1
|
Calderón-Garcidueñas L, Cejudo-Ruiz FR, Stommel EW, González-Maciel A, Reynoso-Robles R, Silva-Pereyra HG, Pérez-Guille BE, Soriano-Rosales RE, Torres-Jardón R. Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites. TOXICS 2025; 13:284. [PMID: 40278600 PMCID: PMC12030987 DOI: 10.3390/toxics13040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Air pollution plays a key role in sleep disorders and neurodegeneration. Alzheimer's disease (AD), Parkinson's disease (PD), and/or transactive response DNA-binding protein TDP-43 neuropathology have been documented in children and young adult forensic autopsies in the metropolitan area of Mexico City (MMC), along with sleep disorders, cognitive deficits, and MRI brain atrophy in seemingly healthy young populations. Ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs) reach urbanites' brains through nasal/olfactory, lung, gastrointestinal tract, and placental barriers. We documented Fe UFPM/NPs in neurovascular units, as well as lateral hypothalamic nucleus orexinergic neurons, thalamus, medullary, pontine, and mesencephalic reticular formation, and in pinealocytes. We quantified ferromagnetic materials in sleep and arousal brain hubs and examined their motion behavior to low magnetic fields in MMC brain autopsy samples from nine children and 25 adults with AD, PD, and TDP-43 neuropathology. Saturated isothermal remanent magnetization curves at 50-300 mT were associated with UFPM/NP accumulation in sleep/awake hubs and their motion associated with 30-50 µT (DC magnetic fields) exposure. Brain samples exposed to anthropogenic PM pollution were found to be sensitive to low magnetic fields, with motion behaviors that were potentially linked to the early development and progression of fatal neurodegenerative diseases and sleep disorders. Single-domain magnetic UFPM/NPs in the orexin system, as well as arousal, sleep, and autonomic regions, are key to neurodegeneration, behavioral and cognitive impairment, and sleep disorders. We need to identify children at higher risk and monitor environmental UFPM and NP emissions and exposures to magnetic fields. Ubiquitous ferrimagnetic particles and low magnetic field exposures are a threat to global brain health.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Biomedical Sciences, The University of Montana, Missoula, MT 59812, USA
- Escuela de Enfermeria, Universidad Autónoma de Piedras Negras, Piedras Negras 26000, Mexico
| | | | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Angélica González-Maciel
- Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (A.G.-M.); (R.R.-R.); (B.E.P.-G.); (R.E.S.-R.)
| | - Rafael Reynoso-Robles
- Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (A.G.-M.); (R.R.-R.); (B.E.P.-G.); (R.E.S.-R.)
| | - Héctor G. Silva-Pereyra
- Department of Advance Materials, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosi 78216, Mexico;
| | - Beatriz E. Pérez-Guille
- Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (A.G.-M.); (R.R.-R.); (B.E.P.-G.); (R.E.S.-R.)
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
2
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Cejudo-Ruiz FR, Silva-Pereyra HG, Gorzalski A, Torres-Jardón R. Alzheimer's, Parkinson's, Frontotemporal Lobar Degeneration, and Amyotrophic Lateral Sclerosis Start in Pediatric Ages: Ultrafine Particulate Matter and Industrial Nanoparticles Are Key in the Early-Onset Neurodegeneration: Time to Invest in Preventive Medicine. TOXICS 2025; 13:178. [PMID: 40137505 PMCID: PMC11945920 DOI: 10.3390/toxics13030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Billions of people are exposed to fine particulate matter (PM2.5) levels above the USEPA's annual standard of 9 μg/m3. Common emission sources are anthropogenic, producing complex aerosolized toxins. Ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs) have major detrimental effects on the brain, but the USA does not measure UFPM on a routine basis. This review focuses on the development and progression of common neurodegenerative diseases, as diagnosed through neuropathology, among young residents in Metropolitan Mexico City (MMC). MMC is one of the most polluted megacities in the world, with a population of 22 million residents, many of whom are unaware of the brain effects caused by their polluted atmosphere. Fatal neurodegenerative diseases (such as Alzheimer's and Parkinson's) that begin in childhood in populations living in air polluted environments are preventable. We conclude that UFPM/NPs are capable of disrupting neural homeostasis and give rise to relentless neurodegenerative processes throughout the entire life of the highly exposed population in MMC. The paradigm of reaching old age to have neurodegeneration is no longer supported. Neurodegenerative changes start early in pediatric ages and are irreversible. It is time to invest in preventive medicine.
