1
|
Assis M, L Breitenbach G, Martí M, Sánchez-Safont E, Alfaro-Peyró A, Cabedo L, Garcia-Verdugo E, Andrés J, Serrano-Aroca Á. Synergistic Integration of α-Ag 2WO 4 into PLA/PBAT for the Development of Electrospun Membranes: Advancing Structural Integrity and Antimicrobial Efficacy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63404-63418. [PMID: 39509654 DOI: 10.1021/acsami.4c16618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rising resistance of various pathogens and the demand for materials that prevent infections drive the need to develop broad-spectrum antimicrobial membranes capable of combating a range of microorganisms, thereby enhancing safety in biomedical and industrial applications. Herein, we introduce a simple and efficient technique to engineer membranes composed of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) biopolymers and α-Ag2WO4 particles using an electrospinning technique. The corresponding structural, thermal, mechanical, and antimicrobial properties were characterized. X-ray diffraction (XRD) patterns confirmed the integration of crystalline α-Ag2WO4 within the polymer matrix. Scanning electron microscopy (SEM) and Raman confocal microscopy revealed uniformly dispersed α-Ag2WO4 particles in the electrospun fibers, influencing their diameter and surface roughness. Thermal analysis indicated adjustments in the thermal stability and crystallinity of the composites with an increasing α-Ag2WO4 content. Dynamic mechanical analysis (DMA) highlighted variations in storage modulus and glass transition temperatures due to interactions between α-Ag2WO4 and polymer chains, with tensile tests showing an increase in elastic modulus and ultimate tensile strength as the α-Ag2WO4 content increased. Antimicrobial assessments revealed that PLA/PBAT membranes with α-Ag2WO4 showed pronounced antibacterial activity, forming inhibition halos across all samples against Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and Mycobacterium smegmatis (a surrogate for Mycobacterium tuberculosis). These membranes also exhibited potent antiviral activity against bacteriophage phi 6, a surrogate for SARS-CoV-2, suggesting potential applications in combating infections caused by enveloped viruses. The antimicrobial activities are attributed to the generation of reactive oxygen species (ROS) and the controlled release of Ag+ ions. This work underscores the multifaceted capabilities of α-Ag2WO4-enhanced PLA/PBAT membranes in combating bacterial and viral growth, where both durability and microbial resistance are critical. Taken together, our findings provide a solution for obtaining advanced materials to be applied in a wide range of industrial applications, such as filtration systems, food preservation, antimicrobial coatings, protective textiles, and cleaning products.
Collapse
Affiliation(s)
- Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| | - Gabriela L Breitenbach
- Department of Inorganic and Organic Chemistry, Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Miguel Martí
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| | - Estefanía Sánchez-Safont
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Adrian Alfaro-Peyró
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Eduardo Garcia-Verdugo
- Department of Inorganic and Organic Chemistry, Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| |
Collapse
|
2
|
Alkhaldi H, Alharthi S, Alharthi S, AlGhamdi HA, AlZahrani YM, Mahmoud SA, Amin LG, Al-Shaalan NH, Boraie WE, Attia MS, Al-Gahtany SA, Aldaleeli N, Ghobashy MM, Sharshir AI, Madani M, Darwesh R, Abaza SF. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review. RSC Adv 2024; 14:33143-33190. [PMID: 39434995 PMCID: PMC11492427 DOI: 10.1039/d4ra05269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Water is a fundamental resource, yet various contaminants increasingly threaten its quality, necessitating effective remediation strategies. Sustainable polymeric adsorbents have emerged as promising materials in adsorption-based water remediation technologies, particularly for the removal of contaminants and deactivation of water-borne pathogens. Pathogenetic water contamination, which involves the presence of harmful bacteria, viruses, and other microorganisms, poses a significant threat to public health. This review aims to analyze the unique properties of various polymeric materials, including porous aromatic frameworks, biopolymers, and molecularly imprinted polymers, and their effectiveness in water remediation applications. Key findings reveal that these adsorbents demonstrate high surface areas, tunable surface chemistries, and mechanical stability, which enhance their performance in removing contaminants such as heavy metals, organic pollutants, and emerging contaminants from water sources. Furthermore, the review identifies gaps in current research and suggests future directions, including developing multifunctional polymeric materials and integrating adsorption techniques with advanced remediation technologies. This comprehensive analysis aims to contribute to advancing next-generation water purification technologies, ensuring access to clean and safe water for future generations.
Collapse
Affiliation(s)
- Huda Alkhaldi
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Salha Alharthi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Hind A AlGhamdi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Yasmeen M AlZahrani
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Safwat A Mahmoud
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Lamia Galal Amin
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Waleed E Boraie
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | | | - Nadiah Aldaleeli
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - A I Sharshir
- Solid State and Electronic Accelerators Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Reem Darwesh
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Sana F Abaza
- Physics Department, Faculty of Science, Alexandria University 21568 Alexandria Egypt
| |
Collapse
|
3
|
Carnero Canales CS, Marquez Cazorla JI, Marquez Cazorla RM, Roque-Borda CA, Polinário G, Figueroa Banda RA, Sábio RM, Chorilli M, Santos HA, Pavan FR. Breaking barriers: The potential of nanosystems in antituberculosis therapy. Bioact Mater 2024; 39:106-134. [PMID: 38783925 PMCID: PMC11112550 DOI: 10.1016/j.bioactmat.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to pose a significant threat to global health. The resilience of TB is amplified by a myriad of physical, biological, and biopharmaceutical barriers that challenge conventional therapeutic approaches. This review navigates the intricate landscape of TB treatment, from the stealth of latent infections and the strength of granuloma formations to the daunting specters of drug resistance and altered gene expression. Amidst these challenges, traditional therapies often fail, contending with inconsistent bioavailability, prolonged treatment regimens, and socioeconomic burdens. Nanoscale Drug Delivery Systems (NDDSs) emerge as a promising beacon, ready to overcome these barriers, offering better drug targeting and improved patient adherence. Through a critical approach, we evaluate a spectrum of nanosystems and their efficacy against MTB both in vitro and in vivo. This review advocates for the intensification of research in NDDSs, heralding their potential to reshape the contours of global TB treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Giulia Polinário
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
4
|
Renuka R, Thilagavathi T, Dhanalakshmi A, Uthrakumar R, Kaviyarasu K, Yewale MA, Alsawat M, Al Qahtani HS, Alam MW. Biological synthesis of silver nanoparticles using Senna auriculata flower extract for antibacterial activities. LUMINESCENCE 2024; 39:e4894. [PMID: 39258511 DOI: 10.1002/bio.4894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
In this study, biological synthesis of silver nanoparticles (AgNPs) using Senna auriculata flower extract for antibacterial activities was reported. The silver spectra compared to the plant extract show a rightward shift in AgNP peaks, indicating successful nanoparticle formation. The absorption band at 302 nm and the disappearance or shift of other peaks further confirm the synthesis. X-ray diffraction (XRD) analysis reveals that the AgNPs synthesized with S. auriculata extract have an average crystallite size of 25 nm. Transmission electron microscopy (TEM) results exhibited a polydispersed, spherical shape with sizes ranging from 70 nm, in clear contrast to the electron microscope image that showed their spherical shape. When examining the selected area electron diffraction (SAED) image, a specific set of lattice planes was correlated with a specific spot. A histogram of AgNP particle size distribution can be seen. AgNPs were tested against four different strains of bacteria for their antibacterial effectiveness, including gram negative bacteria (Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus), as well as gram positive bacteria (S. aureus, d. Bacillus subtilis), at various concentrations of AgNP. The results of in vitro experiments indicate that AgNPs containing S. auriculata flowers inhibit amylase well. At two concentrations, ~16.03% and ~70.99%, AgNPs inhibit the reaction at low and high concentrations, respectively.
