1
|
Sharma G, Panwar R, Saini S, Tuli HS, Wadhwa K, Pahwa R. Emerging phytochemical-based nanocarriers: redefining the perspectives of breast cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04003-3. [PMID: 40137964 DOI: 10.1007/s00210-025-04003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Breast cancer is recognized as the most prevalent condition impacting women globally, despite several advancements in diagnosis and treatment. Existing therapeutic interventions including surgical procedures, radiation therapy, and chemotherapy often produce harmful effects on healthy tissues, trigger chemo-resistance, and augment the risk of relapse. In response to several unmet challenges, substantial research has been conducted to explore the therapeutic potential of natural compounds for breast cancer therapy. Progress in phytochemistry and pharmacology has facilitated the identification of diverse herbal bioactives with favorable safety profiles and multi-target mechanisms of action against breast cancer cells. Several phytochemicals like flavonoids and tannins have shown significant anticancer potential against breast cancer in diverse preclinical models. However, challenges like limited cellular absorption, low water solubility, and high molecular weight hinder their effective translation into clinical applications. Therefore, the development of novel therapies is imperative for overcoming these hurdles in breast cancer treatment effectively. Nanotechnology has reflected considerable perspective in tackling diverse challenges by encapsulating phytoconstituents within various nanocarriers including polymeric nanoparticles, lipidic nanoparticles, nanoemulsions, nanogels, gold nanoparticles, and silver nanoparticles. This manuscript emphasizes the recent advancements in phytochemical-loaded nanocarriers efficiently tailored for breast cancer therapy along with patents, current challenges, and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Rohil Panwar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Sanskriti Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Hardeep Singh Tuli
- Department of Bio-Science and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
2
|
T S, R SK, Nair AR. Biosynthesis of Zinc Oxide-Zerumbone (ZnO-Zer) Nanoflakes Towards Evaluating Its Antibacterial and Reactive Oxygen Species (ROS)-Dependent Cytotoxic Activity. J Fluoresc 2025; 35:649-660. [PMID: 38148408 DOI: 10.1007/s10895-023-03560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Being the second most prevalent metal oxide, zinc oxide (ZnO) nanomaterials have been widely studied and found to exhibit promising applications in various domains of biomedicine and agriculture. Considering the enhanced bioactivities displayed by secondary metabolite (SM) derived ZnO nanomaterials, present study was undertaken to evaluate the efficacy of ZnO nanoflake (NF) derived from Zerumbone (Zer), a sesquiterpenoid from Zingiber zerumbet rhizome with diverse pharmacological properties. ZnO NF prepared by homogeneous precipitation method using ZnSO4.7H2O (0.1 M) and NaOH (0.2 M) as precursors with and without the addition of Zer (0.38 mM) were characterized by powder UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and Field emission scanning electron microscope (FESEM) analysis. Optical and physical properties of ZnO-Zer NF were found to match with the typical ZnO nanomaterial properties. XRD analysis revealed reduction in size (15 nm) of the green synthesized ZnO-Zer NF compared to ZnO NF (21 nm). ZnO-Zer NF displayed linear correlation between concentration and antimicrobial activity to Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Determination of cytotoxic potential of the synthesized ZnO-Zer NF in cervical cancer cells (HeLa) showed higher cytotoxicity of ZnO-Zer NF (39.32 ± 3.01%) compared to Zer alone (27.02 ± 1.22%). Present study revealing improvement in bioactivity of Zer following conjugation with ZnO NF signifies potential of NF formation in improving therapeutic application of Zer that otherwise displays low solubility limiting its bioavailability.
Collapse
Affiliation(s)
- Shilpa T
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Sanjay Kumar R
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Aswati R Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
3
|
Ibrahim M, Fathalla Z, Fatease AA, Alamri AH, Abdelkader H. Breast cancer epidemiology, diagnostic barriers, and contemporary trends in breast nanotheranostics and mechanisms of targeting. Expert Opin Drug Deliv 2024; 21:1735-1754. [PMID: 39361257 DOI: 10.1080/17425247.2024.2412823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Breast cancer is one of the main causes of mortality in women globally. Early and accurate diagnosis represents a milestone in cancer management. Several breast cancer diagnostic agents are available. Many chemotherapeutic agents in conventional dosage forms are approved; nevertheless, they lack cancer cell specificity, resulting in improper treatment and undesirable side effects. Recently, nanotheranostics has emerged as a new paradigm to achieve safe and effective cancer diagnosis and management. AREA COVERED This review provides insight into breast cancer epidemiology, barriers hindering the early diagnosis, and effective delivery of chemotherapeutics. Also, conventional diagnostic agents and recent nanotheranostic platforms have been used in breast cancer. In addition, mechanisms of cancer cell targeting and nano-carrier surface functionalization as an effective approach for chemotherapeutic targeting were reviewed along with future perspectives. EXPERT OPINION We proposed that modified nano-carriers may provide an efficacious approach for breast cancer drug targeting. These nanotheranostics need more clinical evaluations to confirm their efficacy in cancer management. In addition, we recommend the use of artificial intelligence (AI) as a promising approach for early and efficient assessment of breast lesions. AI allows better interpretation and analysis of nanotheranostic data, which minimizes misdiagnosis and avoids the belated intervention of health care providers.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Zeinab Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Karahaliloğlu Z, Hazer B. Curcumin- and quercetin-functionalized polypropylene membranes as active food packaging material. J Food Sci 2024; 89:6575-6589. [PMID: 39218807 DOI: 10.1111/1750-3841.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
A wide range of active agents, synthetic and natural agents such as essential oils, chitosan and polyphneols consisting of curcumin, gallic acid, anthocyanins, and catechins have been used in order to develop antimicrobial packaging systems, and among them, natural polyphenolic compounds, specially curcumin (Cur) has great potential due to effective biological activities in developing food packaging material. Quercetin (Quer) is also the mostly studied flavonol as a color-changing indicator in the food industry and has been already developed as a realistic alternative for smart and active food packaging. The reason for choosing these two polyphenolic compounds is that they simultaneously possess many beneficial properties such as antioxidant, antibacterial, antiviral, antitumoral, and anti-inflammatory effects. Additionally, the main objective of the study is to combine polypropylene (PP), which is the most preferred and cost-effective polymer in the packaging industry, with these active ingredients, rather than using more expensive polymer types. In this context, PP-Quer or PP-Cur membranes, which are new experiences based on these literatures were chemically characterized by Fourier transform infrared spectroscopy, and the surface morphology of these composite membranes was characterized by scanning electron microscopy. The antibacterial response against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria species was investigated. Furthermore, the reactive oxygen species generation and anticancer activity of these composite membranes using human colorectal adenocarcinoma (HT-29) were observed. We proposed that PP-Quer or PP-Cur composite membranes can be a potential candidate as active packaging material in the food industry.
Collapse
Affiliation(s)
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevsehir, Turkey
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
5
|
Ghosh S, Das SK, Sinha K, Ghosh B, Sen K, Ghosh N, Sil PC. The Emerging Role of Natural Products in Cancer Treatment. Arch Toxicol 2024; 98:2353-2391. [PMID: 38795134 DOI: 10.1007/s00204-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata, 700064, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata, 700013, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
6
|
Barathan M, Vellasamy KM, Mariappan V, Venkatraman G, Vadivelu J. Naturally Occurring Phytochemicals to Target Breast Cancer Cell Signaling. Appl Biochem Biotechnol 2024; 196:4644-4660. [PMID: 37773580 DOI: 10.1007/s12010-023-04734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Center of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Jamuna Vadivelu
- MERDU, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Waqar M, Batool SA, Yaqoob Z, Manzur J, Abbas M, Vayalpurayil T, Ur Rehman MA. Potential magnetic drug targeting with magnetite nanoparticles in cancer treatment by enhancer-modifier natural herb and loaded drug. Heliyon 2024; 10:e32484. [PMID: 38961896 PMCID: PMC11219342 DOI: 10.1016/j.heliyon.2024.e32484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
In the present study, we prepared magnetite nanoparticles (MNPs) loaded with natural Moringa oleifera (M. olf) herb and Epilim (Ep) drug to evaluate the anti-cancerous activity against brain cancer cells. All the samples were prepared via co-precipitation approach modified with different concentrations of M. olf and Ep drug at room temperature. The MNPs loaded with drug and natural herb were studied in terms of crystal structure, morphology, colloidal stability, size distribution, and magnetic properties. Field emission scanning electron microscopy (FESEM) images exhibited the morphologies of samples with spherical shape as well as the particles size of 9 nm for MNPs and up to 23 nm for its composites. The results of vibrating sample magnetometer (VSM) indicated the magnetization saturation (Ms) of 42.510 emu/g for MNPs. This value reduced to 16-35 emu/g upon loading MNPs with different concentrations of M. olf and Ep. Fourier transform infrared spectroscopy (FTIR) indicated the chemical interaction between the Ep, M.olf and MNPs. Brunauer-Emmett-Teller (BET) analysis confirmed the largest surface area for MNPs (422.61 m2/g) which gradually reduced on addition of M. olf and Ep indicating the successful loading. The zeta potential measurements indicated that the MNPs and MNPs loaded with M. olf and Ep are negatively charged and can be dispersed in the suspension. Furthermore, U87 human glioblastoma cell line was used for the in vitro cellular studies to determine the efficacy of synthesized MNPs against cancer cells. The results confirmed the anti-proliferative activity of the MNPs loaded with M. olf and Ep.