Collapse
Affiliation(s)
| | | | | | | | - Héctor G. Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosi 78216, Mexico;
| | - Andrew Gorzalski
- Nevada Genomics Center, University of Nevada at Reno, Reno, NV 89556, USA;
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
3
|
Xie D, Sun L, Wu M, Li Q. From detection to elimination: iron-based nanomaterials driving tumor imaging and advanced therapies. Front Oncol 2025; 15:1536779. [PMID: 39990682 PMCID: PMC11842268 DOI: 10.3389/fonc.2025.1536779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Iron-based nanomaterials (INMs), due to their particular magnetic property, excellent biocompatibility, and functionality, have been developed into powerful tools in both tumor diagnosis and therapy. We give an overview here on how INMs such as iron oxide nanoparticles, element-doped nanocomposites, and iron-based organic frameworks (MOFs) display versatility for tumor imaging and therapy improvement. In terms of imaging, INMs improve the sensitivity and accuracy of techniques such as magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) and support the development of multimodal imaging platforms. Regarding treatment, INMs play a key role in advanced strategies such as immunotherapy, magnetic hyperthermia, and synergistic combination therapy, which effectively overcome tumor-induced drug resistance and reduce systemic toxicity. The integration of INMs with artificial intelligence (AI) and radiomics further expands its capabilities for precise tumor identification, and treatment optimization, and amplifies treatment monitoring. INMs now link materials science with advanced computing and clinical innovations to enable next-generation cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Dong Xie
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Linglin Sun
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manxiang Wu
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Qiang Li
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Ganguly S, Margel S. Magnetic Polymeric Conduits in Biomedical Applications. MICROMACHINES 2025; 16:174. [PMID: 40047623 PMCID: PMC11857720 DOI: 10.3390/mi16020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
Magnetic polymeric conduits are developing as revolutionary materials in regenerative medicine, providing exceptional benefits in directing tissue healing, improving targeted medication administration, and facilitating remote control via external magnetic fields. The present article offers a thorough examination of current progress in the design, construction, and functionalization of these hybrid systems. The integration of magnetic nanoparticles into polymeric matrices confers distinctive features, including regulated alignment, improved cellular motility, and targeted medicinal delivery, while preserving structural integrity. Moreover, the incorporation of multifunctional attributes, such as electrical conductivity for cerebral stimulation and optical characteristics for real-time imaging, expands their range of applications. Essential studies indicate that the dimensions, morphology, surface chemistry, and composition of magnetic nanoparticles significantly affect their biocompatibility, degrading characteristics, and overall efficacy. Notwithstanding considerable advancements, issues concerning long-term biocompatibility, biodegradability, and scalability persist, in addition to the must for uniform regulatory frameworks to facilitate clinical translation. Progress in additive manufacturing and nanotechnology is overcoming these obstacles, facilitating the creation of dynamic and adaptive conduit structures designed for particular biomedical requirements. Magnetic polymeric conduits, by integrating usefulness and safety, are set to transform regenerative therapies, presenting a new avenue for customized medicine and advanced healthcare solutions.
