1
|
Zhang J, Zou Z, He Y, Filipczak N, Yalamarty SSK, Li X, Torchilin VP. Hybrid micellar preparations for co-delivery of PARP-1 siRNA and quercetin for cataract treatment. J Control Release 2025; 382:113700. [PMID: 40189052 DOI: 10.1016/j.jconrel.2025.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Cataract remains a major cause of ocular blindness. Cyclic Arg-Gly-Asp-d-Phe-Lys (RGD) peptide was introduced to the surface of self-assembled hybrid micelles for the co-delivery of poly (ADP-ribose) polymerase 1 (PARP-1) small-interfering RNA (siRNA) and quercetin (Q/siP-c-M). Q/siP-c-M exhibited uniform particle size distribution, good dispersibility, high encapsulation efficiency, and strong stability for siRNA and quercetin. Q/siP-c-M significantly improved the transcorneal co-delivery of siRNA and quercetin to the deeper cornea and led to greater drug accumulation. In addition, Q/siP-c-M significantly increased the activity of catalase and the content of adenosine triphosphate (ATP), reduced the expression of PARP-1 protein, and effectively prevented lipid peroxidation in the lens. Among selenite-induced cataract rats, the Q/siP-c-M-treated rats produced higher levels of ATP and catalase, as well as lower levels of malondialdehyde and PARP-1 protein expression compared with those in the model group. Administration of quercetin further resulted in a decrease in neutrophil extracellular trap formation and downregulation of gene expression of related proteins and pro-inflammatory cytokines. These observations indicated that quercetin has the potential to serve as a therapeutic for alleviating an excessive inflammatory reaction characterized by an overabundance of neutrophil extracellular traps in the eyes. Therefore, this study highlights the potential of Q/siP-c-M against cataract development through the regulation of the immune response by regulating inflammatory conditions. Furthermore, Q/siP-c-M may offer benefits in terms of apoptosis attenuation for lens epithelial cells.
Collapse
Affiliation(s)
- Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Key Laboratory of Modern Preparation of TCM, Ministry of Education, State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Nanchang 330004, Jiangxi, China
| | - Zhilin Zou
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Key Laboratory of Modern Preparation of TCM, Ministry of Education, State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yao He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Key Laboratory of Modern Preparation of TCM, Ministry of Education, State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| | | | - Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Key Laboratory of Modern Preparation of TCM, Ministry of Education, State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| |
Collapse
|
2
|
Coufalova M, Rodrigo MAM, Michalkova H, Milosavljevic V, Hrazdilova K, Zurek L, Cihalova K. Antibacterial activity of the novel peptide Pac-525 with the RGD motif against intracellular Escherichia coli. Sci Rep 2025; 15:19995. [PMID: 40481070 PMCID: PMC12144240 DOI: 10.1038/s41598-025-04901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/29/2025] [Indexed: 06/11/2025] Open
Abstract
Infections caused by invasive intracellular bacteria pose major therapeutic challenges due to pathogen survival and growth inside of host cells as well as the low intracellular accessibility for conventional antibiotics. The limited ability of most antibiotics to enter intracellular compartments underscores the urgent need for innovative antimicrobial agents capable of overcoming these barriers. In this study, the antibacterial peptide Pac525 was synthesized with the RGD domain to facilitate efficient penetration into eukaryotic cells. The efficacy and safety of RGD-Pac525 was evaluated in intracellular infection models, using the macrophage cell line RAW 264.7, chicken intestinal organoids, and chicken embryo tissues via the chorioallantoic membrane (CAM). Our findings from cell line experiments demonstrate that the RGD-Pac525 peptide retained the antimicrobial properties of the original peptide without compromising its efficacy. While RGD-Pac525 reduced the intracellular adherent-invasive pathogen Escherichia coli KV203 by 50% in RAW 264.7 macrophage cells, it did not adversely affect the macrophage viability. Additionally, RGD-Pac525 effectively reduced the intracellular bacterial burden in organoids, without compromising their structural integrity. In ovo bioassays, a substantial reduction in the bacterial load was observed in liver and intestinal tissues, indicating the peptide ability to achieve systemic distribution and to overcome tissue barriers. RGD-Pac525 was effective in infection models by suppressing bacterial growth. Preliminary observations suggest it may also affect host responses, indicating a potential for combined antimicrobial and therapeutic effects that warrant further studies. This study provides a compelling proof of concept for utilizing RGD-modified antimicrobial peptides for treatment of intracellular bacterial infections.
Collapse
Affiliation(s)
- Martina Coufalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Miguel A M Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Kristýna Hrazdilova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Jony MJ, Joshi A, Dash A, Shukla S. Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders. Pharmaceuticals (Basel) 2025; 18:87. [PMID: 39861150 PMCID: PMC11768406 DOI: 10.3390/ph18010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Inherited retinal disorders (IRDs) represent a group of challenging genetic conditions that often lead to severe visual impairment or blindness. The complexity of these disorders, arising from their diverse genetic causes and the unique structural and functional aspects of retinal cells, has made developing effective treatments particularly challenging. Recent advancements in gene therapy, especially non-viral nucleic acid delivery systems like liposomes, solid lipid nanoparticles, dendrimers, and polymersomes, offer promising solutions. These systems provide advantages over viral vectors, including reduced immunogenicity and enhanced targeting capabilities. This review delves into introduction of common IRDs such as Leber congenital amaurosis, retinitis pigmentosa, Usher syndrome, macular dystrophies, and choroideremia and critically assesses current treatments including neuroprotective agents, cellular therapy, and gene therapy along with their limitations. The focus is on the emerging role of non-viral delivery systems, which promise to address the current limitations of specificity, untoward effects, and immunogenicity in existing gene therapies. Additionally, this review covers recent clinical trial developments in gene therapy for retinal disorders.
Collapse
Affiliation(s)
- Md Jobair Jony
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Ameya Joshi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Alekha Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Surabhi Shukla
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
4
|
Tang H, Li X, Jin L, Dong J, Yang L, Li C, Zhang L, Cheng F. Applications and latest research progress of liposomes in the treatment of ocular diseases. Biointerphases 2025; 20:010801. [PMID: 39785116 DOI: 10.1116/6.0004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity. Administration in the posterior part of the eye is more difficult, and intravitreal injection is often used. But intravitreal injection faces the problems of poor patient compliance and likely side effects after multiple injections. The development of nanocarrier technology provides an effective way to solve these problems. Among them, liposomes, as the most widely used carrier in clinical application, have the characteristics of amphiphilic nanostructure, easy surface modification, extended release time, good biocompatibility, etc. The liposomes are expected to overcome obstacles and effectively deliver drugs to the target site to improve ocular drug bioavailability. This review summarized the various controllable properties of liposomes for ocular delivery as well as the application and research progress of liposomes in various ocular diseases. In addition, we summarized the physiological barriers and routes of administration contained in eyes, as well as the prospects of liposomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Tang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Xinnan Li
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Jicheng Dong
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Li Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Chunmei Li
- Tsinghua International School Daoxiang Lake, Beijing 100194, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang 315032, China
| |
Collapse
|
5
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
6
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
7
|
Dzhumashev D, Anton-Joseph S, Morel VJ, Timpanaro A, Bordon G, Piccand C, Aleandri S, Luciani P, Rössler J, Bernasconi M. Rapid liposomal formulation for nucleolin targeting to rhabdomyosarcoma cells. Eur J Pharm Biopharm 2024; 194:49-61. [PMID: 38029941 DOI: 10.1016/j.ejpb.2023.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. More effective and less toxic therapies are urgently needed for high-risk patients. Peptide-guided targeted drug delivery can increase the therapeutic index of encapsulated drugs and improve patients' well-being. To apply this strategy to RMS, we identified the peptide F3 in a screening for peptides binding to RMS cells surface. F3 binds to nucleolin, which is present on the surface of RMS cells and is abundantly expressed at the mRNA level in RMS patients' biopsies compared to healthy tissues. We developed a rapid microfluidic formulation of F3-decorated PEGylated liposomes and remote loading of the chemotherapeutic drug vincristine. Size, surface charge, drug loading and retention of targeted and control liposomes were studied. Enhanced cellular binding and uptake were observed in three different nucleolin-positive RMS cell lines. Importantly, F3-functionalized liposomes loaded with vincristine were up to 11 times more cytotoxic than non-targeted liposomes for RMS cell lines. These results demonstrate that F3-functionalized liposomes are promising for targeted drug delivery to RMS and warrant further in vivo investigations.
