1
|
Aljabali AAA, Rezigue M, Alsharedeh RH, Obeid MA, Mishra V, Serrano-Aroca Á, Tambuwala MM. Protein-Based Drug Delivery Nanomedicine Platforms: Recent Developments. Pharm Nanotechnol 2022; 10:257-267. [PMID: 35980061 DOI: 10.2174/2211738510666220817120307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Naturally occurring protein cages, both viral and non-viral assemblies, have been developed for various pharmaceutical applications. Protein cages are ideal platforms as they are compatible, biodegradable, bioavailable, and amenable to chemical and genetic modification to impart new functionalities for selective targeting or tracking of proteins. The ferritin/ apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein, albumin, soy and whey protein, collagen, and gelatin have all been exploited and characterized as drugdelivery vehicles. Protein cages come in many shapes and types with unique features such as unmatched uniformity, size, and conjugations. OBJECTIVES The recent strategic development of drug delivery will be covered in this review, emphasizing polymer-based, specifically protein-based, drug delivery nanomedicine platforms. The potential and drawbacks of each kind of protein-based drug-delivery system will also be highlighted. METHODS Research examining the usability of nanomaterials in the pharmaceutical and medical sectors were identified by employing bibliographic databases and web search engines. RESULTS Rings, tubes, and cages are unique protein structures that occur in the biological environment and might serve as building blocks for nanomachines. Furthermore, numerous virions can undergo reversible structural conformational changes that open or close gated pores, allowing customizable accessibility to their core and ideal delivery vehicles. CONCLUSION Protein cages' biocompatibility and their ability to be precisely engineered indicate they have significant potential in drug delivery and intracellular administration.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Rawan H Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, UK
| |
Collapse
|
2
|
Sun H, Chang L, Yan Y, Wang L. Hepatitis B virus pre-S region: Clinical implications and applications. Rev Med Virol 2020; 31. [PMID: 33314434 DOI: 10.1002/rmv.2201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection is a major threat to global public health, which can result in many acute and chronic liver diseases. HBV, a member of the family Hepadnaviridae, is a small enveloped DNA virus containing a circular genome of 3.2 kb. Located upstream of the S-open-reading frame of the HBV genome is the pre-S region, which is vital to the viral life cycle. The pre-S region has high variability and many mutations in the pre-S region are associated with several liver diseases, such as fulminant hepatitis (FH), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). In addition, the pre-S region has been applied in the development of several pre-S-based materials and systems to prevent or treat HBV infection. In conclusion, the pre-S region plays an essential role in the occurrence, diagnosis, and treatment of HBV-related liver diseases, which may provide a novel perspective for the study of HBV infection and relevant diseases.
Collapse
Affiliation(s)
- Huizhen Sun
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
3
|
Biscaglia F, Quarta S, Villano G, Turato C, Biasiolo A, Litti L, Ruzzene M, Meneghetti M, Pontisso P, Gobbo M. PreS1 peptide-functionalized gold nanostructures with SERRS tags for efficient liver cancer cell targeting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109762. [DOI: 10.1016/j.msec.2019.109762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022]
|
4
|
Cannon KA, Ochoa JM, Yeates TO. High-symmetry protein assemblies: patterns and emerging applications. Curr Opin Struct Biol 2019; 55:77-84. [PMID: 31005680 DOI: 10.1016/j.sbi.2019.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
The accelerated elucidation of three-dimensional structures of protein complexes, both natural and designed, is providing new examples of large supramolecular assemblies with intriguing shapes. Those with high symmetry - based on the geometries of the Platonic solids - are particularly notable as their innately closed forms create interior spaces with varying degrees of enclosure. We survey known protein assemblies of this type and discuss their geometric features. The results bear on issues of protein function and evolution, while also guiding novel bioengineering applications. Recent successes using high-symmetry protein assemblies for applications in interior encapsulation and exterior display are highlighted.