Collapse
Affiliation(s)
- Rethinavelu Renuka
- PG and Research Department of Physics, Kalaignar Karunanidhi Government Arts College for Women (Autonomous), Pudukkottai, India
- Department of Physics, Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Adaikkalam Dhanalakshmi
- PG and Research Department of Physics, Kalaignar Karunanidhi Government Arts College for Women (Autonomous), Pudukkottai, India
- Department of Physics, Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Kasinathan Kaviyarasu
- UNESCO-Unisa Africa Chair in Nanosciences/Nanotechnology Laboratories, School of Interdisciplinary Research and Graduate Studies, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - Manesh Ashok Yewale
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Mohammed Alsawat
- Department of Chemistry, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | | | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
5
|
He Y, Zhang Y, Hu F, Chen M, Wang B, Li Y, Xu H, Dong N, Zhang C, Hu Y, Lin Z, Peng Y, Ye Q, Luo L. Photosensitive Hydrogels Encapsulating DPSCs and AgNPs for Dental Pulp Regeneration. Int Dent J 2024; 74:836-846. [PMID: 38369441 PMCID: PMC11287144 DOI: 10.1016/j.identj.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
OBJECTIVE Pulp regeneration with bioactive dentin-pulp complex has been a research hotspot in recent years. Stem cell therapy provided an interest strategy to regenerate the dental-pulp complex. Hence, this study aimed to evaluate the effects of photosensitive gelatin methacrylate (GelMA) hydrogel encapsulating dental pulp stem cells (DPSCs) and silver nanoparticles (AgNPs) for dental pulp regeneration in vitro. METHODS First, the AgNPs@GelMA hydrogels were prepared by lithium phenyl-2,4,6-trimethyl-benzoyl phosphinate (LAP) initiation via blue-light emitting diode light. The physical and chemical properties of AgNPs@GelMA hydrogels were comprehensively analysed via scanning electron microscopy (SEM), and mechanical characterisation, such as swelling ability, degradation properties, and AgNP release profile. Then, AgNPs@GelMA hydrogels encapsulated DPSCs were used to establish an AgNPs@GelMA biomimetic complex, further analysing its biocompatibility, antibacterial properties, and angiogenic capacity in vitro. RESULTS The results indicated that GelMA hydrogels demontrated optimal characteristics with a monomer:LAP ratio of 16:1. The physico-chemical properties of AgNPs@GelMA hydrogels did not change significantly after loading with AgNPs. There was no significant difference in AgNP release rate amongst different concentrations of AgNPs@GelMA hydrogels. Fifty to 200 μg/mL AgNPs@GelMA hydrogels could disperse E faecalis biofilm and reduce its metabolic activity . Furthermore, cell proliferation was arrested in 100 and 200 μg/mL AgNPs@GelMA hydrogels. The inhibition of 50 μg/mL AgNPs@GelMA hydrogels on E faecalis biofilm was above 50%, and the cell viability of the hydrogels was higher than 90%. The angiogenesis assay indicated that AgNPs@GelMA hydrogels encapsulating DPSCs could induce the formation of capillary-like structures and express angiogenic markers CD31, vascular endothelial growth factor , and von willebrand factor (vWF) in vitro. CONCLUSIONS Results of this study indicate that 50 μg/mL AgNPs@GelMA hydrogels encapsulating DPSCs had significant antibacterial properties and angiogenic capacity, which could provide a significant experimental basis for the regeneration of the dentin-pulp complex.
Collapse
Affiliation(s)
- Yan He
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ben Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haichao Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Dong
- Oujiang Laboratory, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunfan Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Lin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youjian Peng
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
7
|
Kiria N, Avaliani T, Bablishvili N, Chichiveishvili N, Phichkhaia G, Sharvadze L, Kiria N. EFFICACY AND SAFETY OF SILVER NANOCOMPOSITES ON RIFAMPICIN-RESISTANT M. TUBERCULOSIS STRAINS. GEORGIAN MEDICAL NEWS 2024:102-108. [PMID: 39230231 PMCID: PMC11700506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Control of rifampicin-resistant tuberculosis (RR-MTB) requires novel technologies for restoring the anti-TB efficacy of priority drugs. We sought to evaluate the ability of nanotechnology application in the recovery of the anti-tuberculosis efficacy of rifampicin. METHODS Nanocomposite- standard dose of rifampicin and 20 nm silver nanoparticles (AgNPs) suspension solution of 6 different concentrations: 0.25%; 0.5%; 1%; 2.5%; 5%; and 10%, were supplemented to 70 rifampicin-resistant mycobacterium tuberculosis (RR-MTB) isolates. The control arm consisted of 35 RR-MTB isolates and AgNPs suspension with identical concentrations. The inhibitory effect of nanocomposites was evaluated by MTB growth rate using the BACTECTM MGIT 960TM. The safety assessment of single-use AgNPs was conducted in experimental animals. RESULTS The suppression process of AgNPs on RR-MTB isolates started with 2,5% nanocomposite solution application and full suppression was achieved in 5% and 10% nanocomposite solutions. A standard dose of rifampicin and a 2.5% solution of AgNPs increased the minimal inhibitory effect on RR-MTB by 10% (total 80%) vs the isolated use of a 2.5% solution of AgNPs (70%). An experiment on animals revealed the complete safety of a single injection of ultra-high doses of AgNPs. CONCLUSION The study showed the potentiating effect of AgNPs in overcoming the resistance of MTB to rifampicin providing a scientific basis for further research.
Collapse
Affiliation(s)
- Nino Kiria
- 1Ivane Javakhishvili Tbilisi State University, Georgia
| | - T Avaliani
- 1Ivane Javakhishvili Tbilisi State University, Georgia
| | - N Bablishvili
- 2National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | | | - G Phichkhaia
- 1Ivane Javakhishvili Tbilisi State University, Georgia
| | - L Sharvadze
- 1Ivane Javakhishvili Tbilisi State University, Georgia
| | - Nana Kiria
- 2National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| |
Collapse
|
8
|
Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. DISCOVER NANO 2024; 19:85. [PMID: 38724833 PMCID: PMC11082127 DOI: 10.1186/s11671-024-04021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.
Collapse
Affiliation(s)
- Jitendra Patel
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - G Shiva Kumar
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India.
| | - Balaji Maddiboyina
- Department of Medical and Scientific Communications, Scientific Writing Services, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hitech City, Gachibowli, Hyderabad, 500081, India.
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C\O Campus EcotekneVia Monteroni, 3100, Lecce, Italy
| | - Raghvendra A Bohara
- D.Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India.
- University of Galway, Galway, Ireland.
| |
Collapse
|
9
|
Machava P, Joaquim W, Borrell J, Richardson S, Cassia U, Sidat M, Maieca A, Massitela C, Quelhas Y, Mucuila C, Elias B, da Rocha M, Schaaf HS, Buck WC. Severe BCG immune reconstitution inflammatory syndrome lymphadenitis successfully managed with pre-antiretroviral counseling and a non-surgical approach: a case report. AIDS Res Ther 2024; 21:25. [PMID: 38678293 PMCID: PMC11056047 DOI: 10.1186/s12981-024-00614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) reactions are the most common cause of immune reconstitution inflammatory syndrome (IRIS) in HIV-positive infants who initiate antiretroviral therapy (ART). There is limited evidence regarding the incidence of BCG-IRIS; however, reports from outpatient cohorts have estimated that 6-9% of infants who initiated ART developed some form of BCG-IRIS within the first 6 months. Various treatment approaches for infants with BCG-IRIS have been reported, but there is currently no widely accepted standard-of-care. CASE PRESENTATION A 5-month-old male HIV-exposed infant BCG vaccinated at birth was admitted for refractory oral candidiasis, moderate anemia, and moderate acute malnutrition. He had a HIV DNA-PCR collected at one month of age, but the family never received the results. He was diagnosed with HIV during hospitalization with a point-of-care nucleic acid test and had severe immune suppression with a CD4 of 955 cells/µL (15%) with clinical stage III disease. During pre-ART counseling, the mother was educated on the signs and symptoms of BCG-IRIS and the importance of seeking follow-up care and remaining adherent to ART if symptoms arose. Three weeks after ART initiation, he was readmitted with intermittent subjective fevers, right axillary lymphadenopathy, and an ulcerated papule over the right deltoid region. He was subsequently discharged home with a diagnosis of local BCG-IRIS lymphadenitis. At six weeks post-ART initiation, he returned with suppurative lymphadenitis of the right axillary region that had completely eviscerated through the skin without signs of disseminated BCG disease. He was then started on an outpatient regimen of topical isoniazid, silver nitrate, and oral prednisolone. Throughout this time, the mother maintained good ART adherence despite this complication. After 2.5 months of ART and one month of specific treatment for the lymphadenitis, he had marked mass reduction, improved adenopathy, increased CD4 count, correction of anemia, and resolution of his acute malnutrition. He completely recovered and was symptom free two months after initial treatment without surgical intervention. CONCLUSIONS This case details the successful management of severe suppurative BCG-IRIS with a non-surgical approach and underlines the importance of pre-ART counseling on BCG-IRIS for caregivers, particularly for infants who initiate ART with advanced HIV.