Collapse
Affiliation(s)
- Sayan Ganguly
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
5
|
Calderón-Garcidueñas L, Cejudo-Ruiz FR, Stommel EW, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Tehuacanero-Cuapa S, Rodríguez-Gómez A, Bautista F, Goguitchaichvili A, Pérez-Guille BE, Soriano-Rosales RE, Koseoglu E, Mukherjee PS. Single-domain magnetic particles with motion behavior under electromagnetic AC and DC fields are a fatal cargo in Metropolitan Mexico City pediatric and young adult early Alzheimer, Parkinson, frontotemporal lobar degeneration and amyotrophic lateral sclerosis and in ALS patients. Front Hum Neurosci 2024; 18:1411849. [PMID: 39246712 PMCID: PMC11377271 DOI: 10.3389/fnhum.2024.1411849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Metropolitan Mexico City (MMC) children and young adults exhibit overlapping Alzheimer and Parkinsons' diseases (AD, PD) and TAR DNA-binding protein 43 pathology with magnetic ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs). We studied magnetophoresis, electron microscopy and energy-dispersive X-ray spectrometry in 203 brain samples from 14 children, 27 adults, and 27 ALS cases/controls. Saturation isothermal remanent magnetization (SIRM), capturing magnetically unstable FeNPs ~ 20nm, was higher in caudate, thalamus, hippocampus, putamen, and motor regions with subcortical vs. cortical higher SIRM in MMC ≤ 40y. Motion behavior was associated with magnetic exposures 25-100 mT and children exhibited IRM saturated curves at 50-300 mT associated to change in NPs position and/or orientation in situ. Targeted magnetic profiles moving under AC/AD magnetic fields could distinguish ALS vs. controls. Motor neuron magnetic NPs accumulation potentially interferes with action potentials, ion channels, nuclear pores and enhances the membrane insertion process when coated with lipopolysaccharides. TEM and EDX showed 7-20 nm NP Fe, Ti, Co, Ni, V, Hg, W, Al, Zn, Ag, Si, S, Br, Ce, La, and Pr in abnormal neural and vascular organelles. Brain accumulation of magnetic unstable particles start in childhood and cytotoxic, hyperthermia, free radical formation, and NPs motion associated to 30-50 μT (DC magnetic fields) are critical given ubiquitous electric and magnetic fields exposures could induce motion behavior and neural damage. Magnetic UFPM/NPs are a fatal brain cargo in children's brains, and a preventable AD, PD, FTLD, ALS environmental threat. Billions of people are at risk. We are clearly poisoning ourselves.
Collapse
Affiliation(s)
| | | | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | | | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Francisco Bautista
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | - Avto Goguitchaichvili
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | | | | | - Emel Koseoglu
- Department of Neurology, Erciyes Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
6
|
Pirușcă IA, Balaure PC, Grumezescu V, Irimiciuc SA, Oprea OC, Bîrcă AC, Vasile B, Holban AM, Voinea IC, Stan MS, Trușcă R, Grumezescu AM, Croitoru GA. New Fe 3O 4-Based Coatings with Enhanced Anti-Biofilm Activity for Medical Devices. Antibiotics (Basel) 2024; 13:631. [PMID: 39061313 PMCID: PMC11273941 DOI: 10.3390/antibiotics13070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
With the increasing use of invasive, interventional, indwelling, and implanted medical devices, healthcare-associated infections caused by pathogenic biofilms have become a major cause of morbidity and mortality. Herein, we present the fabrication, characterization, and in vitro evaluation of biocompatibility and anti-biofilm properties of new coatings based on Fe3O4 nanoparticles (NPs) loaded with usnic acid (UA) and ceftriaxone (CEF). Sodium lauryl sulfate (SLS) was employed as a stabilizer and modulator of the polarity, dispersibility, shape, and anti-biofilm properties of the magnetite nanoparticles. The resulting Fe3O4 functionalized NPs, namely Fe3O4@SLS, Fe3O4@SLS/UA, and Fe3O4@SLS/CEF, respectively, were prepared by co-precipitation method and fully characterized by XRD, TEM, SAED, SEM, FTIR, and TGA. They were further used to produce nanostructured coatings by matrix-assisted pulsed laser evaporation (MAPLE) technique. The biocompatibility of the coatings was assessed by measuring the cell viability, lactate dehydrogenase release, and nitric oxide level in the culture medium and by evaluating the actin cytoskeleton morphology of murine pre-osteoblasts. All prepared nanostructured coatings exhibited good biocompatibility. Biofilm growth inhibition ability was tested at 24 h and 48 h against Staphylococcus aureus and Pseudomonas aeruginosa as representative models for Gram-positive and Gram-negative bacteria. The coatings demonstrated good biocompatibility, promoting osteoblast adhesion, migration, and growth without significant impact on cell viability or morphology, highlighting their potential for developing safe and effective antibacterial surfaces.