Collapse
Affiliation(s)
- Kevin A Cannon
- UCLA Department of Chemistry and Biochemistry, United States; UCLA-DOE Institute for Genomics and Proteomics, United States
| | - Jessica M Ochoa
- UCLA Department of Chemistry and Biochemistry, United States; UCLA Molecular Biology Institute, United States
| | - Todd O Yeates
- UCLA Department of Chemistry and Biochemistry, United States; UCLA-DOE Institute for Genomics and Proteomics, United States; UCLA Molecular Biology Institute, United States.
| |
Collapse
|
5
|
Guan X, Chang Y, Sun J, Song J, Xie Y. Engineered Hsp Protein Nanocages for siRNA Delivery. Macromol Biosci 2018; 18:e1800013. [DOI: 10.1002/mabi.201800013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/24/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xingang Guan
- Life Science Research Center; Beihua University; Jilin 132013 P. R. China
| | - Yu Chang
- Life Science Research Center; Beihua University; Jilin 132013 P. R. China
- College of Medicine; Beihua University; Jilin 132013 P. R. China
| | - Jinghui Sun
- College of Medicine; Beihua University; Jilin 132013 P. R. China
| | - Jianxi Song
- College of Medicine; Beihua University; Jilin 132013 P. R. China
| | - Yu Xie
- Life Science Research Center; Beihua University; Jilin 132013 P. R. China
| |
Collapse
|
6
|
Tamura T, Kawabata C, Matsushita S, Sakaguchi M, Yoshida S. Malaria sporozoite protein expression enhances baculovirus-mediated gene transfer to hepatocytes. J Gene Med 2018; 18:75-85. [PMID: 27007512 DOI: 10.1002/jgm.2879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/28/2016] [Accepted: 03/16/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Baculovirus vector (BV) is able to transduce foreign genes into mammalian cells efficiently and safely by incorporating a mammalian promoter. In the present study, we tailored the surface proteins expressed by malaria sporozoites to enhance hepatocyte transduction. Sporozoites infect hepatocytes within minutes of initial entry into the blood circulation. Infectivity and hepatocyte-specific selectivity are mediated by the interplay between hepatocytes and sporozoite surface proteins. The circumsporozoite protein (CSP) and the thrombospondin-related anonymous protein (TRAP) bind to the heparan sulfate proteoglycan on the hepatocyte surface and contribute to sporozoite infection and hepatocyte selectivity. METHODS BVs displaying an ectodomain consisting of three different CSP variants (full-length, N-terminal and C-terminal) or TRAP on the virus envelope were constructed, and the resulting in vitro hepatocyte transduction efficiency was evaluated. RESULTS We demonstrated improved hepatocyte transduction efficiency in BVs expressing CSP or TRAP ectodomains compared to BVs without malaria surface proteins. In addition, gene transduction efficiencies for BVs displaying CSP or TRAP are higher than those expressing the preS1 antigen of the hepatitis B virus. CONCLUSIONS BVs expressing CSP or TRAP in the ectodomain could represent a promising hepatocyte-specific gene delivery methodology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Takahiko Tamura
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kanazawa, Japan
| | - Chiaki Kawabata
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kanazawa, Japan
| | - Shunsuke Matsushita
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kanazawa, Japan
| | - Miako Sakaguchi
- Electron Microscope Room, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kanazawa, Japan
| |
Collapse
|
7
|
Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. NANOSCALE 2017; 9:1356-1392. [PMID: 28067384 PMCID: PMC5300024 DOI: 10.1039/c6nr07315h] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, Lappeenranta University of Technology, 53810, Finland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Bioengineered protein-based nanocage for drug delivery. Adv Drug Deliv Rev 2016; 106:157-171. [PMID: 26994591 DOI: 10.1016/j.addr.2016.03.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
Nature, in its wonders, presents and assembles the most intricate and delicate protein structures and this remarkable phenomenon occurs in all kingdom and phyla of life. Of these proteins, cage-like multimeric proteins provide spatial control to biological processes and also compartmentalizes compounds that may be toxic or unstable and avoids their contact with the environment. Protein-based nanocages are of particular interest because of their potential applicability as drug delivery carriers and their perfect and complex symmetry and ideal physical properties, which have stimulated researchers to engineer, modify or mimic these qualities. This article reviews various existing types of protein-based nanocages that are used for therapeutic purposes, and outlines their drug-loading mechanisms and bioengineering strategies via genetic and chemical functionalization. Through a critical evaluation of recent advances in protein nanocage-based drug delivery in vitro and in vivo, an outlook for de novo and in silico nanocage design, and also protein-based nanocage preclinical and future clinical applications will be presented.