Collapse
Affiliation(s)
- Maria Waqar
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Syeda Ammara Batool
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Zahida Yaqoob
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
- Centre of Excellence in Biomaterials and Tissue Engineering, Department of Materials Science and Engineering Government College University Lahore, 54000, Pakistan
| | - Jawad Manzur
- Centre of Excellence in Biomaterials and Tissue Engineering, Department of Materials Science and Engineering Government College University Lahore, 54000, Pakistan
| | - Mohamed Abbas
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| |
Collapse
|
8
|
Fahmy HM, Shekewy S, Elhusseiny FA, Elmekawy A. Enhanced Biocompatibility by Evaluating the Cytotoxic and Genotoxic Effects of Magnetic Iron Oxide Nanoparticles and Chitosan on Hepatocellular Carcinoma Cells (HCC). Cell Biochem Biophys 2024; 82:1027-1042. [PMID: 38558242 PMCID: PMC11344728 DOI: 10.1007/s12013-024-01256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Hepatocellular carcinoma (HCC), the fifth most prevalent cancer worldwide, is influenced by a myriad of clinic-pathological factors, including viral infections and genetic abnormalities. This study delineates the synthesis, characterization, and the biological efficacy of iron oxide nanoparticles (Fe3O4) and chitosan-coated iron oxide nanoparticles (Fe3O4-CS) against HCC. Analytical methods confirmed the successful synthesis of both nanoparticles, with Fe3O4-CS demonstrating a smaller, uniform spherical morphology and distinct surface and magnetic properties attributable to its chitosan coating. The prepared materials were analyzed using various techniques, and their potential cytotoxic effects on HepG2 cancer cells line for HCC were investigated. In biological evaluations against HepG2 cells, a notable distinction in cytotoxicity was observed. Fe3O4 showed modest anticancer activity with an IC50 of 383.71 ± 23.9 µg/mL, whereas Fe3O4 exhibited a significantly enhanced cytotoxic effect, with a much lower IC50 of 39.15 ± 39.2 µg/mL. The Comet assay further evidenced Fe3O4-CS potent DNA damaging effect, showcasing its superior ability to induce apoptosis through extensive DNA fragmentation. Biochemical analyses integrated into our results reveal that Fe3O4-CS not only induces significant DNA damage but also markedly alters oxidative stress markers. Compared to control and Fe3O4-treated cells, Fe3O4-CS exposure significantly elevated levels of oxidative stress markers: superoxide dismutase (SOD) increased to 192.07 U/ml, catalase (CAT) decreased to 0.03 U/L, glutathione peroxidase (GPx) rose dramatically to 18.76 U/gT, and malondialdehyde (MDA) levels heightened to 30.33 nmol/gT. These results underscore the potential of Fe3O4-CS nanoparticles not only in inducing significant DNA damage conducive to cancer cell apoptosis but also in altering enzymatic activities and oxidative stress markers, suggesting a dual mechanism of action that may underpin their therapeutic advantage in cancer treatment. Our findings advocate for the further exploration of Fe3O4-CS nanoparticles in the development of anticancer drugs, emphasizing their capability to trigger oxidative stress and enhance antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Samar Shekewy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
- Physics Department, Faculty of Science, Menofia University, Menofia, Egypt
| | | | - Ahmed Elmekawy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
9
|
Hirulkar R, Chaurawal N, Alhodieb FS, Barkat H, Preet S, Raza K. Nanotheranostics: Clinical Status, Toxicity, Regulatory Consideration, and Future Prospects. NANOTHERANOSTICS FOR DIAGNOSIS AND THERAPY 2024:249-285. [DOI: 10.1007/978-981-97-3115-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Mukherjee D, Krishnan A. Therapeutic potential of curcumin and its nanoformulations for treating oral cancer. World J Methodol 2023; 13:29-45. [PMID: 37456978 PMCID: PMC10348080 DOI: 10.5662/wjm.v13.i3.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 04/14/2023] [Indexed: 06/14/2023] Open
Abstract
The global incidence of oral cancer has steadily increased in recent years and is associated with high morbidity and mortality. Oral cancer is the most common cancer in the head and neck region, and is predominantly of epithelial origin (i.e. squamous cell carcinoma). Oral cancer treatment modalities mainly include surgery with or without radiotherapy and chemotherapy. Though proven effective, chemotherapy has significant adverse effects with possibilities of tumor resistance to anticancer drugs and recurrence. Thus, there is an imperative need to identify suitable anticancer therapies that are highly precise with minimal side effects and to make oral cancer treatment effective and safer. Among the available adjuvant therapies is curcumin, a plant polyphenol isolated from the rhizome of the turmeric plant Curcuma longa. Curcumin has been demonstrated to have anti-infectious, antioxidant, anti-inflammatory, and anticarcinogenic properties. Curcumin has poor bioavailability, which has been overcome by its various analogues and nanoformulations, such as nanoparticles, liposome complexes, micelles, and phospholipid complexes. Studies have shown that the anticancer effects of curcumin are mediated by its action on multiple molecular targets, including activator protein 1, protein kinase B (Akt), nuclear factor κ-light-chain-enhancer of activated B cells, mitogen-activated protein kinase, epidermal growth factor receptor (EGFR) expression, and EGFR downstream signaling pathways. These targets play important roles in oral cancer pathogenesis, thereby making curcumin a promising adjuvant treatment modality. This review aims to summarize the different novel formulations of curcumin and their role in the treatment of oral cancer.
Collapse
Affiliation(s)
- Diptasree Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
- Department of Medicine, Apex Institute of Medical Science, Kolkata 700075, West Bengal, India
| | - Arunkumar Krishnan
- Department of Medicine Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| |
Collapse
|
11
|
Hasani M, Jafari S, Akbari Javar H, Abdollahi H, Rashidzadeh H. Cell-Penetrating Peptidic GRP78 Ligand-Conjugated Iron Oxide Magnetic Nanoparticles for Tumor-Targeted Doxorubicin Delivery and Imaging. ACS APPLIED BIO MATERIALS 2023; 6:1019-1031. [PMID: 36862384 DOI: 10.1021/acsabm.2c00897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Although chemotherapy is regarded as an essential option in cancer treatment, it is still far from being perfect. Inadequate tumor drug concentration and systemic toxicity along with broad biodistribution have diminished the utility of chemotherapy. Tumor-targeting peptide-conjugated multifunctional nanoplatforms have emerged as an effective strategy for site-directed tumor tissues in cancer treatment and imaging. Herein, Pep42-targeted iron oxide magnetic nanoparticles (IONPs) functionalized with β-cyclodextrin (ßCD) containing doxorubicin (DOX) (Fe3O4-ßCD-Pep42-DOX) were successfully developed. The physical effects of the prepared NPs were characterized by employing various techniques. Transmission electron microscopy (TEM) images disclosed that the developed Fe3O4-ßCD-Pep42-DOX nanoplatforms had a spherical morphology and a core-shell structure with a size of nearly 17 nm. Fourier transform infrared (FT-IR) spectroscopy showed that β-cyclodextrin, DOX, and Pep42 molecules were successfully loaded on the IONPs. In vitro cytotoxicity analysis revealed that the fabricated multifunctional Fe3O4-ßCD-Pep42 nanoplatforms possessed excellent biosafety toward BT-474, MDA-MB468 (cancerous cells), and MCF10A normal cells, while Fe3O4-ßCD-Pep42-DOX exhibited great cancer cell killing ability. The high cellular uptake along with intracellular trafficking of Fe3O4-ßCD-Pep42-DOX highlights the usefulness of the Pep42-targeting peptide. In vivo results strongly supported the in vitro results, i.e., significant tumor size reduction was observed by single-dose injection of Fe3O4-ßCD-Pep42-DOX into tumor-bearing mice. Interestingly, in vivo MR imaging (MRI) of Fe3O4-ßCD-Pep42-DOX revealed T2 contrast improvement in the tumor cells and therapeutic ability in cancer theranostics. Taken together, these findings provided strong evidence for the potential capability of Fe3O4-ßCD-Pep42-DOX as a multifunctional nanoplatform in cancer therapy and imaging and opens up a new avenue of research in this area.
Collapse
Affiliation(s)
- Mahdiyeh Hasani
- Pharmaceutical Nanotechnology Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan PG36+6RX, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 83VX+PCM, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+8MF, Iran
| | - Hossein Abdollahi
- Department of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia 5756151818, Iran
| | - Hamid Rashidzadeh
- Pharmaceutical Nanotechnology Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan PG36+6RX, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan PG36+6RX, Iran
| |
Collapse
|
12
|
Pandey M, Singh AK, Pandey PC. Synthesis and in vitro antibacterial behavior of curcumin-conjugated gold nanoparticles. J Mater Chem B 2023; 11:3014-3026. [PMID: 36938847 DOI: 10.1039/d2tb02256g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Owing to the rise in multidrug-resistant bacterial diseases and the dwindling supply of newer antibiotics, it is crucial to discover newer compounds or modify current compounds for more effective antimicrobial therapies. According to reports, more than 80% of bacterial infections have been linked to bacterial biofilms. In addition to having antimicrobial properties, the hydrophobic polyphenol curcumin (Cur) also inhibits quorum sensing. The application of curcumin was constrained by its weak aqueous solubility and quick degradation. Over the past years, nanotechnology-based biomaterials with multi-functional characteristics have been engineered with high interest. The present study focused on the development of nano-biomaterials with excellent testifiers for bacterial infection in vitro. In this study, water dispersibility and stability of curcumin were improved through conjugation with gold nanoparticles. The successful synthesis of curcumin-conjugated gold nanoparticles (Cur-AuNPs) was confirmed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and UV-vis absorbance spectroscopy. Transmission electron microscopy (TEM) revealed an average particle size of about 10-13 nm. The antibacterial characteristics in terms of the minimum inhibitory concentration (MIC) of Cur-AuNP treatments were found to be lowest than those with AuNPs and Cur treatments. The quantitative analysis revealed the superior antibacterial characteristics of Cur-AuNP-treated bacterial cells compared to the untreated samples. In addition, curcumin-conjugated AuNPs, produced more reactive oxygen species and increased the membrane permeability. Besides, the biocompatibility of Cur-AuNPs was also assessed quantitatively and qualitatively. Statistical analyses revealed the augmented MG-63 cell proliferation in Cur-AuNPs compared to those with Cur and AuNPs treatments. Overall, Cur-AuNPs exhibited enhanced antibacterial, and antibiofilm characteristics and cytocompatibility.