Collapse
Affiliation(s)
- Ioana Adelina Pirușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.)
| | - Stefan-Andrei Irimiciuc
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.)
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Bogdan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Alina Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
| | - Ionela C. Voinea
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Miruna S. Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
7
|
Jheng PR, Chiang CC, Kang JH, Fan YJ, Wu KCW, Chen YT, Liang JW, Bolouki N, Lee JW, Hsieh JH, Chuang EY. Cold atmospheric plasma-enabled platelet vesicle incorporated iron oxide nano-propellers for thrombolysis. Mater Today Bio 2023; 23:100876. [PMID: 38089433 PMCID: PMC10711232 DOI: 10.1016/j.mtbio.2023.100876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/08/2023] [Accepted: 11/18/2023] [Indexed: 10/16/2024] Open
Abstract
A new approach to treating vascular blockages has been developed to overcome the limitations of current thrombolytic therapies. This approach involves biosafety and multimodal plasma-derived theranostic platelet vesicle incorporating iron oxide constructed nano-propellers platformed technology that possesses fluorescent and magnetic features and manifold thrombus targeting modes. The platform is capable of being guided and visualized remotely to specifically target thrombi, and it can be activated using near-infrared phototherapy along with an actuated magnet for magnetotherapy. In a murine model of thrombus lesion, this proposed multimodal approach showed an approximately 80 % reduction in thrombus residues. Moreover, the new strategy not only improves thrombolysis but also boosts the rate of lysis, making it a promising candidate for time-sensitive thrombolytic therapy.
Collapse
Affiliation(s)
- Pei-Ru Jheng
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiunn-Horng Kang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Jui Fan
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kevin C.-W. Wu
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4 Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Wei Liang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Nima Bolouki
- Department of Plasma Physics and Technology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Jang-Hsing Hsieh
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
| |
Collapse
|
8
|
Liu CH, Liu MC, Jheng PR, Yu J, Fan YJ, Liang JW, Hsiao YC, Chiang CW, Bolouki N, Lee JW, Hsieh JH, Mansel BW, Chen YT, Nguyen HT, Chuang EY. Plasma-Derived Nanoclusters for Site-Specific Multimodality Photo/Magnetic Thrombus Theranostics. Adv Healthc Mater 2023; 12:e2301504. [PMID: 37421244 DOI: 10.1002/adhm.202301504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Traditional thrombolytic therapeutics for vascular blockage are affected by their limited penetration into thrombi, associated off-target side effects, and low bioavailability, leading to insufficient thrombolytic efficacy. It is hypothesized that these limitations can be overcome by the precisely controlled and targeted delivery of thrombolytic therapeutics. A theranostic platform is developed that is biocompatible, fluorescent, magnetic, and well-characterized, with multiple targeting modes. This multimodal theranostic system can be remotely visualized and magnetically guided toward thrombi, noninvasively irradiated by near-infrared (NIR) phototherapies, and remotely activated by actuated magnets for additional mechanical therapy. Magnetic guidance can also improve the penetration of nanomedicines into thrombi. In a mouse model of thrombosis, the thrombosis residues are reduced by ≈80% and with no risk of side effects or of secondary embolization. This strategy not only enables the progression of thrombolysis but also accelerates the lysis rate, thereby facilitating its prospective use in time-critical thrombolytic treatment.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Ming-Che Liu
- Clinical Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Jui Fan
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Wei Liang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Nima Bolouki