Collapse
|
9
|
Tang HX, Zhao TW, Zheng T, Sheng YJ, Zheng HS, Zhang YS. Liver-targeting liposome drug delivery system and its research progress in liver diseases. Shijie Huaren Xiaohua Zazhi 2016; 24:4238-4246. [DOI: 10.11569/wcjd.v24.i31.4238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liposome-based targeted therapy is mainly divided into active targeting, passive targeting, and physical and chemical targeting. In terms of liver targeting, because of specificity, active liver-targeting liposomes have received more and more attention, and these types of liposomes can be used in liver fibrosis, hepatitis and other chronic liver diseases. In addition, the particle size could control the passive liver targeting of liposomes, while the liver-targeted liposomes of the physical and chemical targeting type have advantages in treating hepatic carcinoma. In this paper, we focus on the basics and application of liver-targeting liposome drug delivery system in hepatic diseases.
Collapse
|
10
|
Zhang Y, Ardejani MS, Orner BP. Design and Applications of Protein-Cage-Based Nanomaterials. Chem Asian J 2016; 11:2814-2828. [DOI: 10.1002/asia.201600769] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P.R. China
| | - Maziar S. Ardejani
- Department of Chemistry; The Scripps Research Institute; La Jolla CA 92037 United States
| | - Brendan P. Orner
- Department of Chemistry; King's College London; London SE1 1DB United Kingdom
| |
Collapse
|
11
|
Fernández-Fernández MR, Sot B, Valpuesta JM. Molecular chaperones: functional mechanisms and nanotechnological applications. NANOTECHNOLOGY 2016; 27:324004. [PMID: 27363314 DOI: 10.1088/0957-4484/27/32/324004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.
Collapse
Affiliation(s)
- M Rosario Fernández-Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus de la Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
12
|
Inhibition of preS1-hepatocyte interaction by an array of recombinant human antibodies from naturally recovered individuals. Sci Rep 2016; 6:21240. [PMID: 26888694 PMCID: PMC4758072 DOI: 10.1038/srep21240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
Neutralizing monoclonal antibodies are being found to be increasingly useful in viral infections. In hepatitis B infection, antibodies are proven to be useful for passive prophylaxis. The preS1 region (21–47a.a.) of HBV contains the viral hepatocyte-binding domain crucial for its attachment and infection of hepatocytes. Antibodies against this region are neutralizing and are best suited for immune-based neutralization of HBV, especially in view of their not recognizing decoy particles. Anti-preS1 (21–47a.a.) antibodies are present in serum of spontaneously recovered individuals. We generated a phage-displayed scFv library using circulating lymphocytes from these individuals and selected four preS1-peptide specific scFvs with markedly distinct sequences from this library. All the antibodies recognized the blood-derived and recombinant preS1 containing antigens. Each scFv showed a discrete binding signature, interacting with different amino acids within the preS1-peptide region. Ability to prevent binding of the preS1 protein (N-terminus 60a.a.) to HepG2 cells stably expressing hNTCP (HepG2-hNTCP-C4 cells), the HBV receptor on human hepatocytes was taken as a surrogate marker for neutralizing capacity. These antibodies inhibited preS1-hepatocyte interaction individually and even better in combination. Such a combination of potentially neutralizing recombinant antibodies with defined specificities could be used for preventing/managing HBV infections, including those by possible escape mutants.
Collapse
|
13
|
Ghisaidoobe ABT, Chung SJ. Functionalized protein nanocages as a platform of targeted therapy and immunodetection. Nanomedicine (Lond) 2015; 10:3579-95. [PMID: 26651131 DOI: 10.2217/nnm.15.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To improve the therapeutic/diagnostic potentials of drugs and/or imaging contrast agents, various targeted delivery systems are actively being developed. Especially protein nanocages, hollow and highly symmetrical nanometer-sized cage structures that are self-assembled from multiple protein subunits, are emerging as powerful targeted delivery tools. Their natural abundance, biocompatibility, low toxicity, well defined size and high symmetry are a few of the favorable characteristics which render protein nanocages as near ideal carriers for pharmaceuticals and/or imaging probes. This review aims to highlight current progress in the development and application of protein nanocages in targeted drug delivery approaches with an emphasis on the use of antibodies as targeting motifs to achieve high selectivity toward specific targets.