Collapse
Affiliation(s)
- Maneesha Pandey
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Ashish Kumar Singh
- Model Rural Health Research Unit, Datia; Indian Council of Medical Research-National Institute of Research in Tribal Health (ICMR-NIRTH), Jabalpur-482003, India
| | - P C Pandey
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
13
|
Kang Y, Shi S, Sun H, Dan J, Liang Y, Zhang Q, Su Z, Wang J, Zhang W. Magnetic Nanoseparation Technology for Efficient Control of Microorganisms and Toxins in Foods: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16050-16068. [PMID: 36533981 DOI: 10.1021/acs.jafc.2c07132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Outbreaks of foodborne diseases mediated by food microorganisms and toxins remain one of the leading causes of disease and death worldwide. It not only poses a serious threat to human health and safety but also imposes a huge burden on health care and socioeconomics. Traditional methods for the removal and detection of pathogenic bacteria and toxins in various samples such as food and drinking water have certain limitations, requiring a rapid and sensitive strategy for the enrichment and separation of target analytes. Magnetic nanoparticles (MNPs) exhibit excellent performance in this field due to their fascinating properties. The strategy of combining biorecognition elements with MNPs can be used for fast and efficient enrichment and isolation of pathogens. In this review, we describe new trends and practical applications of magnetic nanoseparation technology in the detection of foodborne microorganisms and toxins. We mainly summarize the biochemical modification and functionalization methods of commonly used magnetic nanomaterial carriers and discuss the application of magnetic separation combined with other instrumental analysis techniques. Combined with various detection techniques, it will increase the efficiency of detection and identification of microorganisms and toxins in rapid assays.
Collapse
Affiliation(s)
- Yi Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yanmin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Qiuping Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zehui Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
14
|
Abtahi NA, Naghib SM, Haghiralsadat F, Akbari Edgahi M, Askari E. A comparative study on biopharmaceutical function of curcumin and miR-34a by multistimuli-responsive nanoniosome carrier: In-vitro and in-vivo. Front Mol Biosci 2022; 9:1043277. [PMID: 36325275 PMCID: PMC9619056 DOI: 10.3389/fmolb.2022.1043277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
This research conducted a comparative study on nanoscaled niosomal structures consisting of Tween-80, Tween-60, cholesterol, and dioleoyl-3-trimethylammonium propane (DOTAP). Thin-film hydration technique was used for the preparation and entrapment of curcumin and miRNA in niosomal formulations for enhancing the stability and delivery rate of the agents. Herein, the influence of Tween-80, Tween-60, cholesterol, and DOTAP on the entrapment efficiency (EE%) of curcumin and the physicochemical properties of the carrier are fully discussed. The optimum engineered formulation resulted in a positive charge of +11.23 mV, high EE (100%), smooth surface, spherical shape, small diameter (90 nm), and good stability in physiological buffers. Also, an accelerated cellular uptake, as well as drug release in PBS (pH 7.4, 37°C) after 72 h, were observed. The cytotoxic activity of curcumin (Cur)/miR-34a-loaded nanoparticles was determined by the MTT assay. The results displayed an improved cytotoxic activity of Cur-niosome towards cancer cells compared to free-dispersed Cur. The uptake of Cur-loaded niosome by A280s and A280cp-1 cancer cell lines faced 2.5 folds drop in the concentration compared to its free form. Generally, Cur-niosome exhibits a significant accumulation of superior anti-cancer properties. Likewise, the cytotoxicity of miR-34a-niosome against tumor cells was higher in comparison with its free form. The anti-cancer effects of the gene/drug delivery were investigated in the 4T1 xenografted Balb/C mouse tumor model. According to the in vitro and in vivo results, gene delivery from the modified niosome nanoparticles was distinctly greater than Cur delivery. Therefore, it was concluded that encapsulation of genes in the nano-niosomal delivery system is a promising procedure for the treatment of cancer cells.
Collapse
Affiliation(s)
- Najmeh Alsadat Abtahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
- *Correspondence: Seyed Morteza Naghib, ; Fateme Haghiralsadat,
| | - Fateme Haghiralsadat
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- *Correspondence: Seyed Morteza Naghib, ; Fateme Haghiralsadat,
| | - Mohammadmahdi Akbari Edgahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Esfandyar Askari
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Al-Harbi LN, Al-Shammari GM, Subash-Babu P, Mohammed MA, Alkreadees RA, Yagoub AEA. Cinchona officinalis Phytochemicals-Loaded Iron Oxide Nanoparticles Induce Cytotoxicity and Stimulate Apoptosis in MCF-7 Human Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3393. [PMID: 36234520 PMCID: PMC9565860 DOI: 10.3390/nano12193393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to synthesize iron oxide nanoparticles loaded with quinine and alkaloids-rich Cinchona officinalis (Peruvian bark) stem bark extract, and further evaluate their cytotoxic effect and apoptosis mechanisms in MCF-7 breast cancer cells. Nanoparticles were prepared by biological reduction of iron oxide with Cinchona officinalis extract, using the green synthesis method. The nanoparticles were characterized by XRD, FT-IR, and UV-vis spectroscopy and transmission electron microscopy (TEM). In vitro cytotoxicity analyses of Cinchona officinalis extract, ferrous oxide, and Cinchona officinalis extract-loaded iron oxide nanoparticles (CO-NPs) were carried out using the MTT test for 24 h and 48 h. We found that CO-NPs reduced the MCF-7 cell viability with IC50 values of 16.2 and 9 µg/mL in 24 h and 48 h, respectively. In addition, CO-NPs were tested with normal hMSCs to determine their toxicity, and we did not find noticeable cytotoxicity. Confocal fluorescent microscopy revealed that CO-NPs efficiently increased the nuclear condensation and chromatin damage in propidium iodide staining; meanwhile, there was decreased mitochondrial membrane potential in CO-NPs-treated MCF-7 cells. In addition, AO-EB staining confirmed the late apoptotic and apoptotic morphology of cancer cells. Further gene expression analysis confirmed that the upregulation of tumor suppressors, Cdkn1A, Prb, and p53 was significantly increased, and inflammatory traits such as TNF-α and Nf-κb were increased in cancer cells treated with CO-NPs. Apoptotic stimulators such as Bax and caspase-3 expression were highly significantly increased, while mdm-2 and Bcl-2 were significantly decreased. Overall, the enhanced cytotoxic potential of the Cinchona officianlis stem bark extract loaded CO-NPs versus free Cinchona officianlis extract might be due to the functional stabilization of bioactive compounds, such as alkaloids, quinine, flavonoids, phenolics, etc., into the iron oxide, providing bioavailability and internalization of cinchona metabolites intracellularly.
Collapse
|
16
|
Suárez DF, Pinzón-García AD, Sinisterra RD, Dussan A, Mesa F, Ramírez-Clavijo S. Uniaxial and Coaxial Nanofibers PCL/Alginate or PCL/Gelatine Transport and Release Tamoxifen and Curcumin Affecting the Viability of MCF7 Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193348. [PMID: 36234476 PMCID: PMC9565524 DOI: 10.3390/nano12193348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 05/11/2023]
Abstract
Breast cancer is the second cause of cancer death in women worldwide. The search for therapeutic and preventive alternatives has increased in recent years. One synthetic drug for patients with hormone receptor-positive tumours is tamoxifen citrate (TMX). Curcumin (Cur) is a natural compound that is being tested. Both were coupled with nanoscale-controlled and sustained release systems to increase the effectiveness of the treatment and reduce adverse effects. We produced a controlled release system based on uniaxial and coaxial polymeric nanofibers of polycaprolactone (PCL), alginate (Alg) and gelatine (Gel) for the transport and release of TMX and Cur, as a new alternative to breast cancer treatment. Nanofibers combining PCL-Alg and PCL-Gel were fabricated by the electrospinning technique and physicochemically characterised by thermal analysis, absorption spectroscopy in the infrared region and X-ray diffraction. Morphology and size were studied by scanning electron microscopy. Additionally, the release profile of TMX and Cur was obtained by UV-Vis spectroscopy. Additionally, the cytotoxic effect on breast cancer cell line MCF7 and peripheral-blood mononuclear cells (PBMCs) from a healthy donor were evaluated by a Resazurin reduction assay. These assays showed that PCL-TMX nanofiber was highly toxic to both cell types, while PCL-Cur was less toxic.
Collapse
Affiliation(s)
- Diego Fernando Suárez
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Delia Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Rubén Darío Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anderson Dussan
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Fredy Mesa
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Sandra Ramírez-Clavijo
- Department of Biology, Grupo Ciencias Básicas Médicas, Faculty of Natural Science, Universidad del Rosario, Bogotá 110311, Colombia
- Correspondence:
| |
Collapse
|
17
|
Hafez Ghoran S, Calcaterra A, Abbasi M, Taktaz F, Nieselt K, Babaei E. Curcumin-Based Nanoformulations: A Promising Adjuvant towards Cancer Treatment. Molecules 2022; 27:molecules27165236. [PMID: 36014474 PMCID: PMC9414608 DOI: 10.3390/molecules27165236] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Throughout the United States, cancer remains the second leading cause of death. Traditional treatments induce significant medical toxic effects and unpleasant adverse reactions, making them inappropriate for long-term use. Consequently, anticancer-drug resistance and relapse are frequent in certain situations. Thus, there is an urgent necessity to find effective antitumor medications that are specific and have few adverse consequences. Curcumin is a polyphenol derivative found in the turmeric plant (Curcuma longa L.), and provides chemopreventive, antitumor, chemo-, and radio-sensitizing properties. In this paper, we summarize the new nano-based formulations of polyphenolic curcumin because of the growing interest in its application against cancers and tumors. According to recent studies, the use of nanoparticles can overcome the hydrophobic nature of curcumin, as well as improving its stability and cellular bioavailability in vitro and in vivo. Several strategies for nanocurcumin production have been developed, each with its own set of advantages and unique features. Because the majority of the curcumin-based nanoformulation evidence is still in the conceptual stage, there are still numerous issues impeding the provision of nanocurcumin as a possible therapeutic option. To support the science, further work is necessary to develop curcumin as a viable anti-cancer adjuvant. In this review, we cover the various curcumin nanoformulations and nanocurcumin implications for therapeutic uses for cancer, as well as the current state of clinical studies and patents. We further address the knowledge gaps and future research orientations required to develop curcumin as a feasible treatment candidate.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran
- Medicinal Plant Breeding and Development Research Institute, University of Kurdistan, Sanandaj 66177-15175, Iran
- Correspondence: (S.H.G.); or (E.B.); Tel.: +98-9144425047 (S.H.G.); Tel.: +98-4133392686 (E.B.)