Collapse
Affiliation(s)
| | - Winete Joaquim
- Universidade Eduardo Mondlane Faculdade de Medicina, Maputo, Mozambique.
| | - Joseph Borrell
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, USA
| | - Shannon Richardson
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, USA
| | - Uneisse Cassia
- Universidade Eduardo Mondlane Faculdade de Medicina, Maputo, Mozambique
| | - Muhammad Sidat
- Universidade Eduardo Mondlane Faculdade de Medicina, Maputo, Mozambique
| | - Alice Maieca
- Universidade Eduardo Mondlane Faculdade de Medicina, Maputo, Mozambique
| | - Cláudia Massitela
- Universidade Eduardo Mondlane Faculdade de Medicina, Maputo, Mozambique
| | | | | | | | | | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - W Chris Buck
- Hospital Central de Maputo, Maputo, Mozambique
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, USA
| |
Collapse
|
10
|
Santos LM, Rodrigues DM, Alves BVB, Kalil MA, Azevedo V, Barh D, Meyer R, Duran N, Tasic L, Portela RW. Activity of biogenic silver nanoparticles in planktonic and biofilm-associated Corynebacterium pseudotuberculosis. PeerJ 2024; 12:e16751. [PMID: 38406288 PMCID: PMC10885795 DOI: 10.7717/peerj.16751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024] Open
Abstract
Corynebacterium pseudotuberculosis is a gram-positive bacterium and is the etiologic agent of caseous lymphadenitis (CL) in small ruminants. This disease is characterized by the development of encapsulated granulomas in visceral and superficial lymph nodes, and its clinical treatment is refractory to antibiotic therapy. An important virulence factor of the Corynebacterium genus is the ability to produce biofilm; however, little is known about the characteristics of the biofilm produced by C. pseudotuberculosis and its resistance to antimicrobials. Silver nanoparticles (AgNPs) are considered as promising antimicrobial agents, and are known to have several advantages, such as a broad-spectrum activity, low resistance induction potential, and antibiofilm activity. Therefore, we evaluate herein the activity of AgNPs in C. pseudotuberculosis, through the determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antibiofilm activity, and visualization of AgNP-treated and AgNP-untreated biofilm through scanning electron microscopy. The AgNPs were able to completely inhibit bacterial growth and inactivate C. pseudotuberculosis at concentrations ranging from 0.08 to 0.312 mg/mL. The AgNPs reduced the formation of biofilm in reference strains and clinical isolates of C. pseudotuberculosis, with interference values greater than 80% at a concentration of 4 mg/mL, controlling the change between the planktonic and biofilm-associated forms, and preventing fixation and colonization. Scanning electron microscopy images showed a significant disruptive activity of AgNP on the consolidated biofilms. The results of this study demonstrate the potential of AgNPs as an effective therapeutic agent against CL.
Collapse
Affiliation(s)
- Laerte Marlon Santos
- Instituto de Ciencias da Saude, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | | | | | - Vasco Azevedo
- Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Debmalya Barh
- Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, West Bengal, India
| | - Roberto Meyer
- Instituto de Ciencias da Saude, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Nelson Duran
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil
| | - Ljubica Tasic
- Instituto de Quimica, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil
| | | |
Collapse
|
11
|
Sobhani-Nasab A, Banafshe HR, Atapour A, Khaksary Mahabady M, Akbari M, Daraei A, Mansoori Y, Moradi Hasan-Abad A. The use of nanoparticles in the treatment of infectious diseases and cancer, dental applications and tissue regeneration: a review. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 5:1330007. [PMID: 38323112 PMCID: PMC10844477 DOI: 10.3389/fmedt.2023.1330007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024] Open
Abstract
The emergence of nanotechnology as a field of study can be traced back to the 1980s, at which point the means to artificially produce, control, and observe matter on a nanometer level was made viable. Recent advancements in technology have enabled us to extend our reach to the nanoscale, which has presented an unparalleled opportunity to directly target biomolecular interactions. As a result of these developments, there is a drive to arise intelligent nanostructures capable of overcoming the obstacles that have impeded the progress of conventional pharmacological methodologies. After four decades, the gradual amalgamation of bio- and nanotechnologies is initiating a revolution in the realm of disease detection, treatment, and monitoring, as well as unsolved medical predicaments. Although a significant portion of research in the field is still confined to laboratories, the initial application of nanotechnology as treatments, vaccines, pharmaceuticals, and diagnostic equipment has now obtained endorsement for commercialization and clinical practice. The current issue presents an overview of the latest progress in nanomedical strategies towards alleviating antibiotic resistance, diagnosing and treating cancer, addressing neurodegenerative disorders, and an array of applications, encompassing dentistry and tuberculosis treatment. The current investigation also scrutinizes the deployment of sophisticated smart nanostructured materials in fields of application such as regenerative medicine, as well as the management of targeted and sustained release of pharmaceuticals and therapeutic interventions. The aforementioned concept exhibits the potential for revolutionary advancements within the field of immunotherapy, as it introduces the utilization of implanted vaccine technology to consistently regulate and augment immune functions. Concurrently with the endeavor to attain the advantages of nanomedical intervention, it is essential to enhance the unceasing emphasis on nanotoxicological research and the regulation of nanomedications' safety. This initiative is crucial in achieving the advancement in medicine that currently lies within our reach.
Collapse
Affiliation(s)
- Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Suman SK, Chandrasekaran N, Priya Doss CG. Micro-nanoemulsion and nanoparticle-assisted drug delivery against drug-resistant tuberculosis: recent developments. Clin Microbiol Rev 2023; 36:e0008823. [PMID: 38032192 PMCID: PMC10732062 DOI: 10.1128/cmr.00088-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis (TB) is a major global health problem and the second most prevalent infectious killer after COVID-19. It is caused by Mycobacterium tuberculosis (Mtb) and has become increasingly challenging to treat due to drug resistance. The World Health Organization declared TB a global health emergency in 1993. Drug resistance in TB is driven by mutations in the bacterial genome that can be influenced by prolonged drug exposure and poor patient adherence. The development of drug-resistant forms of TB, such as multidrug resistant, extensively drug resistant, and totally drug resistant, poses significant therapeutic challenges. Researchers are exploring new drugs and novel drug delivery systems, such as nanotechnology-based therapies, to combat drug resistance. Nanodrug delivery offers targeted and precise drug delivery, improves treatment efficacy, and reduces adverse effects. Along with nanoscale drug delivery, a new generation of antibiotics with potent therapeutic efficacy, drug repurposing, and new treatment regimens (combinations) that can tackle the problem of drug resistance in a shorter duration could be promising therapies in clinical settings. However, the clinical translation of nanomedicines faces challenges such as safety, large-scale production, regulatory frameworks, and intellectual property issues. In this review, we present the current status, most recent findings, challenges, and limiting barriers to the use of emulsions and nanoparticles against drug-resistant TB.
