrid Nanoconjugates: From Design to Proof-of-Concept (PoC) of Synergies toward the Understanding of Drug Impact on Human Glioblastoma Cells. J Med Chem 2020; 63:7410-7421. [PMID: 32524814 DOI: 10.1021/acs.jmedchem.0c00694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper emphasizes the synthesis of novel hybrid drug nanoparticles (Hyb-D-AuNPs) based on gold-temozolomide (TMZ) complexes combined with gemcitabine (GEM) and decitabine (DAC) to improve the efficiency and reduce the resistance of U87 malignant glial cells against TMZ. All products were evaluated by several spectroscopic techniques (Raman, UV-Vis) and transmission electron microscopy (TEM). Besides, for therapeutic purposes, the effect of these nanoparticles on cell proliferation and toxicity was evaluated, which clearly showed a synergic action of TMZ and GEM. Through the analysis of the exometabolome by nuclear magnetic resonance (NMR), the metabolic changes in the culture medium were measured in glial cells. Moreover, these nanoparticles are especially appropriated to the thermal destruction of cancer in the case of photothermal therapy due to their photothermal heating properties. This study presents an original chemical approach that it could play a central role in the field of nanomedicine, with novel perspectives for the development of new drugs and active targeting in glioblastoma multiforme (GBM) cancer therapy.
Collapse
Affiliation(s)
- Ferdaous Sahli
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Manon Courcelle
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Tony Palama
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Nadia Djaker
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Philippe Savarin
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Jolanda Spadavecchia
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| |
Collapse
|
17
|
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020; 12:E1397. [PMID: 32580366 PMCID: PMC7362228 DOI: 10.3390/polym12061397] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Particle Physics Department Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|