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza–University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71336-54361, Iran
| | - Fatemeh Taktaz
- Department of Biology, Faculty of Sciences, University of Hakim Sabzevari, Sabzevar 96179-76487, Iran
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Kay Nieselt
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Esmaeil Babaei
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz 51666-16471, Iran
- Correspondence: (S.H.G.); or (E.B.); Tel.: +98-9144425047 (S.H.G.); Tel.: +98-4133392686 (E.B.)
| |
Collapse
|
18
|
Mukherjee D, Dash P, Ramadass B, Mangaraj M. Nanocurcumin in Oral Squamous Cancer Cells and Its Efficacy as a Chemo-Adjuvant. Cureus 2022; 14:e24678. [PMID: 35663647 PMCID: PMC9162890 DOI: 10.7759/cureus.24678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
|
19
|
Panda J, Satapathy BS, Sarkar R, Tudu B. A zinc ferrite nanodrug carrier for delivery of docetaxel: Synthesis, characterization and in vitro tests on C6 glioma cells. J Microencapsul 2022; 39:136-144. [PMID: 35313794 DOI: 10.1080/02652048.2022.2053757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM Docetaxel (DTX) loaded bio-compatible PLGA-PEG encapsulated zinc ferrite nanoparticles (ZFNP) formulation was developed and evaluated against C6 glioma cells. METHODS The ZFNP were characterized using XRD, FE-SEM, TEM etc. A series of drug formulations were fabricated by conjugating hydrothermally synthesized ZFNP with DTX in a PLGA-PEG matrix and optimized for drug loading. FTIR and DLS analysis of the formulation along with in vitro drug release, cytotoxicity, cellular uptake and haemolytic effect were evaluated. RESULTS Spherical, monodisperse, crystalline ZFNP with an average size of ∼28 nm were formed. The optimized formulation showed hydrodynamic diameter of ∼147 nm, surface charge of -34.8 mV, a drug loading of 6.9% (w/w) with prolonged drug release property and higher toxicity in C6 glioma cells compared to free DTX along with good internalization and negligible hemolysis. CONCLUSION The results indicate ZFNP could be effectively used as nanodrug carrier for delivery of docetaxel to glioma cells.
Collapse
Affiliation(s)
- Jnanranjan Panda
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Bhabani Sankar Satapathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India
| | - Ratan Sarkar
- Department of Physics, Jogesh Chandra Chaudhuri College, Kolkata- 700033, India
| | - Bharati Tudu
- Department of Physics, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
20
|
Araya-Sibaja AM, Salazar-López NJ, Wilhelm Romero K, Vega-Baudrit JR, Domínguez-Avila JA, Velázquez Contreras CA, Robles-Zepeda RE, Navarro-Hoyos M, González-Aguilar GA. Use of nanosystems to improve the anticancer effects of curcumin. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1047-1062. [PMID: 34621615 PMCID: PMC8450944 DOI: 10.3762/bjnano.12.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/23/2021] [Indexed: 05/08/2023]
Abstract
Curcumin (CUR) is a phenolic compound that is safe for human consumption. It exhibits chemopreventive, antiproliferative, antiangiogenic, and antimetastatic effects. However, these benefits can be hampered due to the lipophilic nature, rapid metabolism, low bioavailability, and fast elimination of the molecule. Considering this, the present work reviews the use of CUR-based nanosystems as anticancer agents, including conventional nanosystems (i.e., liposomes, nanoemulsions, nanocrystals, nanosuspensions, polymeric nanoparticles) and nanosystems that respond to external stimuli (i.e., magnetic nanoparticles and photodynamic therapy). Previous studies showed that the effects of CUR were improved when loaded into nanosystems as compared to the free compound, as well as synergist effects when it is co-administrated alongside with other molecules. In order to maximize the beneficial health effects of CUR, critical factors need to be strictly controlled, such as particle size, morphology, and interaction between the encapsulating material and CUR. In addition, there is an area of study to be explored in the development of CUR-based smart materials for nanomedical applications. Imaging-guided drug delivery of CUR-based nanosystems may also directly target specific cells, thereby increasing the therapeutic and chemopreventive efficacy of this versatile compound.
Collapse
Affiliation(s)
- Andrea M Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Universidad Técnica Nacional, 1902-4050, Alajuela, Costa Rica
| | - Norma J Salazar-López
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Hermosillo, Sonora 83304, México
- Universidad Autónoma de Baja California, Facultad de Medicina de Mexicali, Lic. en Nutrición, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali, Baja California 21000, México
| | - Krissia Wilhelm Romero
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Laboratorio BioDESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 2060, San José, Costa Rica
| | - José R Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Laboratorio de Investigación y Tecnología de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Sonora 83304, México
| | - Carlos A Velázquez Contreras
- Unidad Regional Centro, Departamento de Ciencias Químico-Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora 83000, México
| | - Ramón E Robles-Zepeda
- Unidad Regional Centro, Departamento de Ciencias Químico-Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora 83000, México
| | - Mirtha Navarro-Hoyos
- Laboratorio BioDESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 2060, San José, Costa Rica
| | - Gustavo A González-Aguilar
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Hermosillo, Sonora 83304, México
| |
Collapse
|
21
|
Kermanian M, Sadighian S, Ramazani A, Naghibi M, Khoshkam M, Ghezelbash P. Inulin-Coated Iron Oxide Nanoparticles: A Theranostic Platform for Contrast-Enhanced MR Imaging of Acute Hepatic Failure. ACS Biomater Sci Eng 2021; 7:2701-2715. [PMID: 34061500 DOI: 10.1021/acsbiomaterials.0c01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study introduces a superparamagnetic nanocomposite, Fe-Si-In, as a T2 magnetic resonance imaging (MRI) contrast agent with a core of iron oxide nanoparticles and a nonporous silica inner shell/carboxymethyl inulin outer shell. Due to its core/shell properties, the structure characterization, biocompatibility, and performance in MRI, as well as its potential as a drug delivery system, were thoroughly evaluated. The results have shown that the synthesized nanocomposite possesses excellent biocompatibility and acceptable magnetization (Ms = 20 emu g-1). It also has the potential to be a nanocarrier for drug delivery purposes, as evidenced by the results of curcumin administration studies. The developed nanocomposite has shown excellent performance in MRI, while the in vitro relaxivity measurements reveal a stronger T2 relaxivity (r2 = 223.2 ms) compared to the commercial samples available in the market. Furthermore, the in vivo MRI studies demonstrate an excellent contrast between injured livers and normal ones in rats which again upholds the high performance of Fe-Si-In in MRI diagnostics.
Collapse
Affiliation(s)
- Mehraneh Kermanian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Somayeh Sadighian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Mehran Naghibi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Maryam Khoshkam
- Applied Chemistry Department, Faculty of Science, University of Mohaghegh Ardabili, Ardabil 1136756199, Iran
| | - Parviz Ghezelbash
- Department of Radiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| |
Collapse
|
22
|
Curcumin-Loaded Micelles Dispersed in Ureasil-Polyether Materials for a Novel Sustained-Release Formulation. Pharmaceutics 2021; 13:pharmaceutics13050675. [PMID: 34066727 PMCID: PMC8151228 DOI: 10.3390/pharmaceutics13050675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is a vulvar/vaginal infection that affects approximately 75% of women worldwide. The current treatment consists of antimicrobials with hepatotoxic properties and high drug interaction probabilities. Therefore, this study aimed to develop a new treatment to VVC based on micelles containing curcumin (CUR) dispersed in a ureasil-polyether (U-PEO) hybrid. The physical-chemical characterization was carried out in order to observe size, shape, crystallinity degree and particle dispersion in the formulation and was performed by dynamic light scattering (DLS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and through in vitro release study. The results of DLS and SEM exhibited micelles with 35 nm, and encapsulation efficiency (EE) results demonstrated 100% of EE to CUR dispersed in the U-PEO, which was confirmed by the DRX. The release results showed that CUR loaded in U-PEO is 70% released after 10 days, which demonstrates the potential application of this material in different pharmaceutical forms (ovules and rings), and the possibility of multidose based on a single application, suggesting a higher rate of adherence.
Collapse
|
23
|
Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A, Albadrani GM, Kamel M, Khalifa SA, El-Seedi HR, Abdel-Daim MM. Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021; 11:392. [PMID: 33800000 PMCID: PMC8001478 DOI: 10.3390/biom11030392] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major burden of disease globally. Each year, tens of millions of people are diagnosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
Collapse
Affiliation(s)
- Md. Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, India;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54000, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shaden A.M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
24
|
Beyene AM, Moniruzzaman M, Karthikeyan A, Min T. Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:460. [PMID: 33670161 PMCID: PMC7916858 DOI: 10.3390/nano11020460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
In the past few decades, curcumin, a natural polyphenolic phytochemical, has been studied for treating a wide variety of diseases. It has shown promising results as a potential curative agent for a variety of diseases. However, its inherent limitations, such as poor aqueous solubility, poor absorbability, fast metabolic rate, and quick elimination from the body, have limited its application beyond preclinical studies. A huge number of studies have been made to address the issues of curcumin and to maximally utilize its potentials. Many review articles have tried to assess and summarize different nanocarriers, especially organic nanocarriers, for nanoformulations with curcumin. Nevertheless, few exclusive reviews on the progress in nanoformulation of curcumin with inorganic nanomaterials have been made. In this review, we present an exclusive summary of the progress in nanoformulation of curcumin with metal oxide nanoparticles. The beneficial feature of the metal oxide nanoparticles used in the curcumin nanoformulation, the different approaches followed in formulating curcumin with the metal oxides, and the corresponding results, protective effect of curcumin from different metal oxide caused toxicities, and concluding remarks are presented in the review.
Collapse
Affiliation(s)
- Anteneh Marelign Beyene
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
- School of Chemical and Bioengineering, Addis Ababa Institute of Technology (AAiT), King George VI St., Addis Ababa 1000, Ethiopia
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
| |
Collapse
|
25
|
Li L, Zhang X, Pi C, Yang H, Zheng X, Zhao L, Wei Y. Review of Curcumin Physicochemical Targeting Delivery System. Int J Nanomedicine 2020; 15:9799-9821. [PMID: 33324053 PMCID: PMC7732757 DOI: 10.2147/ijn.s276201] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Curcumin (CUR), as a traditional Chinese medicine monomer extracted from the rhizomes of some plants in Ginkgo and Araceae, has shown a wide range of therapeutic and pharmacological activities such as anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, anti-liver fibrosis, anti-atherosclerosis, and anti-Alzheimer’s disease. However, some issues significantly affect its biological activity, such as low aqueous solubility, physico-chemical instability, poor bioavailability, and low targeting efficacy. In order to further improve its curative effect, numerous efficient drug delivery systems have been carried out. Among them, physicochemical targeting preparations could improve the properties, targeting ability, and biological activity of CUR. Therefore, in this review, CUR carrier systems are discussed that are driven by physicochemical characteristics of the microenvironment (eg, pH variation of tumorous tissues), affected by external influences like magnetic fields and vehicles formulated with thermo-sensitive materials.