Collapse
Affiliation(s)
- Simpal Kumar Suman
- School of Bio Sciences & Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nano Biotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C. George Priya Doss
- Laboratory for Integrative Genomics, Department of Integrative Biology, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Ramachandran S, Prakash P, Mohtar N, Kumar KS, Parumasivam T. Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs. Pharm Dev Technol 2023; 28:978-991. [PMID: 37937865 DOI: 10.1080/10837450.2023.2279691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/05/2023] [Indexed: 11/09/2023]
Abstract
Tuberculosis is an airborne disease caused by the pathogen, Mycobacterium tuberculosis, which predominantly affects the lungs. World Health Organization (WHO) has reported that about 85% of TB patients are cured with the existing 6-month antibiotic regimen. However, the lengthy oral administration of high-dose anti-TB drugs is associated with significant side effects and leads to drug resistance cases. Alternatively, reformulating existing anti-tubercular drugs into inhalable nanoparticulate systems is a promising strategy to overcome the challenges associated with oral treatment as they could enhance drug retention in the pulmonary region to achieve an optimal drug concentration in the infected lungs. Hence, this review provides an overview of the literature on inhalable nano-formulations for the delivery of anti-TB drugs, including their formulation techniques and preclinical evaluations between the years 2000 and 2020, gathered from electronic journals via online search engines such as Google Scholar and PubMed. Previous in vitro and in vivo studies highlighted that the nano-size, low toxicity, and high efficacy were among the factors influencing the fate of nanoparticulate system upon deposition in the lungs. Although many preclinical studies have shown that inhalable nanoparticles increased therapeutic efficacy and minimised adverse drug reactions when delivered through the pulmonary route, none of them has progressed into clinical trials to date. This could be attributed to the high cost of inhaled regimes due to the expensive production and characterisation of the nanoparticles as well as the need for an inhalation device as compared to the oral treatment. Another barrier could be the lack of medical acceptance due to insufficient number of trained staff to educate the patients on the correct usage of the inhalation device. Hence, these barriers should be addressed satisfactorily to make the inhaled nanoparticles regimen a reality for the treatment of TB.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Priyanka Prakash
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - K Sudesh Kumar
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
14
|
Priya MRK, Balasubramanian M, Nirmal CR, Dusthakeer A, Iyer PR. Determination of anti-tuberculosis activity of biosynthesized gold nanocompounds against M. tuberculosis H37RV. Indian J Tuberc 2023; 70:329-338. [PMID: 37562909 DOI: 10.1016/j.ijtb.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 08/12/2023]
Abstract
BACKGROUND The biosynthesis of gold nanoparticles using medicinal plants as reducing and stabilizing agent for synthesis is an emerging area of research due to their cost effectiveness and further diversified applications in various fields. People with HIV are prone to these opportunistic infections like TB due to the immunocompromised condition. In the present study, the nanoparticles and nanoconjugates were screened for effective anti-mycobacterial efficiency against opportunistic infections. METHODS Incidentally, the nanoparticles were biosynthesized using single plant extract. The biosynthesized nanoparticles were initially screened for effective anti-tuberculosis activity against Mycobacterium tuberculosis. Based on the effective antimicrobial activity, a nanoconjugate was biosynthesized combining three plant extracts for a cumulative activity. RESULTS The biosynthesized gold nanoparticles and nanoconjugates showed MIC demonstrating for 99% inhibition and MIC99 was found to be 6.42 μg/ml. Among all the 15 nanoparticles tested, seven NPs showed exceptional anti-TB activities NP1, NP2, NP6, NP7, NP10, NP12 and NP15 and the other nanoparticles exhibited varying degrees of inhibition - anti-TB activities. In the 12 nanoconjugate tested, seven nanoconjugate demonstrated exceptional anti-TB activities such as NCC1, NCC2, NCC5, NCC6, NCV1, NCV6 and NCV4. CONCLUSION The objective of the study was to identify the nanoparticles and nanoconjugates which demonstrated potential activity against M. tuberculosis so that a single nanoparticle or nanoconjugate can be targeted to treat patients with TB. Minimum Inhibitory Concentration (MIC) of the biosynthesized gold nanoparticles and nanoconjugates were determined against M. tuberculosis H37Rv.
Collapse
Affiliation(s)
- M R Kamala Priya
- Post Graduate and Research Department of Biotechnology, Women's Christian College, College Road, Chennai, 600006, Tamil Nadu, India
| | - Magizhaveni Balasubramanian
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, 600031, Tamil Nadu, India
| | - Christy Rosaline Nirmal
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, 600031, Tamil Nadu, India
| | - Azger Dusthakeer
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, 600031, Tamil Nadu, India
| | - Priya R Iyer
- Post Graduate and Research Department of Biotechnology, Women's Christian College, College Road, Chennai, 600006, Tamil Nadu, India.
| |
Collapse
|
15
|
Menéndez Miranda M, Liu W, Godinez-Leon JA, Amanova A, Houel-Renault L, Lampre I, Remita H, Gref R. Colloidal Silver Nanoparticles Obtained via Radiolysis: Synthesis Optimization and Antibacterial Properties. Pharmaceutics 2023; 15:1787. [PMID: 37513974 PMCID: PMC10383763 DOI: 10.3390/pharmaceutics15071787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) with broad-spectrum antimicrobial properties are gaining increasing interest in fighting multidrug-resistant bacteria. Herein, we describe the synthesis of AgNPs, stabilized by polyvinyl alcohol (PVA), with high purity and homogeneous sizes, using radiolysis. Solvated electrons and reducing radicals are induced from solvent radiolysis and no other chemical reducing agents are needed to reduce the metal ions. Another advantage of this method is that it leads to sterile colloidal suspensions, which can be directly used for medical applications. We systematically investigated the effect of the silver salt precursor on the optical properties, particle size, and morphology of the resulting colloidal AgNPs. With Ag2SO4 precursor, the AgNPs displayed a narrow size distribution (20 ± 2 nm). In contrast, AgNO3 and AgClO4 precursors lead to inhomogeneous AgNPs of various shapes. Moreover, the optimized AgNPs synthesized from Ag2SO4 were stable upon storage in water and phosphate-buffered saline (PBS) and were very effective in inhibiting the growth of Staphylococcus aureus (S. aureus) at a concentration of 0.6 μg·mL-1 while completely eradicating it at a concentration of 5.6 μg·mL-1. When compared with other AgNPs prepared by other strategies, the remarkable bactericidal ability against S. aureus of the AgNPs produced here opens up new perspectives for further applications in medicine, cosmetics, the food industry, or in elaborating antibacterial surfaces and other devices.
Collapse
Affiliation(s)
- Mario Menéndez Miranda
- Institut de Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, 91400 Orsay, France
| | - Wenbo Liu
- Institut de Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, 91400 Orsay, France
| | | | - Aisara Amanova
- Institut de Chimie Physique, CNRS-UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ludivine Houel-Renault
- Institut de Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, 91400 Orsay, France
| | - Isabelle Lampre
- Institut de Chimie Physique, CNRS-UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Hynd Remita
- Institut de Chimie Physique, CNRS-UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
16
|
Rana A, Pathak S, Lim DK, Kim SK, Srivastava R, Sharma SN, Verma R. Recent Advancements in Plant- and Microbe-Mediated Synthesis of Metal and Metal Oxide Nanomaterials and Their Emerging Antimicrobial Applications. ACS APPLIED NANO MATERIALS 2023; 6:8106-8134. [DOI: 10.1021/acsanm.3c01351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Rana
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saurabh Pathak
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, South Korea
| | - Sang-Koog Kim
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Rajni Verma
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Strach A, Dulski M, Wasilkowski D, Metryka O, Nowak A, Matus K, Dudek K, Rawicka P, Kubacki J, Waloszczyk N, Mrozik A, Golba S. Microwave Irradiation vs. Structural, Physicochemical, and Biological Features of Porous Environmentally Active Silver–Silica Nanocomposites. Int J Mol Sci 2023; 24:ijms24076632. [PMID: 37047604 PMCID: PMC10095382 DOI: 10.3390/ijms24076632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Heavy metals and other organic pollutants burden the environment, and their removal or neutralization is still inadequate. The great potential for development in this area includes porous, spherical silica nanostructures with a well-developed active surface and open porosity. In this context, we modified the surface of silica spheres using a microwave field (variable power and exposure time) to increase the metal uptake potential and build stable bioactive Ag2O/Ag2CO3 heterojunctions. The results showed that the power of the microwave field (P = 150 or 700 W) had a more negligible effect on carrier modification than time (t = 60 or 150 s). The surface-activated and silver-loaded silica carrier features like morphology, structure, and chemical composition correlate with microbial and antioxidant enzyme activity. We demonstrated that the increased sphericity of silver nanoparticles enormously increased toxicity against E. coli, B. cereus, and S. epidermidis. Furthermore, such structures negatively affected the antioxidant defense system of E. coli, B. cereus, and S. epidermidis through the induction of oxidative stress, leading to cell death. The most robust effects were found for nanocomposites in which the carrier was treated for an extended period in a microwave field.