Collapse
Affiliation(s)
| | - Sang J Chung
- Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea
| |
Collapse
|
14
|
Somiya M, Kuroda S. Development of a virus-mimicking nanocarrier for drug delivery systems: The bio-nanocapsule. Adv Drug Deliv Rev 2015; 95:77-89. [PMID: 26482188 DOI: 10.1016/j.addr.2015.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Abstract
As drug delivery systems, nanocarriers should be capable of executing the following functions: evasion of the host immune system, targeting to the diseased site, entering cells, escaping from endosomes, and releasing payloads into the cytoplasm. Since viruses perform some or all of these functions, they are considered naturally occurring nanocarriers. To achieve biomimicry of the hepatitis B virus (HBV), we generated the "bio-nanocapsule" (BNC)-which deploys the human hepatocyte-targeting domain, fusogenic domain, and polymerized-albumin receptor domain of HBV envelope L protein on its surface-by overexpressing the L protein in yeast cells. BNCs are capable of delivering various payloads to the cytoplasm of human hepatic cells specifically in vivo, which is achieved via formation of complexes with various materials (e.g., drugs, nucleic acids, and proteins) by electroporation, fusion with liposomes, or chemical modification. In this review, we describe BNC-related technology, discuss retargeting strategies for BNCs, and outline other virus-inspired nanocarriers.
Collapse
|
15
|
Toita R, Kawano T, Kang JH, Murata M. Applications of human hepatitis B virus preS domain in bio- and nanotechnology. World J Gastroenterol 2015; 21:7400-7411. [PMID: 26139986 PMCID: PMC4481435 DOI: 10.3748/wjg.v21.i24.7400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/24/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatitis B virus (HBV) is a member of the family Hepadnaviridae, and causes acute and chronic infections of the liver. The hepatitis B surface antigen (HBsAg) contains the large (L), middle (M), and small (S) surface proteins. The L protein consists of the S protein, preS1, and preS2. In HBsAg, the preS domain (preS1 + preS2) plays a key role in the infection of hepatocytic cells by HBV and has several immunogenic epitopes. Based on these characteristics of preS, several preS-based diagnostic and therapeutic materials and systems have been developed. PreS1-specific monoclonal antibodies (e.g., MA18/7 and KR127) can be used to inhibit HBV infection. A myristoylated preS1 peptide (amino acids 2-48) also inhibits the attachment of HBV to HepaRG cells, primary human hepatocytes, and primary tupaia hepatocytes. Antibodies and antigens related to the components of HBsAg, preS (preS1 + preS2), or preS1 can be available as diagnostic markers of acute and chronic HBV infections. Hepatocyte-targeting delivery systems for therapeutic molecules (drugs, genes, or proteins) are very important for increasing the clinical efficacy of these molecules and in reducing their adverse effects on other organs. The selective delivery of diagnostic molecules to target hepatocytic cells can also improve the efficiency of diagnosis. In addition to the full-length HBV vector, preS (preS1 + preS2), preS1, and preS1-derived fragments can be useful in hepatocyte-specific targeting. In this review, we discuss the literature concerning the applications of the HBV preS domain in bio- and nanotechnology.