Collapse
Affiliation(s)
- Lanmei Li
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, People's Republic of China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing 400065, People's Republic of China
| | - Chao Pi
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hongru Yang
- Department of Oncology of Luzhou People's Hospital, Luzhou, Sichuan 646000, People's Republic of China
| | - Xiaoli Zheng
- Basic Medical College of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ling Zhao
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yumeng Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
26
|
Kermanian M, Naghibi M, Sadighian S. One-pot hydrothermal synthesis of a magnetic hydroxyapatite nanocomposite for MR imaging and pH-Sensitive drug delivery applications. Heliyon 2020; 6:e04928. [PMID: 32995618 PMCID: PMC7505760 DOI: 10.1016/j.heliyon.2020.e04928] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/23/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Synthetic hydroxyapatite (HA) due to its high biocompatibility, anti-inflammatory properties, high stability, and a flexible structure in combination with magnetic nanoparticles has the strong potential to be used in modern medicine including tissue engineering, imaging, and drug delivery. Herein, a hydrothermal process was used to prepare magnetite nanoparticles dispersed on the hydroxyapatite nanorods with cetyltrimethylammonium bromide (CTAB) as a surfactant. Characterization study of the synthesized iron oxide-hydroxyapatite (IO-HA) nanocomposite was performed by FT-IR spectroscopy, X-ray powder diffraction, energy dispersive X-Ray analysis (EDX) for elemental mapping, transmission electron microscopy, and vibrating sample magnetometer. Then, the biocompatibility of the synthesized nanocomposite studied by 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay and hemocompatibility assay. Focus on this point, curcumin loaded IO-HA (Cur@IO-HA) was developed for exploring the pH-sensitivity of the drug carrier and then evaluating its cellular uptake. The in vitro efficacy of the synthesized nanocomposites as a magnetic resonance imaging (MRI) contrast agent was also investigated. Our results showed that IO-HA nanocomposite is non-cytotoxic and hemocompatible as well as a good pH-sensitive drug carrier and a favorable MRI T2 contrast agent. Comparing to the free curcumin, Cur@IO-HA displayed a good cellular uptake. Taking into account the above issues, IO-HA nanocomposite has the most potential for application as a theranostic MRI contrast agent.
Collapse
Affiliation(s)
- Mehraneh Kermanian
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehran Naghibi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Sadighian
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
27
|
Karthikeyan A, Senthil N, Min T. Nanocurcumin: A Promising Candidate for Therapeutic Applications. Front Pharmacol 2020; 11:487. [PMID: 32425772 PMCID: PMC7206872 DOI: 10.3389/fphar.2020.00487] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Curcuma longa is an important medicinal plant and a spice in Asia. Curcumin (diferuloylmethane) is a hydrophobic bioactive ingredient found in a rhizome of the C. longa. It has drawn immense attention in recent years for its variety of biological and pharmacological action. However, its low water solubility, poor bioavailability, and rapid metabolism represent major drawbacks for its successful therapeutic applications. Hence, researchers have attempted to enhance the biological and pharmacological activity of curcumin and overcome its drawbacks by efficient delivery systems, particularly nanoencapsulation. Research efforts so far and data from the available literature have shown a satisfactory potential of nanorange formulations of curcumin (Nanocurcumin), it increases all the biological and pharmacological benefits of curcumin, which was not significantly possible earlier. For the synthesis of nanocurcumin, an array of techniques has been developed and each technique has its own advantages and individual characteristics. The two most popular and effective techniques are ionic gelation and antisolvent precipitation. So far, many curcumin nanoformulations have been developed to enhance curcumin delivery, thereby overcoming the low therapeutic effects. However, most of the nanoformulation of curcumin remained at the concept level evidence, thus, several questions and challenges still exist to recommend the nanocurcumin as a promising candidate for therapeutic applications. In this review, we discuss the different curcumin nanoformulation and nanocurcumin implications for different therapeutic applications as well as the status of ongoing clinical trials and patents. We also discuss the research gap and future research directions needed to propose curcumin as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Taesun Min
- Faculty of Biotechnology, College of Applied Life Science, Sustainable Agriculture Research Institute (SARI) and Jeju International Animal Research Center (JIA), Jeju National University, Jeju, South Korea
| |
Collapse
|
28
|
Polyethylene Glycol-Chitosan Oligosaccharide-Coated Superparamagnetic Iron Oxide Nanoparticles: A Novel Drug Delivery System for Curcumin Diglutaric Acid. Biomolecules 2020; 10:biom10010073. [PMID: 31906490 PMCID: PMC7023009 DOI: 10.3390/biom10010073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Curcumin diglutaric acid-loaded polyethylene glycol-chitosan oligosaccharide-coated superparamagnetic iron oxide nanoparticles (CG-PEG-CSO-SPIONs) were fabricated by co-precipitation and optimized using a Box–Behnken statistical design in order to achieve the minimum size, optimal zeta potential (≥ ±20 mV), and maximum loading efficiency and capacity. The results demonstrated that CG-PEG-CSO-SPIONs prepared under the optimal condition were almost spherical in shape with a smooth surface, a diameter of 130 nm, zeta potential of 30.6 mV, loading efficiency of 83.3%, and loading capacity of 8.3%. The vibrating sample magnetometer results of the optimized CG-PEG-CSO-SPIONs showed a superparamagnetic behavior. Fourier transform infrared spectroscopy and X-ray diffraction analyses indicated that the CG physically interacted with PEG-CSO-SPIONs. In addition, the CG-PEG-CSO-SPIONs could be stored dry for up to 12 weeks or in aqueous solution for up to 4 days at either 4 °C or 25 °C with no loss of stability. The CG-PEG-CSO-SPIONs exhibited a sustained release profile up to 72 h under simulated physiological (pH 7.4) and tumor extracellular (pH 5.5) environments. Furthermore, the CG-PEG-CSO-SPIONs showed little non-specific protein binding in the simulated physiological environment. The CG-PEG-CSO-SPIONs enhanced the cellular uptake and cytotoxicity of CG against human colorectal adenocarcinoma HT-29 cells compared to free CG, and more CG was delivered to the cells after applying an external magnetic field. The overall results suggest that PEG-CSO-SPIONs have potential to be used as a novel drug delivery system for CG.
Collapse
|
29
|
Hashemian M, Ghasemi-Kasman M, Ghasemi S, Akbari A, Moalem-Banhangi M, Zare L, Ahmadian SR. Fabrication and evaluation of novel quercetin-conjugated Fe 3O 4-β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int J Nanomedicine 2019; 14:6481-6495. [PMID: 31496698 PMCID: PMC6698168 DOI: 10.2147/ijn.s218317] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the numerous pharmacological activities of quercetin, its biomedical application has been hampered, because of poor water solubility and low oral bioavailability. In the present study, we fabricated a novel form of quercetin-conjugated Fe3O4-β-cyclodextrin (βCD) nanoparticles (NPs), and the effect of these prepared NPs was evaluated in a chronic model of epilepsy. METHODS Quercetin-loaded NPs were prepared using an iron oxide core coated with βCD and pluronic F68 polymer. The chronic model of epilepsy was developed by intraperitoneal injection of pentylenetetrazole (PTZ) at dose of 36.5 mg/kg every second day. Quercetin or its nanoformulation at doses of 25 or 50 mg/kg were administered intraperitoneally 10 days before PTZ injections and their applications continued 1 hour before each PTZ injection. Immunostaining was performed to evaluate the neuronal density and astrocyte activation of hippocampi. RESULTS Our data showed successful fabrication of quercetin onto Fe3O4-βCD NPs. In comparison to free quercetin, quercetin NPs markedly reduced seizure behavior, neuronal loss, and astrocyte activation in a PTZ-induced kindling model. CONCLUSION Overall, quercetin-Fe3O4-βCD NPs might be regarded as an ideal therapeutic approach in epilepsy disorder.
Collapse
Affiliation(s)
- Mona Hashemian
- Student Research Committee, Babol University of Medical Sciences
, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Atefeh Akbari
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
| | | | - Leila Zare
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
| | | |
Collapse
|
30
|
Shahzad Lodhi M, Qadir Samra Z. Purification of transferrin by magnetic nanoparticles and conjugation with cysteine capped gold nanoparticles for targeting diagnostic probes. Prep Biochem Biotechnol 2019; 49:961-973. [PMID: 31318328 DOI: 10.1080/10826068.2019.1643736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transferrin is an iron binding glycoprotein actively involved in the growth and maintenance of cell cycle. The transferrin receptors expression is increased on growing cancer/tumor cells for absorption of iron through transferrin and participation in biological activity. In this study, a novel method for the purification of transferrin by using magnetic nanoparticles (MNP) is developed and compared with reported method. Magnetic nanoparticles were synthesized by co-precipitation method under hydrothermal conditions in the presence of ammonium hydroxide. MNP were characterized by FTIR, VSM, DLS, TEM, and SEM. Purified transferrin was characterized by SDS-PAGE, MALDI-TOF, ELISA, Western blot, and its activity was further confirmed by iron binding assay and receptor binding assays. Purified transferrin was also conjugated with cysteine capped gold nanoparticles (GNP) and characterized by UV-Vis spectra, TEM, DLS, and fluorescent spectrophotometry. Transferrin conjugated cysteine capped GNP used as a targeted fluorescent probe on gastric cancer, tumor tissue and MDA-MB 231 cancer cells to confirm transferrin receptor binding activity and application as diagnostic probe. The purified transferrin showed stability and activity up to 36 months. The results indicated that the synthesized superamagnetic MNP are good for the purification of transferrin. A good yield of transferrin was purified by this method, good quality and showed active biological activity. GNP conjugated transferrin has a potential to be used in cancer diagnosis as targeted diagnosis probe in vivo and in vitro. Experiments are underway for utilizing transferrin as carrier for targeting drug delivery.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- Applied Molecular Biotechnology Research Lab (AMBR), Institute of Biochemistry and Biotechnology, University of the Punjab , Lahore , Pakistan
| | - Zahoor Qadir Samra
- Applied Molecular Biotechnology Research Lab (AMBR), Institute of Biochemistry and Biotechnology, University of the Punjab , Lahore , Pakistan
| |
Collapse
|
31
|
Gonawala S, Aryal M, Ewing JR, deCarvalho AC, Kalkanis S, Ali MM. MRI Monitoring of Cerebral Blood Flow after the Delivery of Nanocombretastatin across the Blood Brain Tumor Barrier. JOURNAL OF NANOMEDICINE & NANOTECHNOLOGY 2019; 9. [PMID: 30656065 PMCID: PMC6333422 DOI: 10.4172/2157-7439.1000516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction of polymeric nanoparticles in cancer therapeutics is widely investigated since nanomedicine often enables the intratumoral delivery of drugs with increased efficacy with minimal side effects. In this study MRI monitoring was employed to study the therapeutic effect of nanocombretastatin (G3-CA4) in an orthotopic glioma model. Water insoluble combretastatin (CA4) was conjugated to a small-sized water soluble G3-succinamic acid PAMAM dendrimer. Nanoconstruct sizes were determined by TEM to be 3 to 5 nm. Intravenous (i.v.) delivery of G3-CA4 in an orthotopic glioma model produced a long-lived ischemia accompanied by necrosis at the core of the tumor but leaving a rim of viable tissue. In contrast, delivery of CA4 alone has no therapeutic effect in an experimental rat model of glioma.