Collapse
Affiliation(s)
- Aleksandra Strach
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Anna Nowak
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Karolina Dudek
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland
| | - Patrycja Rawicka
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Jerzy Kubacki
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Natalia Waloszczyk
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
18
|
Impact of nanoparticles on amyloid β-induced Alzheimer's disease, tuberculosis, leprosy and cancer: a systematic review. Biosci Rep 2023; 43:232435. [PMID: 36630532 PMCID: PMC9905792 DOI: 10.1042/bsr20220324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology is an interdisciplinary domain of science, technology and engineering that deals with nano-sized materials/particles. Usually, the size of nanoparticles lies between 1 and 100 nm. Due to their small size and large surface area-to-volume ratio, nanoparticles exhibit high reactivity, greater stability and adsorption capacity. These important physicochemical properties attract scientific community to utilize them in biomedical field. Various types of nanoparticles (inorganic and organic) have broad applications in medical field ranging from imaging to gene therapy. These are also effective drug carriers. In recent times, nanoparticles are utilized to circumvent different treatment limitations. For example, the ability of nanoparticles to cross the blood-brain barrier and having a certain degree of specificity towards amyloid deposits makes themselves important candidates for the treatment of Alzheimer's disease. Furthermore, nanotechnology has been used extensively to overcome several pertinent issues like drug-resistance phenomenon, side effects of conventional drugs and targeted drug delivery issue in leprosy, tuberculosis and cancer. Thus, in this review, the application of different nanoparticles for the treatment of these four important diseases (Alzheimer's disease, tuberculosis, leprosy and cancer) as well as for the effective delivery of drugs used in these diseases has been presented systematically. Although nanoformulations have many advantages over traditional therapeutics for treating these diseases, nanotoxicity is a major concern that has been discussed subsequently. Lastly, we have presented the promising future prospective of nanoparticles as alternative therapeutics. In that section, we have discussed about the futuristic approach(es) that could provide promising candidate(s) for the treatment of these four diseases.
Collapse
|
19
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
20
|
Chintapula U, Chikate T, Sahoo D, Kieu A, Guerrero Rodriguez ID, Nguyen KT, Trott D. Immunomodulation in age-related disorders and nanotechnology interventions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1840. [PMID: 35950266 PMCID: PMC9840662 DOI: 10.1002/wnan.1840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tanmayee Chikate
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deepsundar Sahoo
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Amie Kieu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
21
|
A Novel Biocidal Nanocomposite: Spherical Silica with Silver Ions Anchored at the Surface. Int J Mol Sci 2022; 24:ijms24010545. [PMID: 36613985 PMCID: PMC9820474 DOI: 10.3390/ijms24010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
This article is devoted to a novel class of antimicrobial agents: nanocomposites composed of spherical silica and silver ions located at the silica's surface with the assumed distribution. Such materials are in high demand due to the increasing threat from bacterial strains that are becoming resistant to currently known antibiotics. In particular, we focus on materials that make it possible to limit the growth of bacterial colonies on a variety of tactile surfaces. In this paper, we present a method for preparing a silica-based nanocomposite containing silver ions and the analysis of their antimicrobial properties. Our research revealed that the presence of tested nanocomposite induces very high oxidative stress in the bacteria cell, damaging and modifying bacterial DNA, creating oxidized guanines, cytosines, or adenines, which causes its very rapid destruction, leading to cell death.
Collapse
|
22
|
Chen M, Shou Z, Jin X, Chen Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv 2022; 29:2442-2458. [PMID: 35892224 PMCID: PMC9341380 DOI: 10.1080/10717544.2022.2089294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A boom in respiratory tract infection cases has inflicted a socio-economic burden on the healthcare system worldwide, especially in developing countries. Limited alternative therapeutic options have posed a major threat to human health. Nanotechnology has brought an immense breakthrough in the pharmaceutical industry in a jiffy. The vast applications of nanotechnology ranging from early diagnosis to treatment strategies are employed for respiratory tract infections. The research avenues explored a multitude of nanosystems for effective drug delivery to the target site and combating the issues laid through multidrug resistance and protective niches of the bacteria. In this review a brief introduction to respiratory diseases and multifaceted barriers imposed by bacterial infections are enlightened. The manuscript reviewed different nanosystems, i.e. liposomes, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, nanogels, and metallic (gold and silver) which enhanced bactericidal effects, prevented biofilm formation, improved mucus penetration, and site-specific delivery. Moreover, most of the nanotechnology-based recent research is in a preclinical and clinical experimental stage and safety assessment is still challenging.
Collapse
Affiliation(s)
- Minhua Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhangxuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Taizhou, China
| |
Collapse
|
23
|
Anyaegbunam NJ, Anekpo CC, Anyaegbunam ZKG, Doowuese Y, Chinaka CB, Odo OJ, Sharndama HC, Okeke OP, Mba IE. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol Res 2022; 264:127155. [PMID: 35969943 DOI: 10.1016/j.micres.2022.127155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022]
Abstract
Phage therapy was implemented almost a century ago but was subsequently abandoned when antibiotics emerged. However, the rapid emergence of drug-resistant, which has brought to the limelight situation reminiscent of the pre-antibiotic era, coupled with the unavailability of new drugs, has triggered the quest for an alternative therapeutic approach, and this has led to the rebirth of phage-derived therapy. Phages are viruses that infect and replicate in bacterial cells. Phage therapy, especially phage-derived proteins, is being given considerable attention among scientists as an antimicrobial agent. They are used alone or in combination with other biomaterials for improved biological activity. Over the years, much has been learned about the genetics and diversity of bacteriophages. Phage cocktails are currently being exploited for treating several infectious diseases as preliminary studies involving animal models and clinical trials show promising therapeutic efficacy. However, despite its numerous advantages, this approach has several challenges and unaddressed limitations. Addressing these issues requires lots of creativity and innovative ideas from interdisciplinary fields. However, with all available indications, phage therapy could hold the solution in this era of increasing antibiotic resistance. This review discussed the potential use of phages and phage-derived proteins in treating drug-resistant bacterial infections. Finally, we highlight the progress, challenges, and knowledge gaps and evaluate key questions requiring prompt attention for the full clinical application of phage therapy.
Collapse
Affiliation(s)
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat (ENT), College of Medicine, Enugu state University of Science and Technology, Enugu, Nigeria
| | - Zikora Kizito Glory Anyaegbunam
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | | | | | | | | | | |
Collapse
|
24
|
Dermody R, Ali F, Popovich J, Chen S, Seo DK, Haydel SE. Modified aluminosilicates display antibacterial activity against nontuberculous mycobacteria and adsorb mycolactone and Mycobacterium ulcerans in vitro. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.1016426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mycobacterium ulcerans (MU) infection of skin and soft tissue leads to chronic skin ulceration known as Buruli ulcer. MU releases a lipid-like toxin, mycolactone, that diffuses into the tissue, effecting disease through localized tissue necrosis and immunosuppression. Cutaneous Buruli ulcer wounds slowly advance from a painless pre-ulcerative stage to an ulcerative lesion, leading to disparities in the timing of medical intervention and treatment outcomes. Novel Buruli ulcer wound management solutions could complement and supplement systemically administered antimicrobials and reduce time to healing. Capitalizing on nanopore structure, adsorption, and exchange capacities, aluminosilicate nanozeolites (nZeos) and geopolymers (GPs) were developed and investigated in the context of therapeutics for mycobacterial disease ulcerative wound care. nZeos were ion exchanged with copper or silver to assess the antimicrobial activity against MU and Mycobacterium marinum, a rapid growing, genetic ancestor of MU that also causes skin and soft tissue infections. Silver- and copper-exchanged nZeos were bactericidal against MU, while only silver-exchanged nZeos killed M. marinum. To mediate adsorption at a biological scale, GPs with different pore sizes and altered surface modifications were generated and assessed for the ability to adsorb MU and mycolactone. Macroporous GPs with and without stearic acid modification equivalently adsorbed MU cells, while mesoporous GPs with stearic acid adsorbed mycolactone toxin significantly better than mesoporous GPs or GPs modified with phenyltriethoxysilane (PTES). In cytotoxicity assays, Cu-nZeos lacked toxicity against Detroit 551, U-937, and WM-115 cells. GPs demonstrated limited cytotoxicity in Detroit 551 and WM-115, but produced time-dependent toxicity in U-937 cells. With their large surface area and adsorptive capacities, aluminosilicates nZeos and GPs may be modified and developed to support conventional BU wound care. Topical application of nZeos and GPs could kill MU within the cutaneous wound environment and physically remove MU and mycolactone with wound dressing changes, thereby improving wound healing and overall patient outcomes.