Collapse
Affiliation(s)
- Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stenija Anton-Joseph
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Victoria J Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
8
|
Parashar R, Vyas A, Sah AK, Hemnani N, Thangaraju P, Suresh PK. Recent Updates on Nanocarriers for Drug Delivery in Posterior Segment Diseases with Emphasis on Diabetic Retinopathy. Curr Diabetes Rev 2024; 20:e171023222282. [PMID: 37855359 DOI: 10.2174/0115733998240053231009060654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 10/20/2023]
Abstract
In recent years, various conventional formulations have been used for the treatment and/or management of ocular medical conditions. Diabetic retinopathy, a microvascular disease of the retina, remains the leading cause of visual disability in patients with diabetes. Currently, for treating diabetic retinopathy, only intraocular, intravitreal, periocular injections, and laser photocoagulation are widely used. Frequent administration of these drugs by injections may lead to serious complications, including retinal detachment and endophthalmitis. Although conventional ophthalmic formulations like eye drops, ointments, and suspensions are available globally, these formulations fail to achieve optimum drug therapeutic profile due to immediate nasolacrimal drainage, rapid tearing, and systemic tearing toxicity of the drugs. To achieve better therapeutic outcomes with prolonged release of the therapeutic agents, nano-drug delivery materials have been investigated. These nanocarriers include nanoparticles, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), dendrimers, nanofibers, in-situ gel, vesicular carriers, niosomes, and mucoadhesive systems, among others. The nanocarriers carry the potential benefits of site-specific delivery and controlled and sustained drug release profile. In the present article, various nanomaterials explored for treating diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Ravi Parashar
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | - Amber Vyas
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | - Abhishek K Sah
- Department of Pharmacy, Shri Govindram Seksariya Institute of Technology & Science (SGSITS), 23-Park Road, Indore, 452003 (M.P.), India
| | - Narayan Hemnani
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | | | - Preeti K Suresh
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| |
Collapse
|
9
|
Shi Y, Dong M, Wu Y, Gong F, Wang Z, Xue L, Su Z. An elastase-inhibiting, plaque-targeting and neutrophil-hitchhiking liposome against atherosclerosis. Acta Biomater 2024; 173:470-481. [PMID: 37984628 DOI: 10.1016/j.actbio.2023.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Neutrophil extracellular traps (NETs) play a crucial role in the formation of vulnerable plaques and the development of atherosclerosis. Alleviating the pathological process of atherosclerosis by efficiently targeting neutrophils and inhibiting the activity of neutrophil elastase to inhibit NETs is relatively unexplored and is considered a novel therapeutic strategy with clinical significance. Sivelestat (SVT) is a second-generation competitive inhibitor of neutrophil elastase with high specificity. However, therapeutic effect of SVT on atherosclerosis is restricted because of the poor half-life and the lack of specific targeting. In this study, we construct a plaque-targeting and neutrophil-hitchhiking liposome (cRGD-SVT-Lipo) to improve the efficacy of SVT in vivo by modifying the cRGD peptide onto SVT loaded liposome, which was based on the interaction between cRGD peptide and integrin ανβ3 on the surface of cells in blood and plaque, including epithelial cell, macrophage and neutrophils. The cRGD-SVT-Lipo could actively tend to or hitchhike neutrophils in situ to reach atherosclerotic plaque, which resulted in enhanced atherosclerotic plaque delivery. The cRGD-SVT-Lipo could also reduce plaque area, stabilize plaque, and ultimately alleviate atherosclerosis progression through efficiently inhibiting the activity of neutrophil elastase in atherosclerotic plaque. Therefore, this study provides a basis and targeting strategy for the treatment of neutrophil-related diseases. STATEMENT OF SIGNIFICANCE: Neutrophil extracellular traps (NETs)-inhibiting is a prospective therapeutic approach for atherosclerosis but has received little attention. The NETs can be inhibited by elastase-restraining. In this work, an intriguing system that delivers Sivelestat (SVT), a predominantly used neutrophil elastase inhibitor with poor targeting capability, is designed to provide the drug with plaque-targeting and neutrophil-hitchhiking capability. The result suggests that this system can effectively hinder the formation of NETs and delay the progression of atherosclerosis.
Collapse
Affiliation(s)
- Yin Shi
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Mei Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fanglin Gong
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zibin Wang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
10
|
Fan X, Jiang K, Geng F, Lu W, Wei G. Ocular therapies with biomacromolecules: From local injection to eyedrop and emerging noninvasive delivery strategies. Adv Drug Deliv Rev 2023; 197:114864. [PMID: 37156266 DOI: 10.1016/j.addr.2023.114864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The last two decades have witnessed a continuously increasing number of biomacromolecules approved for the treatment of ocular diseases. The eye possesses multiple protective mechanisms to resist the invasion of exogenous substances, but meanwhile these physiological defense systems also act as strong barriers, impeding absorption of most biomacromolecules into the eye. As a result, local injections play predominant roles for posterior ocular delivery of biomacromolecules in clinical practice. To achieve safe and convenient application of biomacromolecules, alternative strategies to realize noninvasive intraocular delivery are necessary. Various nanocarriers, novel penetration enhancers and physical strategies have been explored to facilitate delivery of biomacromolecules to both anterior and posterior ocular segments but still suffered difficulties in clinical translation. This review compares the anatomical and physiological characteristics of the eyes from those frequently adopted experimental species and profiles the well-established animal models of ocular diseases. We also summarize the ophthalmic biomacromolecules launched on the market and put emphasis on emerging noninvasive intraocular delivery strategies of peptides, proteins and genes.
Collapse
Affiliation(s)
- Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200030, P.R. China
| | - Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China; Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, 201203, PR China.