Collapse
Affiliation(s)
- Sunalee Gonawala
- Department of Neurosurgery, Cellular and Molecular Imaging Laboratory, Henry Ford Hospital, USA
| | - Madhava Aryal
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ana C deCarvalho
- Department of Neurosurgery, Cellular and Molecular Imaging Laboratory, Henry Ford Hospital, USA
| | - Steven Kalkanis
- Department of Neurosurgery, Cellular and Molecular Imaging Laboratory, Henry Ford Hospital, USA
| | - Meser M Ali
- Department of Neurosurgery, Cellular and Molecular Imaging Laboratory, Henry Ford Hospital, USA
| |
Collapse
|
32
|
Chauhan PS, Shrivastava V, Tomar RS. Biofabrication of Copper Nanoparticles: A Next-generation Antibacterial Agent Against Wound-associated Pathogens. Turk J Pharm Sci 2018; 15:238-247. [PMID: 32454666 DOI: 10.4274/tjps.52724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022]
Abstract
Objectives Impaired wound healing is a major complication. A few factors such as blood glucose level, poor circulation, immune system deficiency, and infection are the root causes of impaired wound healing. The aim of the present study was to bio-synthesize copper nanoparticles with potential antibacterial activity against wound-associated pathogens. Materials and Methods Copper nanoparticles were fabricated using the sol-gel method with the mixing of Syzigium cumini leaf extract in metal salt solution. The particles were then later characterized using UV spectroscopy, SEM, TEM, FTIR, and XRD, and evaluated for their antibacterial activity and its MIC against four wound-associated pathogens. Results The results obtained from TEM, SEM, and XRD characterization showed that the particle size was below 100 nm and of spherical shape. FTIR analysis showed the possibility of various biomolecules, which have a role in capping and stabilizing copper nanoparticles. The particles synthesized showed antibacterial activity against four wound-associated pathogens (P. mirabilis, S. saprophyticus, S. pyogenes, and P. aeruginosa). Conclusion The biosynthesized copper nanoparticles showed potent antimicrobial activity, thus the antibacterial activity of the synthesized copper nanoparticles could be used in several biomedical applications. Additionally, they can be exploited as a better therapeutic agent for treating infection seen in impaired diabetic wounds. The particles synthesized by the biological route are eco-friendly, less toxic, feasible, and cost effective.
Collapse
Affiliation(s)
| | - Vikas Shrivastava
- Amity University, Amity Institute of Biotechnology, Madhya Pradesh, India
| | - Rajesh Singh Tomar
- Amity University, Amity Institute of Biotechnology, Madhya Pradesh, India
| |
Collapse
|
33
|
Nagesh PKB, Chowdhury P, Hatami E, Boya VKN, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. miRNA-205 Nanoformulation Sensitizes Prostate Cancer Cells to Chemotherapy. Cancers (Basel) 2018; 10:E289. [PMID: 30149628 PMCID: PMC6162422 DOI: 10.3390/cancers10090289] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
The therapeutic application of microRNA(s) in the field of cancer has generated significant attention in research. Previous studies have shown that miR-205 negatively regulates prostate cancer cell proliferation, metastasis, and drug resistance. However, the delivery of miR-205 is an unmet clinical need. Thus, the development of a viable nanoparticle platform to deliver miR-205 is highly sought. A novel magnetic nanoparticle (MNP)-based nanoplatform composed of an iron oxide core with poly(ethyleneimine)-poly(ethylene glycol) layer(s) was developed. An optimized nanoplatform composition was confirmed by examining the binding profiles of MNPs with miR-205 using agarose gel and fluorescence methods. The novel formulation was applied to prostate cancer cells for evaluating cellular uptake, miR-205 delivery, and anticancer, antimetastasis, and chemosensitization potentials against docetaxel treatment. The improved uptake and efficacy of formulations were studied with confocal imaging, flow cytometry, proliferation, clonogenicity, Western blot, q-RT-PCR, and chemosensitization assays. Our findings demonstrated that the miR-205 nanoplatform induces significant apoptosis and enhancing chemotherapeutic effects in prostate cancer cells. Overall, these study results provide a strong proof-of-concept for a novel nonviral-based nanoparticle protocol for effective microRNA delivery to prostate cancer cells.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Elham Hatami
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Vijaya K N Boya
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Vivek K Kashyap
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Bilal B Hafeez
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
34
|
Cyclodextrin-Based Magnetic Nanoparticles for Cancer Therapy. NANOMATERIALS 2018; 8:nano8030170. [PMID: 29547559 PMCID: PMC5869661 DOI: 10.3390/nano8030170] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022]
Abstract
Polydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-β-cyclodextrin (SH-βCD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization of DOXO-loaded nanoparticles was investigated by confocal imaging microscopy. Synthesized nanomaterials bearing a chemotherapeutic drug and a layer of polydopamine capable of absorbing near-infrared light show high performance in the combined chemo- and photothermal therapy (CT-PTT) of liver cancer due to the synergistic effect of both modalities as demonstrated in vitro. Moreover, our material exhibits improved T2 contrast properties, which have been verified using Carr-Purcell-Meiboom-Gill pulse sequence and MRI Spin-Echo imaging of the nanoparticles dispersed in the agarose gel phantoms. Therefore, the presented results cast new light on the preparation of polydopamine-based magnetic theranostic nanomaterials, as well as on the proper methodology for investigation of magnetic nanoparticles in high field MRI experiments. The prepared material is a robust theranostic nanoasystem with great potential in nanomedicine.
Collapse
|
35
|
Hardiansyah A, Yang MC, Liu TY, Kuo CY, Huang LY, Chan TY. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release. NANOSCALE RESEARCH LETTERS 2017; 12:355. [PMID: 28525950 PMCID: PMC5436991 DOI: 10.1186/s11671-017-2119-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/01/2017] [Indexed: 05/15/2023]
Abstract
Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.
Collapse
Affiliation(s)
- Andri Hardiansyah
- Department of Metallurgy and Materials Engineering, Bandung Institute of Technology and Science, Bekasi, 17530 Indonesia
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
| | - Chih-Yu Kuo
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
| | - Li-Ying Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan
| | - Tzu-Yi Chan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
| |
Collapse
|
36
|
Gong Y, Chowdhury P, Midde NM, Rahman MA, Yallapu MM, Kumar S. Novel elvitegravir nanoformulation approach to suppress the viral load in HIV-infected macrophages. Biochem Biophys Rep 2017; 12:214-219. [PMID: 29214223 PMCID: PMC5704044 DOI: 10.1016/j.bbrep.2017.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Monocytes serve as sanctuary sites for HIV-1 from which virus is difficult to be eliminated. Therefore, an effective viral suppression in monocytes is critical for effective antiretroviral therapy (ART). This study focuses on a new strategy using nanoformulation to optimize the efficacy of ART drugs in HIV-infected monocytes. Methods Poly(lactic-co-glycolic acid) (PLGA)-based elvitegravir nanoparticles (PLGA-EVG) were prepared by nano-precipitation technique. The physicochemical properties of PLGA-EVG were characterized using transmission electron microscopy, dynamic light scattering, and Fourier-transform infrared spectroscopy. Cellular uptake study was performed by fluorescence microscopy and flow cytometry. All in vitro experiments were performed by using HIV-infected monocytic cell lines U1 and HIV-infected primary macrophages. Elvitegravir quantification was performed using LC-MS/MS. HIV viral replication was assessed by using p24 ELISA. Results We developed a PLGA-EVG nanoparticle formulation with particle size of ~ 47 nm from transmission electron microscopy and zeta potential of ~ 6.74 mV from dynamic light scattering. These nanoparticles demonstrated a time- and concentration-dependent uptakes in monocytes. PLGA-EVG formulation showed a ~ 2 times higher intracellular internalization of EVG than control group (EVG alone). PLGA-EVG nanoparticles also demonstrated superior viral suppression over control for a prolonged period of time. Conclusions PLGA-based EVG nanoformulation increased the intracellular uptake of EVG, as well as enhanced viral suppression in HIV-infected macrophages, suggesting its potential for improved HIV treatment in monocytic cells.