Collapse
|
16
|
Murata M, Narahara S, Kawano T, Hamano N, Piao JS, Kang JH, Ohuchida K, Murakami T, Hashizume M. Design and Function of Engineered Protein Nanocages as a Drug Delivery System for Targeting Pancreatic Cancer Cells via Neuropilin-1. Mol Pharm 2015; 12:1422-30. [DOI: 10.1021/mp5007129] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | - Jeong-Hun Kang
- Department
of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | | | - Takashi Murakami
- Laboratory
of Tumor Biology, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | | |
Collapse
|
17
|
Zhang Q, Zhang X, Chen T, Wang X, Fu Y, Jin Y, Sun X, Gong T, Zhang Z. A safe and efficient hepatocyte-selective carrier system based on myristoylated preS1/21-47 domain of hepatitis B virus. NANOSCALE 2015; 7:9298-9310. [PMID: 25945919 DOI: 10.1039/c4nr04730c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A safe and efficient liver targeted PEGylated liposome (PEG-Lip) based on N-terminal myristoylated preS1/21-47 (preS1/21-47(myr)) of hepatitis B virus was successfully developed. The study aimed to elucidate the cellular uptake mechanism of preS1/21-47(myr) modified PEG-Lip (preS1/21-47(myr)-PEG-Lip) in hepatogenic cells and the distribution behavior of preS1/21-47(myr)-PEG-Lip in Vr:CD1 (ICR) mice. The cellular uptake results showed that preS1/21-47(myr)-PEG-Lip was effectively taken up by hepatogenic cells (including primary hepatocytes and liver tumor cells) through a receptor-mediated endocytosis pathway compared with non-hepatogenic cells. After systemic administration to H22 hepatoma-bearing mice, preS1/21-47(myr)-PEG-Lip showed significant liver-specific delivery and an increase in the distribution of preS1/21-47(myr)-PEG-Lip in hepatic tumor. Furthermore, the antitumor effect of preS1/21-47(myr)-PEG-Lip loaded with paclitaxel (PTX) was remarkably stronger than that of PTX injection and PTX loaded liposomes (including common liposomes and PEG-Lip). In safety evaluation, no acute systemic toxicity and immunotoxicity were observed after intravenous injection of preS1/21-47(myr)-PEG-Lip. No liver toxicity was observed despite the dramatic increase of preS1/21-47(myr)-PEG-Lip in liver. Taken together, preS1/21-47(myr)-PEG-Lip represents a promising carrier system for targeted liver disease therapy and imaging.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Murata M, Piao JS, Narahara S, Kawano T, Hamano N, Kang JH, Asai D, Ugawa R, Hashizume M. Expression and characterization of myristoylated preS1-conjugated nanocages for targeted cell delivery. Protein Expr Purif 2014; 110:52-6. [PMID: 25497224 DOI: 10.1016/j.pep.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/16/2023]
Abstract
Lipid modification of proteins plays key roles in cellular signaling pathways. We describe the development of myristoylated preS1-nanocages (myr-preS1-nanocages) that specifically target human hepatocyte-like HepaRG cells in which a specific receptor-binding peptide (preS1) is joined to the surface of naturally occurring ferritin cages. Using a genetic engineering approach, the preS1 peptide was joined to the N-terminal regions of the ferritin cage via flexible linker moieties. Myristoylation of the preS1 peptide was achieved by co-expression with yeast N-myristoyltransferase-1 in the presence of myristic acid in Escherichia coli cells. The myristoylated preS1-nanocages exhibited significantly greater specificity for human hepatocyte-like HepaRG cells than the unmyristoylated preS1-nanocages. These results suggest that the lipid-modified nanocages have great potential for effective targeted delivery to specific cells.
Collapse
Affiliation(s)
- Masaharu Murata
- Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Jing Shu Piao
- Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sayoko Narahara
- Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahito Kawano
- Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuhito Hamano
- Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, Sugao 2-16-1 Miyamae, Kawasaki 216-8511, Japan
| | - Ryo Ugawa
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
19
|
Huang W, Li X, Yi M, Zhu S, Chen W. Targeted delivery of siRNA against hepatitis B virus by preS1 peptide molecular ligand. Hepatol Res 2014; 44:897-906. [PMID: 23799901 DOI: 10.1111/hepr.12189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/30/2013] [Accepted: 06/19/2013] [Indexed: 01/05/2023]
Abstract
AIM For chronic hepatitis B virus (HBV) infection, the effects of current therapies are limited. RNA interference of virus-specific genes has emerged as a potential antiviral mechanism. However, a suitable delivery vector is still to be developed. We studied a novel vector transferring siRNA targeting hepatic cells in vivo and in vitro in order to find a new way to cure HBV-related live diseases. METHODS The preS1-9Arg ligand was used to deliver siRNA to HepG2 and to HepG2 2.2.15 cells. To validate the antiviral efficacy in vivo, a HBV viremic animal model was established by s.c. inoculation of HepG2 2.2.15 tumor cells in nude mice. The minimal retardation effect on the migration of siRNA was detected by gel electrophoresis to confirm the combination and the optimal ratio. Hepatitis B surface antigen (HBsAg) levels were detected by semiquantitatively enzyme-linked immunosorbent assay RNA levels were quantified with quantitative real-time polymerase chain reaction and protein levels were determined with immunoblots and immunohistochemistry. RESULTS PreS1-9Arg peptide strongly combined and transferred siRNA into HepG2 cells. PreS1-9Arg-siRNA molecular conjugate effectively reduced the production of HBsAg and HBV DNA without liver toxicity in vitro and in vivo. CONCLUSION The results indicated that preS1-9Arg may be a potential novel vector to deliver siRNA targeting liver cells.