| |
Collapse
|
11
|
Hwang J, Huang H, Sullivan MO, Kiick KL. Controlled Delivery of Vancomycin from Collagen-tethered Peptide Vehicles for the Treatment of Wound Infections. Mol Pharm 2023; 20:1696-1708. [PMID: 36707500 PMCID: PMC10197141 DOI: 10.1021/acs.molpharmaceut.2c00898] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the great promise of antibiotic therapy in wound infections, antibiotic resistance stemming from frequent dosing diminishes drug efficacy and contributes to recurrent infection. To identify improvements in antibiotic therapies, new antibiotic delivery systems that maximize pharmacological activity and minimize side effects are needed. In this study, we developed elastin-like peptide and collagen-like peptide nanovesicles (ECnVs) tethered to collagen-containing matrices to control vancomycin delivery and provide extended antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). We observed that ECnVs showed enhanced entrapment efficacy of vancomycin by 3-fold as compared to liposome formulations. Additionally, ECnVs enabled the controlled release of vancomycin at a constant rate with zero-order kinetics, whereas liposomes exhibited first-order release kinetics. Moreover, ECnVs could be retained on both collagen-fibrin (co-gel) matrices and collagen-only matrices, with differential retention on the two biomaterials resulting in different local concentrations of released vancomycin. Overall, the biphasic release profiles of vancomycin from ECnVs/co-gel and ECnVs/collagen more effectively inhibited the growth of MRSA for 18 and 24 h, respectively, even after repeated bacterial inoculation, as compared to matrices containing free vancomycin, which just delayed the growth of MRSA. Thus, this newly developed antibiotic delivery system exhibited distinct advantages for controlled vancomycin delivery and prolonged antibacterial activity relevant to the treatment of wound infections.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Haofu Huang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kristi L. Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
12
|
Seo H, Jeon L, Kwon J, Lee H. High-Precision Synthesis of RNA-Loaded Lipid Nanoparticles for Biomedical Applications. Adv Healthc Mater 2023; 12:e2203033. [PMID: 36737864 DOI: 10.1002/adhm.202203033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The recent development of RNA-based therapeutics in delivering nucleic acids for gene editing and regulating protein translation has led to the effective treatment of various diseases including cancer, inflammatory and genetic disorder, as well as infectious diseases. Among these, lipid nanoparticles (LNP) have emerged as a promising platform for RNA delivery and have shed light by resolving the inherent instability issues of naked RNA and thereby enhancing the therapeutic potency. These LNP consisting of ionizable lipid, helper lipid, cholesterol, and poly(ethylene glycol)-anchored lipid can stably enclose RNA and help them release into the cells' cytosol. Herein, the significant progress made in LNP research starting from the LNP constituents, formulation, and their diverse applications is summarized first. Moreover, the microfluidic methodologies which allow precise assembly of these newly developed constituents to achieve LNP with controllable composition and size, high encapsulation efficiency as well as scalable production are highlighted. Furthermore, a short discussion on current challenges as well as an outlook will be given on emerging approaches to resolving these issues.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Leekang Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jaeyeong Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| |
Collapse
|
13
|
Wang J, Tao Z, Deng H, Cui Y, Xu Z, Lyu Q, Zhao J. Therapeutic implications of nanodrug and tissue engineering for retinal pigment epithelium-related diseases. NANOSCALE 2022; 14:5657-5677. [PMID: 35352082 DOI: 10.1039/d1nr08337f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The retinal pigment epithelium (RPE), as a single layer of cells that performs multiple functions posteriorly in the eye, is a promising target site for the prevention and treatment of several clinical diseases, including proliferative diabetic retinopathy, age-related macular degeneration, chorionic neovascularization, and retinitis pigmentosa. In recent decades, several nanodrug delivery platforms and tissue-engineered RPE have been widely developed to treat RPE-related diseases. This work summarizes the recent advances in nanoplatforms and tissue engineering scaffolds developed in these fields. The diseases associated with pathological RPE and their common therapy strategies are first introduced. Then, the recent progress made with a variety of drug delivery systems is presented, with an emphasis on the modification strategies of nanomaterials for targeted delivery. Tissue engineering-mediated RPE transplantation for treating these diseases is subsequently described. Finally, the clinical translation challenges in these fields are discussed in depth. This article will offer readers a better understanding of emerging nanotechnology and tissue engineering related to the treatment of RPE-related diseases and could facilitate their widespread use in experiments in vivo and in clinical applications.
Collapse
Affiliation(s)
- Jiao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Zhengyang Tao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Hongwei Deng
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Zhirong Xu
- Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Qinghua Lyu
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
- Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
14
|
Sheikholeslami B, Lam NW, Dua K, Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci 2022; 300:120574. [DOI: 10.1016/j.lfs.2022.120574] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
|
15
|
cRGD enables rapid phagocytosis of liposomal vancomycin for intracellular bacterial clearance. J Control Release 2022; 344:202-213. [DOI: 10.1016/j.jconrel.2022.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
|
16
|
How liposomes pave the way for ocular drug delivery after topical administration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Khabazian E, Vakhshiteh F, Norouzi P, Fatahi Y, Dinarvand R, Atyabi F. Cationic Liposome Decorated with Cyclic RGD Peptide for Targeted Delivery of anti-STAT3 siRNA to Melanoma Cancer Cells. J Drug Target 2021; 30:522-533. [PMID: 34482780 DOI: 10.1080/1061186x.2021.1973481] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gene therapy is regarded as a valuable strategy for efficient cancer treatment. However, the design of effective delivery systems that can deliver gene materials such as siRNA specifically to the tumour tissues plays a pivotal role in cancer therapy. For this reason, a targeted cationic liposome for melanoma treatment was developed. This system consists of cyclic RGD peptide conjugated to DSPE-PEG2000, cholesterol, DOTAP, and DSPC as cationic and neutral lipids, respectively. Cyclic RGD was selected based on speculation that cyclic RGD would effectively transport anti-signal transducer and activator of transcription 3 (STAT3) siRNA into melanoma cell via integrin receptors. The prepared liposomes provided excellent stability against electrolyte and serum nucleases. Targeted liposomes remarkably exhibited higher cellular internalisation in comparison with the non-targeted system in flow cytometry and confocal microscopy. Furthermore, incorporating peptide on the surface of liposomes resulted in considerably high cytotoxicity, a 2.1-times raise in apoptosis induction, and a significantly enhanced STAT3 gene suppression as compared with the corresponding non-targeted formulation on B16F10 murine melanoma cells. Whole-body imaging confirmed the more significant tumour accumulation of targeted liposomes in B16F10 melanoma xenograft tumour-bearing mice. Consequently, c-RGD peptide modified liposome suggests a promising option for specific siRNA delivery into melanoma cells.
Collapse
Affiliation(s)
- Ehsan Khabazian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran
| | - Faezeh Vakhshiteh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Kamalkazemi E, Abedi-Gaballu F, Mohammad Hosseini TF, Mohammadi A, Mansoori B, Dehghan G, Baradaran B, Sheibani N. Glimpse into Cellular Internalization and Intracellular Trafficking of Lipid-Based Nanoparticles in Cancer Cells. Anticancer Agents Med Chem 2021; 22:1897-1912. [PMID: 34488605 DOI: 10.2174/1871520621666210906101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
Lipid-based nanoparticles as drug delivery carriers have been mainly used for delivery of anti-cancer therapeutic agents. Lipid-based nanoparticles, due to their smaller particle size and similarity to cell membranes, are readily internalized into cancer cells. Interestingly, cancer cells also overexpress receptors for specific ligands including folic acid, hyaluronic acid, and transferrin on their surface. This allows the use of these ligands for surface modification of the lipid-based nanoparticle. These modifications then allow the specific recognition of these ligand-coated nanoparticles by their receptors on cancer cells allowing the targeted gradual intracellular accumulation of the functionalized nanoplatforms. These interactions could eventually enhance the internalization of desired drugs via increasing ligand-receptor mediated cellular uptake of the nanoplatforms. The cellular internalization of the nanoplatforms also varies and depends on their physicochemical properties including particle size, zeta potential, and shape. The cellular uptake is also influenced by the types of ligand internalization pathway utilized by cells such as phagocytosis, macropinocytosis, and multiple endocytosis pathways. In this review, we will classify and discuss lipid based nanoparticles engineered to express specific ligands, and are recognized by their receptors on cancer cell, and their cellular internalization pathways. Moreover, the intracellular fate of nanoparticles decorated with specific ligands and the best internalization pathways (caveolae mediated endocytosis) for safe cargo delivery will be discussed.