Collapse
|
25
|
Pop R, Tăbăran AF, Ungur AP, Negoescu A, Cătoi C. Helicobacter Pylori-Induced Gastric Infections: From Pathogenesis to Novel Therapeutic Approaches Using Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071463. [PMID: 35890358 PMCID: PMC9318142 DOI: 10.3390/pharmaceutics14071463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori is the first formally recognized bacterial carcinogen and the most important single digestive pathogen responsible for the induction of gastroduodenal diseases such as gastritis, peptic ulcer, and, finally, gastric neoplasia. The recently reported high rates of antimicrobial drug resistance hamper the current therapies of H. pylori, with therapeutic failure reaching up to 40% of patients. In this context, new treatment options and strategies are urgently needed, but the successful development of these new therapeutic tools is conditioned by the understanding of the high adaptability of H. pylori to the gastric acidic environment and the complex pathogenic mechanism. Due to several advantages, including good antibacterial efficiency, possible targeted delivery, and long tissular persistence, silver nanoparticles (AgNPs) offer the opportunity of exploring new strategies to improve the H. pylori therapy. A new paradigm in the therapy of H. pylori gastric infections using AgNPs has the potential to overcome the current medical limitations imposed by the H. pylori drug resistance, which is reported for most of the current organic antibiotics employed in the classical therapies. This manuscript provides an extensive overview of the pathology of H. pylori-induced gastritis, gastric cancer, and extradigestive diseases and highlights the possible benefits and limitations of employing AgNPs in the therapeutic strategies against H. pylori infections.
Collapse
|
26
|
Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli. NANOMATERIALS 2022; 12:nano12132183. [PMID: 35808019 PMCID: PMC9268453 DOI: 10.3390/nano12132183] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 μg/mL and 20 ± 5, 15 + 5, 15 + 5 μg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.
Collapse
|
27
|
Fadaka AO, Meyer S, Ahmed O, Geerts G, Madiehe MA, Meyer M, Sibuyi NRS. Broad Spectrum Anti-Bacterial Activity and Non-Selective Toxicity of Gum Arabic Silver Nanoparticles. Int J Mol Sci 2022; 23:1799. [PMID: 35163718 PMCID: PMC8836460 DOI: 10.3390/ijms23031799] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Silver nanoparticles (AgNPs) are the most commercialized nanomaterials and presumed to be biocompatible based on the biological effects of the bulk material. However, their physico-chemical properties differ significantly to the bulk materials and are associated with unique biological properties. The study investigated the antimicrobial and cytotoxicity effects of AgNPs synthesized using gum arabic (GA), sodium borohydride (NaBH4), and their combination as reducing agents. The AgNPs were characterized using ultraviolet-visible spectrophotometry (UV-Vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The anti-bacterial activity was assessed using agar well diffusion and microdilution assays, and the cytotoxicity effects on Caco-2, HT-29 and KMST-6 cells using MTT assay. The GA-synthesized AgNPs (GA-AgNPs) demonstrated higher bactericidal activity against all bacteria, and non-selective cytotoxicity towards normal and cancer cells. AgNPs reduced by NaBH4 (C-AgNPs) and the combination of GA and NaBH4 (GAC-AgNPs) had insignificant anti-bacterial activity and cytotoxicity at ≥50 µg/mL. The study showed that despite the notion that AgNPs are safe and biocompatible, their toxicity cannot be overruled and that their toxicity can be channeled by using biocompatible polymers, thereby providing a therapeutic window at concentrations that are least harmful to mammalian cells but toxic to bacteria.
Collapse
Affiliation(s)
- Adewale O. Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape (UWC), Bellville 7535, South Africa; (A.O.F.); (M.A.M.)
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Omnia Ahmed
- Department of Restorative Dentistry; University of the Western Cape, Bellville 7535, South Africa; (O.A.); (G.G.)
| | - Greta Geerts
- Department of Restorative Dentistry; University of the Western Cape, Bellville 7535, South Africa; (O.A.); (G.G.)
| | - Madimabe A. Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape (UWC), Bellville 7535, South Africa; (A.O.F.); (M.A.M.)
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape (UWC), Bellville 7535, South Africa; (A.O.F.); (M.A.M.)
| | - Nicole R. S. Sibuyi
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
28
|
Tong Q, Li T, Jiang L, Wang Z, Qian Y. Nanoparticle, a promising therapeutic strategy for the treatment of infective endocarditis. Anatol J Cardiol 2022; 26:90-99. [PMID: 35190356 PMCID: PMC8878918 DOI: 10.5152/anatoljcardiol.2021.867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 07/30/2023] Open
Abstract
Infective endocarditis (IE) has been recognized as a biofilm-related disease caused by pathogenic microorganisms, such as bacteria and fungi that invade and damage the heart valves and endocardium. There are many difficulties and challenges in the antimicrobial treatment of IE, including multi-drug resistant pathogens, large dose of drug administration with following side effects, and poor prognosis. For the past few years, the development of nanotechnology has promoted the use of nanoparticles as antimicrobial nano-pharmaceuticals or novel drug delivery systems (NDDS) in antimicrobial therapy for chronic infections and biofilm-related infectious disease as these molecules exhibit several advantages. Therefore, nanoparticles have a potential role to play in solving problems in the treatment of IE, including improving antimicrobial activity, increasing drug bioavailability, minimizing frequency of drug administration, and preventing side effects. In this article, we review the latest advances in nanoparticles against drug-resistant bacteria in biofilm and recommends nanoparticles as an alternative strategy to the antibiotic treatment of IE.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| | - Tao Li
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| | - Lu Jiang
- Department of Cardiovascular Surgery, Sichuan Provincial People's University of Electronic Science and Technology of China; Chengdu-China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| |
Collapse
|
29
|
Swain SS, Pati S, Hussain T. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. Eur J Med Chem 2022; 232:114173. [DOI: 10.1016/j.ejmech.2022.114173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
|
30
|
Mba IE, Nweze EI. Application of Nanotechnology in the Treatment of Infectious Diseases: An Overview. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:25-51. [DOI: 10.1007/978-981-16-9190-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
31
|
Chen CC, Chen YY, Yeh CC, Hsu CW, Yu SJ, Hsu CH, Wei TC, Ho SN, Tsai PC, Song YD, Yen HJ, Chen XA, Young JJ, Chuang CC, Dou HY. Alginate-Capped Silver Nanoparticles as a Potent Anti-mycobacterial Agent Against Mycobacterium tuberculosis. Front Pharmacol 2021; 12:746496. [PMID: 34899300 PMCID: PMC8660078 DOI: 10.3389/fphar.2021.746496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a leading cause of death from a single infectious agent, Mycobacterium tuberculosis (Mtb). Although progress has been made in TB control, still about 10 million people worldwide develop TB annually and 1.5 million die of the disease. The rapid emergence of aggressive, drug-resistant strains and latent infections have caused TB to remain a global health challenge. TB treatments are lengthy and their side effects lead to poor patient compliance, which in turn has contributed to the drug resistance and exacerbated the TB epidemic. The relatively low output of newly approved antibiotics has spurred research interest toward alternative antibacterial molecules such as silver nanoparticles (AgNPs). In the present study, we use the natural biopolymer alginate to serve as a stabilizer and/or reductant to green synthesize AgNPs, which improves their biocompatibility and avoids the use of toxic chemicals. The average size of the alginate-capped AgNPs (ALG-AgNPs) was characterized as nanoscale, and the particles were round in shape. Drug susceptibility tests showed that these ALG-AgNPs are effective against both drug-resistant Mtb strains and dormant Mtb. A bacterial cell-wall permeability assay showed that the anti-mycobacterial action of ALG-AgNPs is mediated through an increase in cell-wall permeability. Notably, the anti-mycobacterial potential of ALG-AgNPs was effective in both zebrafish and mouse TB animal models in vivo. These results suggest that ALG-AgNPs could provide a new therapeutic option to overcome the difficulties of current TB treatments.