Collapse
Affiliation(s)
- Wenjuan Huang
- Department of Laboratory Medicine, the Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
20
|
Schoonen L, van Hest JCM. Functionalization of protein-based nanocages for drug delivery applications. NANOSCALE 2014; 6:7124-41. [PMID: 24860847 DOI: 10.1039/c4nr00915k] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.
Collapse
Affiliation(s)
- Lise Schoonen
- Institute of Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | |
Collapse
|
21
|
Kang JH, Toita R, Asai D, Yamaoka T, Murata M. Liver cell-specific peptides derived from the preS1 domain of human hepatitis B virus. J Virol Methods 2014; 201:20-3. [PMID: 24568971 DOI: 10.1016/j.jviromet.2014.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
The envelope of human hepatitis B virus (HBV) consists of the large (L), middle (M), and small (S) surface proteins. The preS1 domain at the N terminus of the L-protein is essential for recognizing a target cell and for viral infectivity. In the present study, peptides derived from the preS1 domain (amino acid residues 2-19) were synthesized, and their binding affinities for human hepatocellular carcinoma (HCC) cells were determined. Non-myristoylated peptides showed much lower affinity for HepG2 cells than myristoylated peptides. Although all peptides showed significantly higher affinities for two human HCC cell lines (HepG2 and HuH-7) compared with other cell lines (HeLa, B16, NMuLi, and NIH 3T3), a modified peptide exhibited the highest affinity for HCC cell lines. These results suggest that the modified peptide can target liver cells.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | - Riki Toita
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae, Kawasaki, Kanagawa 216-8511, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Masaharu Murata
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
22
|
Toita R, Murata M, Abe K, Narahara S, Piao JS, Kang JH, Hashizume M. A nanocarrier based on a genetically engineered protein cage to deliver doxorubicin to human hepatocellular carcinoma cells. Chem Commun (Camb) 2014; 49:7442-4. [PMID: 23860596 DOI: 10.1039/c3cc44508a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the preparation of genetically engineered protein cages (HspG41C-SP94), taken up selectively by human hepatocellular carcinoma (HCC) cells. An engineered protein cage-doxorubicin (DOX) conjugate was as cytotoxic as free DOX against HCC cells but much less cytotoxic against normal hepatocytes.
Collapse
Affiliation(s)
- Riki Toita
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Toita R, Murata M, Abe K, Narahara S, Piao JS, Kang JH, Ohuchida K, Hashizume M. Biological evaluation of protein nanocapsules containing doxorubicin. Int J Nanomedicine 2013; 8:1989-99. [PMID: 23717042 PMCID: PMC3662465 DOI: 10.2147/ijn.s40239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study describes the applications of a naturally occurring small heat shock protein (Hsp) that forms a cage-like structure to act as a drug carrier. Mutant Hsp cages (HspG41C) were expressed in Escherichia coli by substituting glycine 41 located inside the cage with a cysteine residue to allow conjugation with a fluorophore or a drug. The HspG41C cages were taken up by various cancer cell lines, mainly through clathrin-mediated endocytosis. The cages were detected in acidic organelles (endosomes/lysosomes) for at least 48 hours, but none were detected in the mitochondria or nuclei. To generate HspG41C cages carrying doxorubicin (DOX), an anticancer agent, the HspG41C cages and DOX were conjugated using acid-labile hydrazone linkers. The release of DOX from HspG41C cages was accelerated at pH 5.0, but was negligible at pH 7.2. The cytotoxic effects of HspG41C–DOX against Suit-2 and HepG2 cells were slightly weaker than those of free DOX, but the effects were almost identical in Huh-7 cells. Considering the relatively low release of DOX from HspG41C–DOX, HspG41C–DOX exhibited comparable activity towards HepG2 and Suit-2 cells and slightly stronger cytotoxicity towards Huh-7 cells than free DOX. Hsp cages offer good biocompatibility, are easy to prepare, and are easy to modify; these properties facilitate their use as nanoplatforms in drug delivery systems and in other biomedical applications.
Collapse
Affiliation(s)
- Riki Toita
- Innovation Center for Medical Redox Navigation, Department of Advanced Medical Initiatives, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|