Collapse
Affiliation(s)
- Elham Kamalkazemi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | | | | | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI . United States
| |
Collapse
|
21
|
Seo H, Lee H. Recent developments in microfluidic synthesis of artificial cell-like polymersomes and liposomes for functional bioreactors. BIOMICROFLUIDICS 2021; 15:021301. [PMID: 33833845 PMCID: PMC8012066 DOI: 10.1063/5.0048441] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 05/16/2023]
Abstract
Recent advances in droplet microfluidics have led to the fabrication of versatile vesicles with a structure that mimics the cellular membrane. These artificial cell-like vesicles including polymersomes and liposomes effectively enclose an aqueous core with well-defined size and composition from the surrounding environment to implement various biological reactions, serving as a diverse functional reactor. The advantage of realizing various biological phenomena within a compartment separated by a membrane that resembles a natural cell membrane is actively explored in the fields of synthetic biology as well as biomedical applications including drug delivery, biosensors, and bioreactors, to name a few. In this Perspective, we first summarize various methods utilized in producing these polymersomes and liposomes. Moreover, we will highlight some of the recent advances in the design of these artificial cell-like vesicles for functional bioreactors and discuss the current issues and future perspectives.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
22
|
Nanodiagnostics and Nanotherapeutics for age-related macular degeneration. J Control Release 2021; 329:1262-1282. [DOI: 10.1016/j.jconrel.2020.10.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
|
23
|
Li M, Tang X, Liu X, Cui X, Lian M, Zhao M, Peng H, Han X. Targeted miR-21 loaded liposomes for acute myocardial infarction. J Mater Chem B 2020; 8:10384-10391. [PMID: 33112352 DOI: 10.1039/d0tb01821j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute and persistent myocardial ischemia is the main cause of acute myocardial infarction (AMI) and heart failure. MicroRNA-21(miR-21) contributes to the pathophysiological consequences of acute myocardial infarction by targeting downstream crucial regulators. Thus, miR-21 mimics are a promising strategy for the treatment of AMI. However, their poor stability and insufficient cellular uptake are the major challenges. Herein, we encapsulated miR-21 mimics into liposomes modified with the cardiac troponin T (cTnT) antibody for targeted delivery of miR-21(cT-21-LIPs) to the ischemic myocardium. The cT-21-LIPs exhibited enhanced targeting efficiency to hypoxia primary cardiomyocytes in vitro and improved accumulation in the ischemic heart of AMI rats after injection via the tail vein due to the specifical target to overexpressed troponin. The cT-21-LIPs could significantly improve the cardiac function and decrease the infarct size after AMI, while maintaining the viability of cardiomyocytes. This design provides a novel strategy for delivering small nucleotide drugs specifically to the infarcted heart, which may find great potential in clinics.
Collapse
Affiliation(s)
- Minghui Li
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, 163319, China and School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| | - Xuefeng Tang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, 163319, China
| | - Xinyu Cui
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, 163319, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, 163319, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, 163319, China
| | - Xiaojun Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
24
|
Supe S, Upadhya A, Singh K. Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review. Exp Eye Res 2020; 202:108329. [PMID: 33198953 DOI: 10.1016/j.exer.2020.108329] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.
Collapse
Affiliation(s)
- Shibani Supe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, 400056, Maharashtra, India
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, 400056, Maharashtra, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
25
|
Peptide-conjugated liposomes for targeted miR-34a delivery to suppress breast cancer and cancer stem-like population. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101687] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Begum AA, Toth I, Hussein WM, Moyle PM. Advances in Targeted Gene Delivery. Curr Drug Deliv 2020; 16:588-608. [PMID: 31142250 DOI: 10.2174/1567201816666190529072914] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Gene therapy has the potential to treat both acquired and inherited genetic diseases. Generally, two types of gene delivery vectors are used - viral vectors and non-viral vectors. Non-viral gene delivery systems have attracted significant interest (e.g. 115 gene therapies approved for clinical trials in 2018; clinicaltrials.gov) due to their lower toxicity, lack of immunogenicity and ease of production compared to viral vectors. To achieve the goal of maximal therapeutic efficacy with minimal adverse effects, the cell-specific targeting of non-viral gene delivery systems has attracted research interest. Targeting through cell surface receptors; the enhanced permeability and retention effect, or pH differences are potential means to target genes to specific organs, tissues, or cells. As for targeting moieties, receptorspecific ligand peptides, antibodies, aptamers and affibodies have been incorporated into synthetic nonviral gene delivery vectors to fulfill the requirement of active targeting. This review provides an overview of different potential targets and targeting moieties to target specific gene delivery systems.
Collapse
Affiliation(s)
- Anjuman A Begum
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia.,Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, St Lucia 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| |
Collapse
|
27
|
Formulation development and in vitro evaluation of transferrin-conjugated liposomes as a carrier of ganciclovir targeting the retina. Int J Pharm 2020; 577:119084. [PMID: 31988033 DOI: 10.1016/j.ijpharm.2020.119084] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/29/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
Ganciclovir (GCV) is an antiviral drug approved for treatment of cytomegalovirus (CMV) retinitis. It can be delivered to the eye via systemic administrations. However, local delivery of GCV that targets the retina is considered as an alternative to increase efficacy of the treatment and lessen side effects. Thus, this study aimed to develop formulations of transferrin (Tf)-conjugated liposomes containing GCV (Tf-GCV-LPs) for intravitreal injection and topical instillation. Tf-GCV-LPs were prepared by the reverse-phase evaporation technique and then conjugated to Tf. Their physicochemical properties were evaluated. The optimized formulation was selected and subjected to the cytotoxicity test, cellular uptake study in the human retinal pigment epithelial cells (the ARPE-19 cells) and antiviral activity evaluation. The results showed that physicochemical properties of Tf-GCV-LPs were affected by formulation compositions. The optimized Tf-GCV-LPs had a particle size lower than 100 nm with a negative value of zeta potential. They were safe for the ARPE-19 cells. These Tf-GCV-LPs were taken up by these cells via Tf receptors-mediated endocytosis and showed inhibitory activity on CMV in the infected cells. Therefore, the optimized Tf-GCV-LPs could be accepted as a promising drug delivery system for targeted GCV delivery to the retina in the treatment of CMV retinitis.
Collapse
|
28
|
Alipour M, Baneshi M, Hosseinkhani S, Mahmoudi R, Jabari Arabzadeh A, Akrami M, Mehrzad J, Bardania H. Recent progress in biomedical applications of RGD-based ligand: From precise cancer theranostics to biomaterial engineering: A systematic review. J Biomed Mater Res A 2019; 108:839-850. [PMID: 31854488 DOI: 10.1002/jbm.a.36862] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
Arginine-glycine-aspartic acid (RGD) peptide family is known as the most prominent ligand for extracellular domain of integrin receptors. Specific expression of these receptors in various tissue of human body and tight association of their expression profile with various pathophysiological conditions made these receptors a suitable targeting candidate for several disease diagnosis and treatment as well as regeneration of various organs. For these reasons, various forms of RGD-based integrins ligands have been greatly used in biomedical studies. Here, we summarized the last decade application progress of RGD for cancer theranostics, control of inflammation, thrombosis inhibition and critically discussed the effect of RGD peptides structure and sequence on the efficacy of gene/drug delivery systems in preclinical studies. Furthermore, we will show recent advances in application of RGD functionalized biomaterials for various tissue regenerations including cornea repair, artificial neovascularization and bone tissue regeneration. Finally, we analyzed clinically translatability of RGD peptides, considering examples of integrin ligands in clinical trials. In conclusion, prospects on using RGD peptide for precise drug delivery and biomaterial engineering are well discussed.
Collapse
Affiliation(s)
- Mohsen Alipour
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Baneshi
- Department of Chemistry, Yazd University, Yazd, Iran
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia, Canada
| | - Saman Hosseinkhani
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Jabari Arabzadeh
- Department of Radiopharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
29
|
Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2019; 230:119646. [PMID: 31787335 DOI: 10.1016/j.biomaterials.2019.119646] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
In recent years, phospholipid-polyethylene glycol-derived functional conjugates have been widely employed to decorate different nanomaterials, due to their excellent biocompatibility, long blood circulation characteristics, and specific targeting capability. Numerous in vivo studies have demonstrated that nanomedicines peripherally engineered with phospholipid-polyethylene glycol-derived functional conjugates show significantly increased selective and efficient internalization by target cells/tissues. Targeting moieties including small-molecule ligands, peptides, proteins, and antibodies are generally conjugated onto PEGylated phospholipids to decorate liposomes, micelles, hybrid nanoparticles, nanocomplexes, and nanoemulsions for targeted delivery of diagnostic and therapeutic agents to diseased sites. In this review, the synthesis methods of phospholipid-polyethylene glycol-derived functional conjugates, biophysicochemical properties of nanomedicines decorated with these conjugates, factors dominating their targeting efficiency, as well as their applications for in vivo molecular imaging and targeted therapy were summarized and discussed.