Collapse
Affiliation(s)
- Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chia-Yi, Taiwan
| | - Chang-Ching Yeh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shang-Jie Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Hao Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Ting-Chun Wei
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Sin-Ni Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Chu Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yung-Deng Song
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ju Yen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Xin-An Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Chung Chuang
- School of Dentistry and Graduate Institute of Dental Science, National Defense Medical Center, Taipei, Taiwan.,Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
32
|
Huston M, DeBella M, DiBella M, Gupta A. Green Synthesis of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2130. [PMID: 34443960 PMCID: PMC8400177 DOI: 10.3390/nano11082130] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022]
Abstract
Nanotechnology is considered one of the paramount forefronts in science over the last decade. Its versatile implementations and fast-growing demand have paved the way for innovative measures for the synthesis of higher quality nanomaterials. In the early stages, traditional synthesis methods were utilized, and they relied on both carcinogenic chemicals and high energy input for production of nano-sized material. The pollution produced as a result of traditional synthesis methods induces a need for environmentally safer synthesis methods. As the downfalls of climate change become more abundant, the scientific community is persistently seeking solutions to combat the devastation caused by toxic production methods. Green methods for nanomaterial synthesis apply natural biological systems to nanomaterial production. The present review highlights the history of nanoparticle synthesis, starting with traditional methods and progressing towards green methods. Green synthesis is a method just as effective, if not more so, than traditional synthesis; it provides a sustainable approach to nanomaterial manufacturing by using naturally sourced starting materials and relying on low energy processes. The recent use of active molecules in natural biological systems such as bacteria, yeast, algae and fungi report successful results in the synthesis of various nanoparticle systems. Thus, the integration of green synthesis in scientific research and mass production provides a potential solution to the limitations of traditional synthesis methods.
Collapse
Affiliation(s)
- Matthew Huston
- Internal Medicine-Infectious Disease, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Melissa DeBella
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT 06117, USA; (M.D.); (M.D.)
| | - Maria DiBella
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT 06117, USA; (M.D.); (M.D.)
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT 06117, USA; (M.D.); (M.D.)
| |
Collapse
|
33
|
Mondoni M, Saderi L, Sotgiu G. Novel treatments in multidrug-resistant tuberculosis. Curr Opin Pharmacol 2021; 59:103-115. [PMID: 34186381 DOI: 10.1016/j.coph.2021.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The management of multidrug-resistant tuberculosis (TB) is associated with low treatment success, high mortality and failure rates. New drugs and novel short-therapeutic regimens have only recently helped overcome these obstacles. We carried out a narrative literature review aimed at summarizing the scientific evidence on the recent therapeutic advances in the field of drug-resistant TB. Experimental and observational studies on novel (i.e. bedaquiline, delamanid, pretomanid) drugs and novel regimens and the main pharmacological characteristics of the newest compounds are described. We also highlight the main scientific evidence on therapeutic strategies complementary to standard chemotherapy (i.e. new approaches to drug delivery, host-directed therapy, surgery, new collapse therapy, rehabilitation, and palliative care).
Collapse
Affiliation(s)
- Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Dept of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Dept of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy.
| |
Collapse
|
34
|
Behzad F, Sefidgar E, Samadi A, Lin W, Pouladi I, Pi J. An overview of zinc oxide nanoparticles produced by plant extracts for anti-tuberculosis treatments. Curr Med Chem 2021; 29:86-98. [PMID: 34126883 DOI: 10.2174/0929867328666210614122109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB), induced by Mycobacterium tuberculosis (MTB), is a fatal infectious disease that kills millions of lives worldwide. The emergence of drug-resistant and multidrug-resistant cases is regarded as one of the most challenging threats to TB control due to the low cure rate. Therefore, TB and drug-resistant TB epidemics urge us to explore more effective therapies. The increasing knowledge of nanotechnology has extended to some nanomedicines for disease treatment in the clinic, which also provides novel possibilities for nano-based medicines for TB treatment. Zinc oxide nanoparticles (ZnO NPs) have gained increasing attention for anti-bacterial uses based on their strong ability to induce reactive oxidative species (ROS) and release bactericidal Zinc ions (Zn2+), which are expected to act as novel strategies for TB and drug-resistant TB treatment. Some active herbal medicines from plant extracts have been widely reported to show attractive anti-bacterial activity for infectious treatment, including TB. Here, we summarize the synthesis of ZnO NPs using plant extracts (green synthesized ZnO NPs) and further discuss their potentials for anti-TB treatments. This is the first review article discussing the anti-TB activity of ZnO NPs produced using plant extracts, which might contribute to the further applications of green synthesized ZnO NPs for anti-TB and drug-resistant TB treatment.
Collapse
Affiliation(s)
- Farahnaz Behzad
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Sefidgar
- Department of Biological Sciences٫ Institute for Advanced Studies in Basic Sciences٫ Zanjan, Iran
| | - Azam Samadi
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Wensen Lin
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Iman Pouladi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
35
|
Agnihotri AS, Fatima Z, Hameed S, Nidhin M. Highly Surface Active Anisotropic Silver Nanoparticles as Antimicrobial Agent Against Human Pathogens,
Mycobacterium smegmatis
and
Candida albicans. ChemistrySelect 2021. [DOI: 10.1002/slct.202101250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ananya S. Agnihotri
- Department of Chemistry CHRIST (Deemed to be University) Hosur road Bengaluru 560029 India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology Amity University Haryana, Amity Education Valley Gurugram 122413 India
| | - Saif Hameed
- Amity Institute of Biotechnology Amity University Haryana, Amity Education Valley Gurugram 122413 India
| | - M. Nidhin
- Department of Chemistry CHRIST (Deemed to be University) Hosur road Bengaluru 560029 India
| |
Collapse
|
36
|
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021. [PMID: 34046779 DOI: 10.1007/s11274-021-03070-x/tables/5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimicrobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to nanoparticles, current challenges, and future prospects were extensively discussed.
Collapse
Affiliation(s)
- Ifeanyi E Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
37
|
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021; 37:108. [PMID: 34046779 PMCID: PMC8159659 DOI: 10.1007/s11274-021-03070-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimicrobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to nanoparticles, current challenges, and future prospects were extensively discussed.
Collapse
Affiliation(s)
- Ifeanyi E Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
38
|
Rajendraprasad S, Destache C, Quimby D. Mycobacterium Avium Complex Genitourinary Infections: Case Report and Literature Review. Infect Dis Rep 2021; 13:454-464. [PMID: 34073729 PMCID: PMC8162349 DOI: 10.3390/idr13020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial (NTM) genitourinary (GU) infections are relatively rare, and there is frequently a delay in diagnosis. Mycobacterium avium-intracellulare complex (MAC) cases seem to be less frequent than other NTM as a cause of these infections. In addition, there are no set treatment guidelines for these organisms in the GU tract. Given the limitations of data this review summarizes a case presentation of this infection and the literature available on the topic. Many different antimicrobial regimens and durations have been used in the published literature. While the infrequency of these infections suggests that there will not be randomized controlled trials to determine optimal therapy, our case suggests that a brief course of amikacin may play a useful role in those who cannot tolerate other antibiotics.
Collapse
Affiliation(s)
| | | | - David Quimby
- School of Medicine, Creighton University, Omaha, NE 68124, USA;
- Correspondence:
| |
Collapse
|
39
|
Horstmann C, Davenport V, Zhang M, Peters A, Kim K. Transcriptome Profile Alterations with Carbon Nanotubes, Quantum Dots, and Silver Nanoparticles: A Review. Genes (Basel) 2021; 12:genes12060794. [PMID: 34070957 PMCID: PMC8224664 DOI: 10.3390/genes12060794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing (NGS) technology has revolutionized sequence-based research. In recent years, high-throughput sequencing has become the method of choice in studying the toxicity of chemical agents through observing and measuring changes in transcript levels. Engineered nanomaterial (ENM)-toxicity has become a major field of research and has adopted microarray and newer RNA-Seq methods. Recently, nanotechnology has become a promising tool in the diagnosis and treatment of several diseases in humans. However, due to their high stability, they are likely capable of remaining in the body and environment for long periods of time. Their mechanisms of toxicity and long-lasting effects on our health is still poorly understood. This review explores the effects of three ENMs including carbon nanotubes (CNTs), quantum dots (QDs), and Ag nanoparticles (AgNPs) by cross examining publications on transcriptomic changes induced by these nanomaterials.