Collapse
Affiliation(s)
- Yuqing Gong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Narasimha M Midde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad A Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
37
|
Phytotherapy and Nutritional Supplements on Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7207983. [PMID: 28845434 PMCID: PMC5563402 DOI: 10.1155/2017/7207983] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/14/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent type of nonskin malignancy among women worldwide. In general, conventional cancer treatment options (i.e., surgery, radiotherapy, chemotherapy, biological therapy, and hormone therapy) are not completely effective. Recurrence and other pathologic situations are still an issue in breast cancer patients due to side effects, toxicity of drugs in normal cells, and aggressive behaviour of the tumours. From this point of view, breast cancer therapy and adjuvant methods represent a promising and challenging field for researchers. In the last few years, the use of some types of complementary medicines by women with a history of breast cancer has significantly increased such as phytotherapeutic products and nutritional supplements. Despite this, the use of such approaches in oncologic processes may be problematic and patient's health risks can arise such as interference with the efficacy of standard cancer treatment. The present review gives an overview of the most usual phytotherapeutic products and nutritional supplements with application in breast cancer patients as adjuvant approach. Regardless of the contradictory results of scientific evidence, we demonstrated the need to perform additional investigation, mainly well-designed clinical trials in order to establish correlations and allow for further validated outcomes concerning the efficacy, safety, and clinical evidence-based recommendation of these products.
Collapse
|
38
|
Magnetic nanoformulations for prostate cancer. Drug Discov Today 2017; 22:1233-1241. [PMID: 28526660 DOI: 10.1016/j.drudis.2017.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Magnetic nanoparticles (MNPs) play a vital role for improved imaging applications. Recently, a number of studies demonstrate MNPs can be applied for targeted delivery, sustained release of therapeutics, and hyperthermia. Based on stable particle size and shape, biocompatibility, and inherent contrast enhancement characteristics, MNPs have been encouraged for pre-clinical studies and human use. As a theranostic platform development, MNPs need to balance both delivery and imaging aspects. Thus, this review provides significant insight and advances in the theranostic role of MNPs through the documentation of unique magnetic nanoparticles used in prostate cancer, their interaction with prostate cancer cells, in vivo fate, targeting, and biodistribution. Specific and custom-made applications of various novel nanoformulations in prostate cancer are discussed.
Collapse
|
39
|
Hallman K, Aleck K, Dwyer B, Lloyd V, Quigley M, Sitto N, Siebert AE, Dinda S. The effects of turmeric (curcumin) on tumor suppressor protein (p53) and estrogen receptor (ERα) in breast cancer cells. BREAST CANCER-TARGETS AND THERAPY 2017; 9:153-161. [PMID: 28331366 PMCID: PMC5354546 DOI: 10.2147/bctt.s125783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Curcumin (CUR) is a compound that has antibacterial, antiviral, anti-inflammatory, and anticancer properties. In this study, we have analyzed the effects of CUR on the expression of ERα and p53 in the presence of hormones and anti-hormones in breast cancer cells. Cells were cultured in a medium containing charcoal-stripped fetal bovine serum to deplete any endogenous steroids and treated with CUR at varying concentrations or in combination with hormones and anti-hormones. Protein analysis revealed a relative decrease in the levels of p53 and ERα upon treatment with 5–60 µM CUR. In cell proliferation studies, CUR alone caused a 10-fold decrease compared with the treatment with estrogen, which suggests its antiproliferative effects. Delineating the role of CUR in the regulation of p53, ERα, and their mechanisms of action may be important in understanding the influence of CUR on tumor suppressors and hormone receptors in breast cancer.
Collapse
Affiliation(s)
- Kelly Hallman
- School of Health Sciences, Prevention Research Center, Oakland University, Rochester, MI, USA
| | - Katie Aleck
- School of Health Sciences, Prevention Research Center, Oakland University, Rochester, MI, USA
| | - Brigitte Dwyer
- School of Health Sciences, Prevention Research Center, Oakland University, Rochester, MI, USA
| | - Victoria Lloyd
- School of Health Sciences, Prevention Research Center, Oakland University, Rochester, MI, USA
| | - Meghan Quigley
- School of Health Sciences, Prevention Research Center, Oakland University, Rochester, MI, USA
| | - Nada Sitto
- School of Health Sciences, Prevention Research Center, Oakland University, Rochester, MI, USA
| | - Amy E Siebert
- School of Health Sciences, Prevention Research Center, Oakland University, Rochester, MI, USA
| | - Sumi Dinda
- School of Health Sciences, Prevention Research Center, Oakland University, Rochester, MI, USA
| |
Collapse
|
40
|
Setua S, Khan S, Yallapu MM, Behrman SW, Sikander M, Khan SS, Jaggi M, Chauhan SC. Restitution of Tumor Suppressor MicroRNA-145 Using Magnetic Nanoformulation for Pancreatic Cancer Therapy. J Gastrointest Surg 2017; 21:94-105. [PMID: 27507554 PMCID: PMC5336381 DOI: 10.1007/s11605-016-3222-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The functional significance of lost microRNAs has been reported in several human malignancies, including pancreatic cancer (PC). Our prior work has identified microRNA-145 (miR-145) as a tumor suppressor microRNA (miRNA) in pancreatic cancer. The restoration of miR-145 downregulates a number of oncogenes including mucin MUC13, a transmembrane glycoprotein that is aberrantly expressed in pancreatic cancer, thus efficiently inhibiting tumor growth in mice. However, lack of an effective tumor-specific delivery system remains an unmet clinical challenge for successful translation of microRNAs. METHODS We developed a miRNA-145-based magnetic nanoparticle formulation (miR-145-MNPF) and assessed its anti-cancer efficacy. Physico-chemical characterization (dynamic light scattering (DLS), transmission electron microscopy (TEM) and miR-binding efficiency), cellular internalization (Prussian blue and confocal microscopy), miR-145 restitution potential (quantitative reverse-transcription PCR (qRT-PCR), and anti-cancer efficacy (proliferation, colony formation, cell migration, cell invasion assays) of this formulation were performed using clinically relevant pancreatic cancer cell lines (HPAF-II, AsPC-1). RESULTS miR-145-MNPF exhibited optimal particle size and zeta potential which effectively internalized and restituted miR-145 in pancreatic cancer cells. miR-145 re-expression resulted in downregulation of MUC13, HER2, pAKT, and inhibition of cell proliferation, clonogenicity, migration, and invasion of pancreatic cancer cells. CONCLUSIONS miR-145-MNPF is an efficient system for miR-145 delivery and restitution in pancreas cancer that may offer a potential therapeutic treatment for PC either alone or in conjunction with conventional treatment.
Collapse
Affiliation(s)
- Saini Setua
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stephen W. Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mohammed Sikander
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shabia Shabir Khan
- Department of Computer Science, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Subhash C. Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
41
|
The Nutraceutical Dehydrozingerone and Its Dimer Counteract Inflammation- and Oxidative Stress-Induced Dysfunction of In Vitro Cultured Human Endothelial Cells: A Novel Perspective for the Prevention and Therapy of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1246485. [PMID: 28050226 PMCID: PMC5165227 DOI: 10.1155/2016/1246485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is characterized by endothelial dysfunction, mainly induced by inflammation and oxidative stress. Increased reactive oxygen species (ROS) production together with increased adhesion molecules and thrombogenic tissue factor (TF) expression on endothelial cells has a key role in proatherogenic mechanisms. Therefore downmodulation of these molecules could be useful for reducing the severity of inflammation and atherosclerosis progression. Dehydrozingerone (DHZ) is a nutraceutical compound with anti-inflammatory and antioxidant activities. In this study we evaluated the ability of DHZ and its symmetric dimer to modulate hydrogen peroxide- (H2O2-) induced ROS production in human umbilical vein endothelial cells (HUVEC). We also evaluated intercellular adhesion molecule- (ICAM-) 1, vascular cell adhesion molecule- (VCAM-) 1, and TF expression in HUVEC activated by tumor necrosis factor- (TNF-) α. HUVEC pretreatment with DHZ and DHZ dimer reduced H2O2-induced ROS production and inhibited adhesion molecule expression and secretion. Of note, only DHZ dimer was able to reduce TF expression. DHZ effects were in part mediated by the inhibition of the nuclear factor- (NF-) κB activation. Overall, our findings demonstrate that the DHZ dimer exerts a potent anti-inflammatory, antioxidant, and antithrombotic activity on endothelial cells and suggest potential usefulness of this compound to contrast the pathogenic mechanisms involved in atherosclerosis progression.
Collapse
|
42
|
Gamage NH, Jing L, Worsham MJ, Ali MM. Targeted Theranostic Approach for Glioma Using Dendrimer-Based Curcumin Nanoparticle. ACTA ACUST UNITED AC 2016; 7. [PMID: 27699139 PMCID: PMC5040461 DOI: 10.4172/2157-7439.1000393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The delivery of anti-cancer agents to brain tumors represent a challenge because the blood-brain tumor barrier (BBTB) effectively limits the delivery of many agents. A new generation 3 (G3) dendrimer-based curcumin (Curc) conjugate was synthesized. The synthesized G3-Curc conjugate demonstrated full solubility in aqueous media. The in vitro study revealed that G3-Curc nanoparticles were internalized into glioma U-251 cells. Systemic delivery of G3-Curc conjugate led to preferentially accumulation in an orthotopic preclinical glioma model minimizing systemic toxic effect. Multicolor microscopy images of the tumor tissue showed that G3-Curc particles were internalized inside tumor cells selectively and further localized within nuclei. Enhanced bioavailability of G3-Curc conjugate was also observed with improved therapeutic efficacy against different cancers cells.