Collapse
|
30
|
Zhang Y, Li S, Zhou X, Sun J, Fan X, Guan Z, Zhang L, Yang Z. Construction of a Targeting Nanoparticle of 3',3″-Bis-Peptide-siRNA Conjugate/Mixed Lipid with Postinserted DSPE-PEG2000-cRGD. Mol Pharm 2019; 16:4920-4928. [PMID: 31642677 DOI: 10.1021/acs.molpharmaceut.9b00800] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cyclic Arg-Gly-Asp (cRGD) peptides are widely used as tumor-targeting ligands due to their specific binding ability to integrin αvβ3, which is overexpressed on the surface of various cancer cells and the endothelial cells of new blood vessels within tumor tissues. In this paper, the postinsertion strategy of DSPE-PEG2000-cRGD has been applied to the nanoparticles of 3',3″-bis-peptide-siRNA (pp-siRNA) encapsulated by gemini-like cationic lipid (CLD) and neutral cytosin-1-yl lipid (DNCA) from our lab. It was confirmed that the nanoparticles of pp-siRNA/CLD/DNCA/DSPE-PEG2000-cRGD (PCNR) were able to specifically target tumor cells with highly expressed integrin αvβ3; moreover, it efficiently downregulated the levels of BRAF mRNA and the BRAF protein and inhibited cell proliferation in A375 cells, in comparison with the nontargeted nanocomplex of pp-siRNA/CLD/DNCA/cRAD (PCNA). The uptake pathways of PCNR are mostly dependent on CvME-mediated endocytosis and macropinocytosis in A375 cells, which could bypass lysosome or quickly lead to the lysosomal escape to reduce siRNA degradation. Finally, the biodistribution study showed that PCNR exhibited a high ability to accumulate in tumor tissues. These results suggest that the nanocomplex of PCNR is promising to be highly effective in the treatment of melanomas including their mutation.
Collapse
Affiliation(s)
- Yanfen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China.,School of Pharmaceutical Sciences, HeZe University, Heze, Shandong 274015, P. R. China
| | - Sixiu Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xinyang Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Jing Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xinmeng Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
31
|
Juliana FR, Kesse S, Boakye-Yiadom KO, Veroniaina H, Wang H, Sun M. Promising Approach in the Treatment of Glaucoma Using Nanotechnology and Nanomedicine-Based Systems. Molecules 2019; 24:E3805. [PMID: 31652593 PMCID: PMC6833088 DOI: 10.3390/molecules24203805] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is considered a leading cause of blindness with the human eye being one of the body's most delicate organs. Ocular diseases encompass diverse diseases affecting the anterior and posterior ocular sections, respectively. The human eye's peculiar and exclusive anatomy and physiology continue to pose a significant obstacle to researchers and pharmacologists in the provision of efficient drug delivery. Though several traditional invasive and noninvasive eye therapies exist, including implants, eye drops, and injections, there are still significant complications that arise which may either be their low bioavailability or the grave ocular adverse effects experienced thereafter. On the other hand, new nanoscience technology and nanotechnology serve as a novel approach in ocular disease treatment. In order to interact specifically with ocular tissues and overcome ocular challenges, numerous active molecules have been modified to react with nanocarriers. In the general population of glaucoma patients, disease growth and advancement cannot be contained by decreasing intraocular pressure (IOP), hence a spiking in future research for novel drug delivery systems and target therapeutics. This review focuses on nanotechnology and its therapeutic and diagnostic prospects in ophthalmology, specifically glaucoma. Nanotechnology and nanomedicine history, the human eye anatomy, research frontiers in nanomedicine and nanotechnology, its imaging modal quality, diagnostic and surgical approach, and its possible application in glaucoma will all be further explored below. Particular focus will be on the efficiency and safety of this new therapy and its advances.
Collapse
Affiliation(s)
| | - Samuel Kesse
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kofi Oti Boakye-Yiadom
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Hanitrarimalala Veroniaina
- State Key Laboratory of Modern Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China.
| | - Huihui Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Meihao Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
32
|
DeRosa F, Smith L, Shen Y, Huang Y, Pan J, Xie H, Yahalom B, Heartlein MW. Improved Efficacy in a Fabry Disease Model Using a Systemic mRNA Liver Depot System as Compared to Enzyme Replacement Therapy. Mol Ther 2019; 27:878-889. [PMID: 30879951 PMCID: PMC6453518 DOI: 10.1016/j.ymthe.2019.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022] Open
Abstract
Fabry disease is a lysosomal storage disorder caused by the deficiency of α-galactosidase A. Enzyme deficiency results in a progressive decline in renal and cardiac function, leading to cardiomyopathy and end-stage renal disease. Current treatments available, including enzyme replacement therapies, have provided significant benefit to patients; however, unmet medical needs remain. mRNA therapy, with drug-like properties, has the unique ability to produce therapeutic proteins endogenously. Here we describe the sustained delivery of therapeutic human α-galactosidase protein in vivo via nanoparticle-formulated mRNA in mouse and non-human primate, with a demonstration of efficacy through clinically relevant biomarker reduction in a mouse Fabry disease model. Multi-component nanoparticles formulated with lipids and lipid-like materials were developed for the delivery of mRNA encoding human α-galactosidase protein. Upon delivery of human GLA mRNA to mice, serum GLA protein levels reached as high as ∼1,330-fold over normal physiological values.
Collapse
Affiliation(s)
| | | | | | - Yan Huang
- Shire Pharmaceuticals, Lexington, MA 02141, USA
| | - Jing Pan
- Shire Pharmaceuticals, Lexington, MA 02141, USA
| | | | | | | |
Collapse
|
33
|
Feng C, Zhang H, Chen J, Wang S, Xin Y, Qu Y, Zhang Q, Ji W, Yamashita F, Rui M, Xu X. Ratiometric co-encapsulation and co-delivery of doxorubicin and paclitaxel by tumor-targeted lipodisks for combination therapy of breast cancer. Int J Pharm 2019; 560:191-204. [PMID: 30769131 DOI: 10.1016/j.ijpharm.2019.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Combination therapy is a promising treatment for certain advanced drug-resistant cancers. Although effective inhibition of various tumor cells was reported in vitro, combination treatment requires improvement in vivo due to uncontrolled ratiometric delivery. In this study, a tumor-targeting lipodisk nanoparticle formulation was developed for ratiometric loading and the transportation of two hydrophobic model drugs, doxorubicin (DOX) and paclitaxel (PTX), in one single platform. Furthermore, a slightly acidic pH-sensitive peptide (SAPSP) incorporated into lipodisks effectively enhanced the tumor-targeting and cell internalization. The obtained co-loaded lipodisks were approximately 30 nm with a pH-sensitive property. The ratiometric co-delivery of two drugs via lipodisks was confirmed in both the drug-resistant MCF-7/ADR cell line and its parental MCF-7 cell line in vitro, as well as in a tumor-bearing mouse model in vivo compared with a cocktail solution of free drugs. Co-loaded lipodisks exerted improved cytotoxicity to tumor cells in culture, particularly to drug-resistant tumor cells at synergistic drug ratios. In an in vivo xenograft mouse model, the anti-tumor ability of co-loaded lipodisks was evidenced by the remarkable inhibitory effect on tumor growth of either MCF-7 or MCF-7/ADR tumors, which may be attributed to the increased and ratiometric accumulation of both drugs in the tumor tissues. Therefore, tumor-specific lipodisks were crucial for the combination treatment of DOX and PTX to completely exert a synergistic anti-cancer effect. It is concluded that for co-loaded lipodisks, cytotoxicity data in vitro could be used to predict their inhibitory activity in vivo, potentially enhancing the clinical outcome of synergistic therapy.