Collapse
Affiliation(s)
- Cullen Horstmann
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville, Springfield, MO 65806, USA
| | - Victoria Davenport
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville, Springfield, MO 65806, USA
| | - Min Zhang
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville, Springfield, MO 65806, USA
| | - Alyse Peters
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville, Springfield, MO 65806, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Correspondence:
| |
Collapse
|
40
|
Rankine-Wilson LI, Shapira T, Sao Emani C, Av-Gay Y. From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001041. [PMID: 33826491 PMCID: PMC8289223 DOI: 10.1099/mic.0.001041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is an obligate human pathogen killing millions of people annually. Treatment for tuberculosis is lengthy and complicated, involving multiple drugs and often resulting in serious side effects and non-compliance. Mtb has developed numerous complex mechanisms enabling it to not only survive but replicate inside professional phagocytes. These mechanisms include, among others, overcoming the phagosome maturation process, inhibiting the acidification of the phagosome and inhibiting apoptosis. Within the past decade, technologies have been developed that enable a more accurate understanding of Mtb physiology within its intracellular niche, paving the way for more clinically relevant drug-development programmes. Here we review the molecular biology of Mtb pathogenesis offering a unique perspective on the use and development of therapies that target Mtb during its intracellular life stage.
Collapse
Affiliation(s)
| | - Tirosh Shapira
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Carine Sao Emani
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
Kowalczyk P, Szymczak M, Maciejewska M, Laskowski Ł, Laskowska M, Ostaszewski R, Skiba G, Franiak-Pietryga I. All That Glitters Is Not Silver-A New Look at Microbiological and Medical Applications of Silver Nanoparticles. Int J Mol Sci 2021; 22:E854. [PMID: 33467032 PMCID: PMC7830466 DOI: 10.3390/ijms22020854] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/23/2022] Open
Abstract
Silver and its nanoparticles (AgNPs) have different faces, providing different applications. In recent years, the number of positive nanosilver applications has increased substantially. It has been proven that AgNPs inhibit the growth and survival of bacteria, including human and animal pathogens, as well as fungi, protozoa and arthropods. Silver nanoparticles are known from their antiviral and anti-cancer properties; however, they are also very popular in medical and pharmaceutical nanoengineering as carriers for precise delivery of therapeutic compounds, in the diagnostics of different diseases and in optics and chemistry, where they act as sensors, conductors and substrates for various syntheses. The activity of AgNPs has not been fully discovered; therefore, we need interdisciplinary research to fulfil this knowledge. New forms of products with silver will certainly find application in the future treatment of many complicated and difficult to treat diseases. There is still a lack of appropriate and precise legal condition regarding the circulation of nanomaterials and the rules governing their safety use. The relatively low toxicity, relative biocompatibility and selectivity of nanoparticle interaction combined with the unusual biological properties allow their use in animal production as well as in bioengineering and medicine. Despite a quite big knowledge on this topic, there is still a need to organize the data on AgNPs in relation to specific microorganisms such as bacteria, viruses or fungi. We decided to put this knowledge together and try to show positive and negative effects on prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Mateusz Szymczak
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Magdalena Maciejewska
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Łódź, Poland;
| | - Łukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (Ł.L.); (M.L.)
| | - Magdalena Laskowska
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (Ł.L.); (M.L.)
| | | | - Grzegorz Skiba
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Ida Franiak-Pietryga
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr., La Jolla, CA 92037, USA
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, 251 Pomorska Str., 92-213 Łódź, Poland
| |
Collapse
|
42
|
Aguilera-Correa JJ, Esteban J, Vallet-Regí M. Inorganic and Polymeric Nanoparticles for Human Viral and Bacterial Infections Prevention and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E137. [PMID: 33435597 PMCID: PMC7826792 DOI: 10.3390/nano11010137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases hold third place in the top 10 causes of death worldwide and were responsible for more than 6.7 million deaths in 2016. Nanomedicine is a multidisciplinary field which is based on the application of nanotechnology for medical purposes and can be defined as the use of nanomaterials for diagnosis, monitoring, control, prevention, and treatment of diseases, including infectious diseases. One of the most used nanomaterials in nanomedicine are nanoparticles, particles with a nano-scale size that show highly tunable physical and optical properties, and the capacity to a wide library of compounds. This manuscript is intended to be a comprehensive review of the available recent literature on nanoparticles used for the prevention and treatment of human infectious diseases caused by different viruses, and bacteria from a clinical point of view by basing on original articles which talk about what has been made to date and excluding commercial products, but also by highlighting what has not been still made and some clinical concepts that must be considered for futures nanoparticles-based technologies applications.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
43
|
Mikhailova EO. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J Funct Biomater 2020; 11:E84. [PMID: 33255874 PMCID: PMC7711612 DOI: 10.3390/jfb11040084] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
This review is devoted to the medical application of silver nanoparticles produced as a result of "green" synthesis using various living organisms (bacteria, fungi, plants). The proposed mechanisms of AgNPs synthesis and the action mechanisms on target cells are highlighted.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of innovation management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
44
|
Montalvo-Quirós S, Gómez-Graña S, Vallet-Regí M, Prados-Rosales RC, González B, Luque-Garcia JL. Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids Surf B Biointerfaces 2020; 197:111405. [PMID: 33130523 DOI: 10.1016/j.colsurfb.2020.111405] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/14/2020] [Accepted: 10/04/2020] [Indexed: 12/31/2022]
Abstract
Tuberculosis remains today a major public health issue with a total of 9 million new cases and 2 million deaths annually. The lack of an effective vaccine and the increasing emergence of new strains of Mycobacterium tuberculosis (Mtb) highly resistant to antibiotics, anticipate a complicated scenario in the near future. The use of nanoparticles features as an alternative to antibiotics in tackling this problem due to their potential effectiveness in resistant bacterial strains. In this context, silver nanoparticles have demonstrated high bactericidal efficacy, although their use is limited by their relatively high toxicity, which calls for the design of nanocarriers that allow silver based nanoparticles to be safely delivered to the target cells or tissues. In this work mesoporous silica nanoparticles are used as carriers of silver based nanoparticles as antimycobacterial agent against Mtb. Two different synthetic approaches have been used to afford, on the one hand, a 2D hexagonal mesoporous silica nanosystem which contains silver bromide nanoparticles distributed all through the silica network and, on the other hand, a core@shell nanosystem with metallic silver nanoparticles as core and mesoporous silica shell in a radial mesoporous rearrangement. Both materials have demonstrated good antimycobacterial capacity in in vitro test using Mtb, being lower the minimum inhibitory concentration for the nanosystem which contains silver bromide. Therefore, the interaction of this material with the mycobacterial cell has been studied by cryo-electron microscopy, establishing a direct connection between the antimycobactericidal effect observed and the damage induced in the cell envelope.
Collapse
Affiliation(s)
- Sandra Montalvo-Quirós
- Departament of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040, Madrid, Spain; Centro de Estudios Tecnológicos y Sociales y Facultad de Experimentales, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón Madrid, Spain
| | - Sergio Gómez-Graña
- Departament of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Vallet-Regí
- Departament of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Plaza Ramón y Cajal s/n, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Rafael C Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, Faculty of Medicine, Autonoma University of Madrid, Spain
| | - Blanca González
- Departament of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Plaza Ramón y Cajal s/n, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Jose L Luque-Garcia
- Departament of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
45
|
Simões MF, Ottoni CA, Antunes A. Mycogenic Metal Nanoparticles for the Treatment of Mycobacterioses. Antibiotics (Basel) 2020; 9:E569. [PMID: 32887358 PMCID: PMC7559022 DOI: 10.3390/antibiotics9090569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
Mycobacterial infections are a resurgent and increasingly relevant problem. Within these, tuberculosis (TB) is particularly worrying as it is one of the top ten causes of death in the world and is the infectious disease that causes the highest number of deaths. A further concern is the on-going emergence of antimicrobial resistance, which seriously limits treatment. The COVID-19 pandemic has worsened current circumstances and future infections will be more incident. It is urgent to plan, draw solutions, and act to mitigate these issues, namely by exploring new approaches. The aims of this review are to showcase the extensive research and application of silver nanoparticles (AgNPs) and other metal nanoparticles (MNPs) as antimicrobial agents. We highlight the advantages of mycogenic synthesis, and report on their underexplored potential as agents in the fight against all mycobacterioses (non-tuberculous mycobacterial infections as well as TB). We propose further exploration of this field.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China;
| | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China;
| |
Collapse
|