Collapse
Affiliation(s)
- N H Gamage
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Li Jing
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - M J Worsham
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - M M Ali
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
43
|
Nagesh PKB, Johnson NR, Boya VKN, Chowdhury P, Othman SF, Khalilzad-Sharghi V, Hafeez BB, Ganju A, Khan S, Behrman SW, Zafar N, Chauhan SC, Jaggi M, Yallapu MM. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf B Biointerfaces 2016; 144:8-20. [PMID: 27058278 DOI: 10.1016/j.colsurfb.2016.03.071] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/22/2023]
Abstract
Docetaxel (Dtxl) is currently the most common therapeutic option for prostate cancer (PC). However, adverse side effects and problems associated with chemo-resistance limit its therapeutic outcome in clinical settings. A targeted nanoparticle system to improve its delivery to and activity at the tumor site could be an attractive strategy for PC therapy. Therefore, the objective of this study was to develop and determine the anti-cancer efficacy of a novel docetaxel loaded, prostate specific membrane antigen (PSMA) targeted superparamagnetic iron oxide nanoparticle (SPION) (J591-SPION-Dtxl) formulation for PC therapy. Our results showed the SPION-Dtxl formulation exhibits an optimal particle size and zeta potential, which can efficiently be internalized in PC cells. SPION-Dtxl exhibited potent anti-cancer efficacy via induction of the expression of apoptosis associated proteins, downregulation of anti-apoptotic proteins, and inhibition of chemo-resistance associated protein in PC cell lines. J591-SPION-Dtxl exhibited a profound uptake in C4-2 (PSMA(+)) cells compared to PC-3 (PSMA(-)) cells. A similar targeting potential was observed in ex-vivo studies in C4-2 tumors but not in PC-3 tumors, suggesting its tumor specific targeting. Overall, this study suggests that a PSMA antibody functionalized SPION-Dtxl formulation can be highly useful for targeted PC therapy.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nia R Johnson
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vijaya K N Boya
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shadi F Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Vahid Khalilzad-Sharghi
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bilal B Hafeez
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen W Behrman
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nadeem Zafar
- Department of Pathology, College of Medicine, University of Tennessee at Memphis, Memphis, TN, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
44
|
Rohanizadeh R, Deng Y, Verron E. Therapeutic actions of curcumin in bone disorders. BONEKEY REPORTS 2016; 5:793. [PMID: 26962450 DOI: 10.1038/bonekey.2016.20] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/28/2016] [Indexed: 01/10/2023]
Abstract
Curcumin is the active component of turmeric extract derived from the Curcuma longa plant. In the last decade, curcumin has raised a considerable interest in medicine owing to its negligible toxicity and multiple therapeutic actions including anti-cancer, anti-inflammatory and anti-microbial activities. Among the various molecular targets of curcumin, some are involved in bone remodeling, which strongly suggests that curcumin can affect the skeletal system. The review sheds light on the current and potential applications of curcumin to treat bone disorders characterized by an excessive resorption activity. Within the scope of this review, the novel formulations of curcumin to overcome its physico-chemical and pharmacokinetic constraints are also discussed.
Collapse
Affiliation(s)
- Ramin Rohanizadeh
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney , Sydney, New South Wales, Australia
| | - Yi Deng
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney , Sydney, New South Wales, Australia
| | - Elise Verron
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia; INSERM, U791, LIOAD, Nantes, France
| |
Collapse
|
45
|
Qi M, Zhang K, Li S, Wu J, Pham-Huy C, Diao X, Xiao D, He H. Superparamagnetic Fe3O4 nanoparticles: synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. NEW J CHEM 2016. [DOI: 10.1039/c5nj02441b] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different functionalized Fe3O4 nanoparticles were fabricated for constructing magnetic targeted carriers for curcumin to improve its hydrophilicity and bioavailability.
Collapse
Affiliation(s)
- Man Qi
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Kai Zhang
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Siqiao Li
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianrong Wu
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | | | - Xintong Diao
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Deli Xiao
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hua He
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
46
|
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10:6055-74. [PMID: 26451111 PMCID: PMC4592057 DOI: 10.2147/ijn.s92162] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Rebekah Watkins
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Program in Nanoscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chenming Zhang
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richey M Davis
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
47
|
Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic Applications of Curcumin Nanoformulations. AAPS JOURNAL 2015; 17:1341-56. [PMID: 26335307 DOI: 10.1208/s12248-015-9811-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
Abstract
Curcumin (diferuloylmethane) is a bioactive and major phenolic component of turmeric derived from the rhizomes of curcuma longa linn. For centuries, curcumin has exhibited excellent therapeutic benefits in various diseases. Owing to its anti-oxidant and anti-inflammatory properties, curcumin plays a significant beneficial and pleiotropic regulatory role in various pathological conditions including cancer, cardiovascular disease, Alzheimer's disease, inflammatory disorders, neurological disorders, and so on. Despite such phenomenal advances in medicinal applications, the clinical implication of native curcumin is hindered due to low solubility, physico-chemical instability, poor bioavailability, rapid metabolism, and poor pharmacokinetics. However, these issues can be overcome by utilizing an efficient delivery system. Active scientific research was initiated in 2005 to improve curcumin's pharmacokinetics, systemic bioavailability, and biological activity by encapsulating or by loading curcumin into nanoform(s) (nanoformulations). A significant number of nanoformulations exist that can be translated toward medicinal use upon successful completion of pre-clinical and human clinical trials. Considering this perspective, current review provides an overview of an efficient curcumin nanoformulation for a targeted therapeutic option for various human diseases. In this review article, we discuss the clinical evidence, current status, and future opportunities of curcumin nanoformulation(s) in the field of medicine. In addition, this review presents a concise summary of the actions required to develop curcumin nanoformulations as pharmaceutical or nutraceutical candidates.
Collapse
Affiliation(s)
- Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA.
| | - Prashanth K Bhusetty Nagesh
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA.
| |
Collapse
|
48
|
Durand N, Borges S, Storz P. Functional and therapeutic significance of protein kinase D enzymes in invasive breast cancer. Cell Mol Life Sci 2015; 72:4369-82. [PMID: 26253275 DOI: 10.1007/s00018-015-2011-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
The protein kinase D (PKD) family members, PKD1, PKD2 and PKD3 constitute a family of serine/threonine kinases that are essential regulators of cell migration, proliferation and protein transport. Multiple types of cancers are characterized by aberrant expression of PKD isoforms. In breast cancer PKD isoforms exhibit distinct expression patterns and regulate various oncogenic processes. In highly invasive breast cancer, the leading cause of cancer-associated deaths in females, the loss of PKD1 is thought to promote invasion and metastasis, while PKD2 and upregulated PKD3 have been shown to be positive regulators of proliferation, chemoresistance and metastasis. In this review, we examine the differential expression pattern, mechanisms of regulation and contributions made by each PKD isoform to the development and maintenance of invasive breast cancer. In addition, we discuss the potential therapeutic approaches for targeting PKD in this disease.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
49
|
Khan S, Ebeling MC, Zaman MS, Sikander M, Yallapu MM, Chauhan N, Yacoubian AM, Behrman SW, Zafar N, Kumar D, Thompson PA, Jaggi M, Chauhan SC. MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget 2015; 5:7599-609. [PMID: 25277192 PMCID: PMC4202147 DOI: 10.18632/oncotarget.2281] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pancreatic cancer has a poor prognosis due to late diagnosis and ineffective therapeutic multimodality. MUC13, a transmembrane mucin is highly involved in pancreatic cancer progression. Thus, understanding its regulatory molecular mechanisms may offer new avenue of therapy for prevention/treatment of pancreatic cancer. Herein, we report a novel microRNA (miR-145)-mediated mechanism regulating aberrant MUC13 expression in pancreatic cancer. We report that miR-145 expression inversely correlates with MUC13 expression in pancreatic cancer cells and human tumor tissues. miR-145 is predominantly present in normal pancreatic tissues and early Pancreatic Ductal Adenocarcinoma (PDAC) precursor lesions (PanIN I) and is progressively suppressed over the course of development from PanIN II/III to late stage poorly differentiated PDAC. We demonstrate that miR-145 targets 3′ untranslated region of MUC13 and thus downregulates MUC13 protein expression in cells. Interestingly, transfection of miR-145 inhibits cell proliferation, invasion and enhances gemcitabine sensitivity. It causes reduction of HER2, P-AKT, PAK1 and an increase in p53. Similar results were found when MUC13 was specifically inhibited by shRNA directed at MUC13. Additionally, intratumoral injections of miR-145 in xenograft mice inhibited tumor growth via suppression of MUC13 and its downstream target, HER2. These results suggest miR-145 as a novel regulator of MUC13 in pancreatic cancer.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, USA
| | - Mohd S Zaman
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mohammed Sikander
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ashley M Yacoubian
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee , USA
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee , USA
| | - Nadeem Zafar
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee , USA
| | - Deepak Kumar
- Department of Biological and Environmental Sciences, University of the District of Columbia, Washington, District of Columbia
| | - Paul A Thompson
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, USA. Methodology and Data Analysis Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
50
|
Yallapu MM, Chauhan N, Othman SF, Khalilzad-Sharghi V, Ebeling MC, Khan S, Jaggi M, Chauhan SC. Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles. Biomaterials 2015; 46:1-12. [PMID: 25678111 DOI: 10.1016/j.biomaterials.2014.12.045] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/12/2014] [Accepted: 12/20/2014] [Indexed: 11/26/2022]
Abstract
Interaction of serum proteins and nanoparticles leads to a nanoparticle-protein complex formation that defines the rational strategy for a clinically relevant formulation for drug delivery, hyperthermia, and magnetic resonance imaging (MRI) applications in cancer nanomedicine. Given this perspective, we have examined the pattern of human serum protein corona formation with our recently engineered magnetic nanoparticles (MNPs). The alteration in particle size, zeta potential, hemotoxicity, cellular uptake/cancer cells targeting potential, and MRI properties of the MNPs after formation of human serum (HS) protein corona were studied. Our results indicated no significant change in particle size of our MNPs upon incubation with 0.5-50 wt/v% human serum, while zeta potential of MNPs turned negative due to human serum adsorption. When incubated with an increased serum and particle concentration, apolipoprotein E was adsorbed on the surface of MNPs apart from serum albumin and transferrin. However, there was no significant primary or secondary structural alterations observed in serum proteins through Fourier transform infrared spectroscopy, X-ray diffraction, and circular dichroism. Hemolysis assay suggests almost no hemolysis at the tested concentrations (up to 1 mg/mL) for MNPs compared to the sodium dodecyl sulfate (positive control). Additionally, improved internalization and uptake of MNPs by C4-2B and Panc-1 cancer cells were observed upon incubation with human serum (HS). After serum protein adsorption to the surface of MNPs, the close vicinity within T1 (∼1.33-1.73 s) and T2 (∼12.35-13.43 ms) relaxation times suggest our MNPs retained inherent MRI potential even after biomolecular protein adsorption. All these superior clinical parameters potentially enable clinical translation and use of this formulation for next generation nanomedicine for drug delivery, cancer-targeting, imaging and theranostic applications.
Collapse
Affiliation(s)
- Murali M Yallapu
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shadi F Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Vahid Khalilzad-Sharghi
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|