Collapse
Affiliation(s)
- Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Haisheng Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiaming Chen
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Siqi Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuanrong Xin
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yang Qu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Qi Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Ji
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
34
|
Qin Y, Tian Y, Liu Y, Li D, Zhang H, Yang Y, Qi J, Wang H, Gan L. Hyaluronic acid-modified cationic niosomes for ocular gene delivery: improving transfection efficiency in retinal pigment epithelium. ACTA ACUST UNITED AC 2018; 70:1139-1151. [PMID: 29931682 DOI: 10.1111/jphp.12940] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/19/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Recent years, gene therapy to treat retinal diseases has been paid much attention. The key to successful therapy is utilizing smart delivery system to achieve efficient gene delivery and transfection. In this study, hyaluronic acid (HA) modified cationic niosomes (HA-C-niosomes) have been designed in order to achieve retinal pigment epithelium (RPE) cells targeted gene delivery and efficient gene transfection. METHODS Cationic niosomes composed of tween 80/squalene/1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP) were prepared by the ethanol injection method. After that, HA-DOPE was further added into cationic niosomes to form HA-C-niosomes. Cellular uptake and transfection have been investigated in ARPE-19 cells. In vivo pEGFP transfection efficiency was evaluated in rats. KEY FINDINGS Twenty percentage HA-C-niosomes were about 180 nm, with -30 mV, and showing spherical shape in TEM. 2 times higher transfection efficiency was found in the group of HA-C-niosomes with 20% HA modification. No toxicity was found in niosome preparations. In vivo evaluation in Sprague Dawley (SD) rats revealed that HA-C-niosomes could specifically target to the retina layer. In the group of pEGFP-loaded HA-C-niosomes, 6-6.5 times higher gene transfection has been achieved, compared with naked pEGFP. CONCLUSIONS Hyaluronic acid-C-niosomes might provide a promising gene delivery system for successful retinal gene therapy.
Collapse
Affiliation(s)
- Yanmei Qin
- Shanghai Institute of Technology, Shanghai, China
| | | | - Yang Liu
- Shanghai Institute of Technology, Shanghai, China
| | - Dong Li
- Shanghai Institute of Technology, Shanghai, China
| | - Hua Zhang
- Shanghai Institute of Technology, Shanghai, China
| | - Yeqian Yang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jianping Qi
- School of Pharmacy, Fudan University, Shanghai, China
| | - Hao Wang
- National Pharmaceutical Engineering Research Center (NPERC), Shanghai, China
| | - Li Gan
- Shanghai Institute of Technology, Shanghai, China.,National Pharmaceutical Engineering Research Center (NPERC), Shanghai, China
| |
Collapse
|
35
|
Yue P, Miao W, Gao L, Zhao X, Teng J. Ultrasound-Triggered Effects of the Microbubbles Coupled to GDNF Plasmid-Loaded PEGylated Liposomes in a Rat Model of Parkinson's Disease. Front Neurosci 2018; 12:222. [PMID: 29686604 PMCID: PMC5900787 DOI: 10.3389/fnins.2018.00222] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Background: The purpose of this study was to investigate ultrasound-triggered effects of PEGylated liposomes-coupled microbubbles mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF) plasmid (PLs-GDNF-MBs) on behavioral deficits and neuron loss in a rat model of Parkinson's disease (PD). Methods: The unloaded PLs-MBs were characterized for particle size, concentration and zeta potential. PD rat model was established by a unilateral 6-hydroxydopamine (6-OHDA) lesion. Rotational, climbing pole, and suspension tests were used to evaluate behavioral deficits. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. The expression levels of GDNF and nuclear receptor-related factor 1 (Nurr1) were determined by western blot and qRT-PCR analysis. Results: The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased in a time-dependent manner after injection. 6-OHDA elevated amphetamine-induced rotations and decreased the TH and DAT immunoreactivity compared to sham group. However, these effects were blocked by the PLs-GDNF-MBs. In addition, the mRNA and protein expression levels of GDNF and Nurr1 were increased after PLs-GDNF-MBs treatment. Conclusions: The delivery of PLs-GDNF-MBs into the brains using MRI-guided focused ultrasound alleviates the behavioral deficits and neuron loss in the rat model of PD.
Collapse
Affiliation(s)
- Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Miao
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Gao
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Nguyen HT, Phung CD, Thapa RK, Pham TT, Tran TH, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO. Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo-photothermal therapy. Acta Biomater 2018; 68:154-167. [PMID: 29292170 DOI: 10.1016/j.actbio.2017.12.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
Lanreotide (LT), a synthetic analog of somatostatin, has been demonstrated to specifically bind to somatostatin receptors (SSTRs), which are widely overexpressed in several types of cancer cells. In this study, we incorporated a chemotherapeutic agent, methotrexate (MTX), and a photosensitizer material, polyaniline (PANI), into hybrid polymer nanoparticles (NPs), which could target cancer cells after conjugation with LT (LT-MTX/PANI NPs). The successful preparation of LT-MTX/PANI NPs was confirmed by a small particle size (187.9 ± 3.2 nm), a polydispersity index of 0.232 ± 0.011, and a negative ζ potential of -14.6 ± 1.0 mV. Notably, LT-MTX/PANI NPs showed a greater uptake into SSTR-positive cancer cells and thereby better inhibited cell viability and induced higher levels of apoptosis than MTX, PANI NP, and MTX/PANI NP treatments did. In addition, the heat associated with the burst drug release induced by near-infrared (NIR) irradiation resulted in remarkably enhanced cell apoptosis, which was confirmed by an increase in the expression levels of apoptotic marker proteins. In agreement with the in vitro results, the administration of the SSTR-targeting NPs, followed by NIR exposure, to xenograft tumor-bearing mice resulted in an improved suppression of tumor development compared to that shown by MTX, PANI NPs, and MTX/PANI NPs, as well as by LT-MTX/PANI NPs without photothermal therapy. Thus, the SSTR-targeting NPs could be a promising delivery system for the effective treatment of SSTR-positive cancers. STATEMENT OF SIGNIFICANCE Somatostatin receptors are widely overexpressed in several types of cancer cells. In this study, we designed nanoparticles for targeted delivery of chemotherapeutic agents to tumor sites by conjugating hybrid polymers with a synthetic analog of somatostatin, specifically binding to somatostatin receptors. In addition, a photosensitizer material, polyaniline, was incorporated into the nanoparticles for combined chemo-photothermal therapy. The results demonstrated clear advantages of the newly designed targeted nanoparticles over their non-targeted counterparts or a free chemotherapeutic drug in inhibiting the viability of cancer cells in vitro and targeting/suppressing the tumor growth in an animal xenograft model. The study suggests that the designed nanoparticles are a promising delivery system for the effective treatment of somatostatin receptor-positive cancers.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
37
|
Bathula SR, Sharma K, Singh DK, Reddy MP, Sajja PR, Deshmukh AL, Banerjee D. siRNA Delivery Using a Cationic-Lipid-Based Highly Selective Human DNA Ligase I Inhibitor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1616-1622. [PMID: 29256581 DOI: 10.1021/acsami.7b19193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The present article illustrates the serendipitous discovery of a cationic-lipid-based human DNA ligase (hLig) I inhibitor and the development of siRNA delivering, a hLigI-targeted cationic-lipid-based nonviral vector. We have tested a small in-house library of structurally similar cationic lipo-anisamides for antiligase activity, and amongst tested, N-dodecyl-N-(2-(4-methoxybenzamido)ethyl)-N-methyldodecan-1-ammonium iodide (C12M) selectively and efficiently inhibited the enzyme activity of hLigI, compared to other human ligases (hLigIIIβ and hLigIV/XRCC4) and bacterial T4 DNA ligase. Furthermore, upon hydration with equimolar cholesterol, C12M produced antiligase cationic liposomes, which transfected survivin siRNA and showed significant inhibition of tumor growth.
Collapse
Affiliation(s)
- Surendar R Bathula
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Komal Sharma
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Deependra K Singh
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute , Lucknow 226 031, Uttar Pradesh, India
| | - Muktapuram P Reddy
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Pushpa R Sajja
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Amit L Deshmukh
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute , Lucknow 226 031, Uttar Pradesh, India
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute , Lucknow 226 031, Uttar Pradesh, India
| |
Collapse
|
38
|
Weng Y, Ma X, Che J, Li C, Liu J, Chen S, Wang Y, Gan Y, Chen H, Hu Z, Nan K, Liang X. Nanomicelle-Assisted Targeted Ocular Delivery with Enhanced Antiinflammatory Efficacy In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700455. [PMID: 29375972 PMCID: PMC5770669 DOI: 10.1002/advs.201700455] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/19/2017] [Indexed: 05/11/2023]
Abstract
Ocular inflammations are common diseases that may lead to serious vision-threatening obstacles. Eye drops for antiinflammation therapy need to be administered multiple times daily at a high dosage due to the rapid precorneal removal and low bioavailability of drugs. To overcome these problems, a cRGD-functionalized DSPE-PEG2000 nanomicelle (DSPE-PEG2000-cRGD) encapsulated with flurbiprofen is proposed. The tailored nanomicelles trigger specific binding to integrin receptors on the ocular surface, which leads to rapid and robust mucoadhesion, superior ocular surface retention, and transcorneal penetration behaviors of nanomicelles. Due to the enhanced drug delivery on ocular surface and in aqueous humor, the functionalized nanoformulation significantly improves ocular antiinflammation efficacy at a low dosage by blocking the synthesis of inflammatory mediators and cytokines. The present study demonstrates a promising strategy that uses a functional peptide combined with nanomicelles for targeted delivery to the eye in ophthalmologic applications.
Collapse
Affiliation(s)
- Yu‐Hua Weng
- Chinese Academy of Sciences (CAS) Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Laboratory of Controllable NanopharmaceuticalsCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiao‐Wei Ma
- Chinese Academy of Sciences (CAS) Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Laboratory of Controllable NanopharmaceuticalsCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
| | - Jing Che
- Chinese Academy of Sciences (CAS) Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Laboratory of Controllable NanopharmaceuticalsCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chan Li
- Chinese Academy of Sciences (CAS) Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Laboratory of Controllable NanopharmaceuticalsCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
| | - Juan Liu
- Chinese Academy of Sciences (CAS) Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Laboratory of Controllable NanopharmaceuticalsCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
| | - Shi‐Zhu Chen
- Chinese Academy of Sciences (CAS) Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Laboratory of Controllable NanopharmaceuticalsCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
| | - Yu‐Qin Wang
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouP. R. China
| | - Ya‐Ling Gan
- Chinese Academy of Sciences (CAS) Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Laboratory of Controllable NanopharmaceuticalsCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
| | - Hao Chen
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouP. R. China
| | - Zhong‐Bo Hu
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Kai‐Hui Nan
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouP. R. China
| | - Xing‐Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Laboratory of Controllable NanopharmaceuticalsCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
| |
Collapse
|
39
|
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 2017; 7:281-291. [PMID: 28540165 PMCID: PMC5430571 DOI: 10.1016/j.apsb.2016.09.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
Ocular diseases include various anterior and posterior segment diseases. Due to the unique anatomy and physiology of the eye, efficient ocular drug delivery is a great challenge to researchers and pharmacologists. Although there are conventional noninvasive and invasive treatments, such as eye drops, injections and implants, the current treatments either suffer from low bioavailability or severe adverse ocular effects. Alternatively, the emerging nanoscience and nanotechnology are playing an important role in the development of novel strategies for ocular disease therapy. Various active molecules have been designed to associate with nanocarriers to overcome ocular barriers and intimately interact with specific ocular tissues. In this review, we highlight the recent attempts of nanotechnology-based systems for imaging and treating ocular diseases, such as corneal d iseases, glaucoma, retina diseases, and choroid diseases. Although additional work remains, the progress described herein may pave the way to new, highly effective and important ocular nanomedicines.
Collapse
|
40
|
Foot-and-mouth disease virus-like particles as integrin-based drug delivery system achieve targeting anti-tumor efficacy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:1061-1070. [PMID: 27993721 DOI: 10.1016/j.nano.2016.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/31/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022]
Abstract
The surface of foot-and-mouth disease virus (FMDV)-like particles (VLPs) contains a conserved arginine-glycine-aspartic acid (RGD) motif. Natural FMDV specifically attaches to overexpressed integrin receptors in several cancer cells. The FMDV VLPs produced in Escherichia coli were used for the first time as a delivery system of anti-tumor drug doxorubicin (DOX). The DOX-loaded VLPs exhibited a distinct release profile in different physiological conditions. The effects of FMDV-VLPs-DOX on cellular internalization and viability were evaluated in vitro by cell imaging, MTT assay and apoptosis, respectively. The anti-tumor efficacy in vivo was also determined in a nude mouse xenograft model based on tumor volume/weight and histological changes. The FMDV-VLPs-DOX complex significantly inhibited the proliferation of tumor and improved the pathological damage of DOX to non-targeting tissues. All results supported the potential of FMDV VLPs as a platform for specific targeted delivery of drugs or chemical reagents.
Collapse
|
41
|
Naicker K, Ariatti M, Singh M. Active targeting of asiaglycoprotein receptor using sterically stabilized lipoplexes. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kovashnee Naicker
- Department of Biochemistry, Non‐Viral Gene Delivery LaboratoryUniversity of KwaZulu‐Natal, Westville CampusDurbanSouth Africa
| | - Mario Ariatti
- Department of Biochemistry, Non‐Viral Gene Delivery LaboratoryUniversity of KwaZulu‐Natal, Westville CampusDurbanSouth Africa
| | - Moganavelli Singh
- Department of Biochemistry, Non‐Viral Gene Delivery LaboratoryUniversity of KwaZulu‐Natal, Westville CampusDurbanSouth Africa
| |
Collapse
|
42
|
DeRosa F, Guild B, Karve S, Smith L, Love K, Dorkin JR, Kauffman KJ, Zhang J, Yahalom B, Anderson DG, Heartlein MW. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther 2016; 23:699-707. [PMID: 27356951 PMCID: PMC5059749 DOI: 10.1038/gt.2016.46] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
DNA-based gene therapy has considerable therapeutic potential, but the challenges associated with delivery continue to limit progress. Messenger RNA (mRNA) has the potential to provide for transient production of therapeutic proteins, without the need for nuclear delivery and without the risk of insertional mutagenesis. Here we describe the sustained delivery of therapeutic proteins in vivo in both rodents and non-human primates via nanoparticle-formulated mRNA. Nanoparticles formulated with lipids and lipid-like materials were developed for delivery of two separate mRNA transcripts encoding either human erythropoietin (hEPO) or factor IX (hFIX) protein. Dose-dependent protein production was observed for each mRNA construct. Upon delivery of hEPO mRNA in mice, serum EPO protein levels reached several orders of magnitude (>125 000-fold) over normal physiological values. Further, an increase in hematocrit (Hct) was established, demonstrating that the exogenous mRNA-derived protein maintained normal activity. The capacity of producing EPO in non-human primates via delivery of formulated mRNA was also demonstrated as elevated EPO protein levels were observed over a 72-h time course. Exemplifying the possible broad utility of mRNA drugs, therapeutically relevant amounts of human FIX (hFIX) protein were achieved upon a single intravenous dose of hFIX mRNA-loaded lipid nanoparticles in mice. In addition, therapeutic value was established within a hemophilia B (FIX knockout (KO)) mouse model by demonstrating a marked reduction in Hct loss following injury (incision) to FIX KO mice.
Collapse
Affiliation(s)
- F DeRosa
- Shire Pharmaceuticals, Lexington, MA, USA
| | - B Guild
- Shire Pharmaceuticals, Lexington, MA, USA
| | - S Karve
- Shire Pharmaceuticals, Lexington, MA, USA
| | - L Smith
- Shire Pharmaceuticals, Lexington, MA, USA
| | - K Love
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J R Dorkin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K J Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Zhang
- Shire Pharmaceuticals, Lexington, MA, USA
| | - B Yahalom
- Biomedical Research Models, Inc., Worcester, MA, USA
| | - D G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
43
|
Veneti E, Tu RS, Auguste DT. RGD-Targeted Liposome Binding and Uptake on Breast Cancer Cells Is Dependent on Elastin Linker Secondary Structure. Bioconjug Chem 2016; 27:1813-21. [DOI: 10.1021/acs.bioconjchem.6b00205] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eleftheria Veneti
- Department of Biomedical Engineering and ‡Department of Chemical Engineering The City College of New York, New York, New York 10031, United States
| | - Raymond S. Tu
- Department of Biomedical Engineering and ‡Department of Chemical Engineering The City College of New York, New York, New York 10031, United States
| | - Debra T. Auguste
- Department of Biomedical Engineering and ‡Department of Chemical Engineering The City College of New York, New York, New York 10031, United States
| |
Collapse
|
44
|
Gao C, Vargo KB, Hammer DA. Protease-Triggered, Integrin-Targeted Cellular Uptake of Recombinant Protein Micelles. Macromol Biosci 2016; 16:1398-406. [DOI: 10.1002/mabi.201600032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/31/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Chen Gao
- Department of Chemical and Biomolecular Engineering; University of Pennsylvania; 311A Towne Building; 220 S. 33rd Street Philadelphia PA 19104 USA
| | - Kevin B. Vargo
- Department of Chemical and Biomolecular Engineering; University of Pennsylvania; 311A Towne Building; 220 S. 33rd Street Philadelphia PA 19104 USA
| | - Daniel A. Hammer
- Department of Chemical and Biomolecular Engineering; University of Pennsylvania; 311A Towne Building; 220 S. 33rd Street Philadelphia PA 19104 USA
| |
Collapse
|
45
|
Lee J, Ryoo NK, Han H, Hong HK, Park JY, Park SJ, Kim YK, Sim C, Kim K, Woo SJ, Park KH, Kim H. Anti-VEGF PolysiRNA Polyplex for the Treatment of Choroidal Neovascularization. Mol Pharm 2016; 13:1988-95. [DOI: 10.1021/acs.molpharmaceut.6b00148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jihwang Lee
- Department
of Chemical and Biomolecular Engineering, Sogang University, 35
Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Na-kyung Ryoo
- Department
of Ophthalmology, Seoul National University Bundang Hospital, 82,
Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
- Department
of Ophthalmology, Seoul National University College of Medicine, 71, Ihwajang-gil, Jongno-gu, Seoul, Korea
| | - Hyounkoo Han
- Department
of Chemical and Biomolecular Engineering, Sogang University, 35
Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Hye Kyoung Hong
- Department
of Ophthalmology, Seoul National University Bundang Hospital, 82,
Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Ji Yeon Park
- Department
of Ophthalmology, Seoul National University Bundang Hospital, 82,
Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sang Jun Park
- Department
of Ophthalmology, Seoul National University Bundang Hospital, 82,
Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
- Department
of Ophthalmology, Seoul National University College of Medicine, 71, Ihwajang-gil, Jongno-gu, Seoul, Korea
| | - Yong-Kyu Kim
- Department
of Ophthalmology, Seoul National University Bundang Hospital, 82,
Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
- Department
of Ophthalmology, Seoul National University College of Medicine, 71, Ihwajang-gil, Jongno-gu, Seoul, Korea
| | - Changbeom Sim
- Department
of Chemical and Biomolecular Engineering, Sogang University, 35
Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Kwangmeyung Kim
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Se Joon Woo
- Department
of Ophthalmology, Seoul National University Bundang Hospital, 82,
Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
- Department
of Ophthalmology, Seoul National University College of Medicine, 71, Ihwajang-gil, Jongno-gu, Seoul, Korea
| | - Kyu Hyung Park
- Department
of Ophthalmology, Seoul National University Bundang Hospital, 82,
Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
- Department
of Ophthalmology, Seoul National University College of Medicine, 71, Ihwajang-gil, Jongno-gu, Seoul, Korea
| | - Hyuncheol Kim
- Department
of Chemical and Biomolecular Engineering, Sogang University, 35
Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea
| |
Collapse
|
46
|
Du JD, Fong WK, Caliph S, Boyd BJ. Lipid-based drug delivery systems in the treatment of wet age-related macular degeneration. Drug Deliv Transl Res 2016; 6:781-792. [DOI: 10.1007/s13346-016-0299-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Conjugates of small targeting molecules to non-viral vectors for the mediation of siRNA. Acta Biomater 2016; 36:21-41. [PMID: 27045350 DOI: 10.1016/j.actbio.2016.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED To use siRNA (small interfering RNA) for gene therapy, a gene delivery system is often necessary to overcome several challenging requirements including rapid excretion, low stability in blood serum, non-specific accumulation in tissues, poor cellular uptake and inefficient intracellular release. Active and/or passive targeting should help the delivery system to reach the desired tissue or cell, to be internalized, and to deliver siRNA to the cytoplasm so that siRNA can inhibit protein synthesis. This review covers conjugates of small targeting molecules and non-viral delivery systems for the mediation of siRNA, with a focus on their transfection properties in order to help the development of new and efficient siRNA delivery systems, as the therapeutic solutions of tomorrow. STATEMENT OF SIGNIFICANCE The delivery of siRNA into cells or tissues remains to be a challenge for its applications, an alternative strategy for siRNA delivery systems is direct conjugation of non-viral vectors with targeting moieties for cellular delivery. In comparison to macromolecules, small targeting molecules have attracted great attention due to their many potential advantages including significant simplicity and ease of production, good repeatability and biodegradability. This review will focus on the most recent advances in the delivery of siRNA using conjugates of small targeting molecules and non-viral delivery systems. Based the editor's suggestions, we hope the revised manuscript could provide more profound understanding to the conjugates of targeting molecules to vectors for mediation of siRNA.
Collapse
|
48
|
Barui S, Saha S, Yakati V, Chaudhuri A. Systemic Codelivery of a Homoserine Derived Ceramide Analogue and Curcumin to Tumor Vasculature Inhibits Mouse Tumor Growth. Mol Pharm 2016; 13:404-19. [DOI: 10.1021/acs.molpharmaceut.5b00644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sugata Barui
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
| | - Soumen Saha
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
- Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| | - Venu Yakati
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
- Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| | - Arabinda Chaudhuri
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
- Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| |
Collapse
|
49
|
Guo Y, Niu B, Song Q, Zhao Y, Bao Y, Tan S, Si L, Zhang Z. RGD-decorated redox-responsived-α-tocopherol polyethylene glycol succinate–poly(lactide) nanoparticles for targeted drug delivery. J Mater Chem B 2016; 4:2338-2350. [DOI: 10.1039/c6tb00055j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel kind of copolymer, TPGS-SS-PLA, was successfully synthesized and applied in targeted drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy
- Liyuan Hospital
- Tongji Medical School
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Boning Niu
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Qingle Song
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Yongdan Zhao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Yuling Bao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Songwei Tan
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Luqin Si
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
- Hubei Engineering Research Center for NDDS
| |
Collapse
|
50
|
Wang L, Xie X, Liu D, Fang XB, Li P, Wan JB, He CW, Chen MW. iRGD-mediated reduction-responsive DSPE–PEG/LA–PLGA–TPGS mixed micelles used in the targeted delivery and triggered release of docetaxel in cancer. RSC Adv 2016. [DOI: 10.1039/c5ra19814c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reduction-sensitive micelles with crosslinked cores were developed to load the lipophilic chemotherapeutic drug docetaxel (DTX) in order to overcome the issues of toxicity, water insolubility, and rapid metabolism of DTX.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Xi Xie
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Di Liu
- School of Mathematics
- University of Minnesota
- Minneapolis
- USA
| | - Xiao-Bin Fang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Cheng-Wei He
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| |
Collapse
|