- Department of Physical Electronics, Faculty of Science, Masaryk University, Brno, 60177, Czech Republic
| | - Jyh-Wei Lee
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Jang-Hsing Hsieh
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Bradley W Mansel
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
9
|
Giri PM, Banerjee A, Layek B. A Recent Review on Cancer Nanomedicine. Cancers (Basel) 2023; 15:cancers15082256. [PMID: 37190185 DOI: 10.3390/cancers15082256] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer is one of the most prevalent diseases globally and is the second major cause of death in the United States. Despite the continuous efforts to understand tumor mechanisms and various approaches taken for treatment over decades, no significant improvements have been observed in cancer therapy. Lack of tumor specificity, dose-related toxicity, low bioavailability, and lack of stability of chemotherapeutics are major hindrances to cancer treatment. Nanomedicine has drawn the attention of many researchers due to its potential for tumor-specific delivery while minimizing unwanted side effects. The application of these nanoparticles is not limited to just therapeutic uses; some of them have shown to have extremely promising diagnostic potential. In this review, we describe and compare various types of nanoparticles and their role in advancing cancer treatment. We further highlight various nanoformulations currently approved for cancer therapy as well as under different phases of clinical trials. Finally, we discuss the prospect of nanomedicine in cancer management.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
10
|
Mohanty A, Park IK. Protein-Caged Nanoparticles: A Promising Nanomedicine Against Cancer. Chonnam Med J 2023; 59:1-12. [PMID: 36794248 PMCID: PMC9900222 DOI: 10.4068/cmj.2023.59.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/02/2023] Open
Abstract
Cancer is a severe threat to human wellness. A broad range of nanoparticles (NPs) have been developed to treat cancer. Given their safety profile, natural biomolecules such as protein-based NPs (PNPs) are promising substitutes for synthetic NPs that are currently used in drug delivery systems. In particular, PNPs have diverse characteristics and are monodisperse, chemically and genetically changeable, biodegradable, and biocompatible. To promote their application in clinical settings, PNPs must be precisely fabricated to fully exploit their advantages. This review highlights the different types of proteins that can be used to produce PNPs. Additionally, the recent applications of these nanomedicines and their therapeutic benefits against cancer are explored. Several future research directions that can facilitate the clinical application of PNPs are suggested.
Collapse
Affiliation(s)
- Ayeskanta Mohanty
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
11
|
Masuku M, Ouma L, Sanni S, Pholosi A. Optimization studies of BTX removal by magnetite coated oleic acid obtained from microwave-assisted synthesis using response surface methodology. Sci Rep 2022; 12:18609. [PMID: 36329092 PMCID: PMC9633638 DOI: 10.1038/s41598-022-22716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Benzene, toluene and xylene (BTX) are volatile organic compounds released into the environment, that require urgent removal to avoid adverse health effects. In this work, the modelling and optimization of the preparation factors for magnetite coated oleic acid (MNP-OA) composite from microwave synthesis using response surface methodology were conducted to maximize BTX removal, and iron content. The influence of five crucial preparation variables: the Fe3+/Fe2+ solution volumes, microwave power, volume of ammonia water (VAW), reaction time and volume of oleic acid (VOA) on the iron content (% Fe), and BTX adsorption capacity were investigated. The analysis of variance results revealed that VOA and VAW were the most influential factors for high % Fe content, and improved BTX removal. The % Fe, and BTX adsorption capacity for MNP-OA composite at optimized experimental conditions were estimated to be 85.57%, 90.02 mg/g (benzene), 90.07 mg/g (toluene), and 96.31 mg/g (xylene).
Collapse
Affiliation(s)
- Makhosazana Masuku
- grid.442351.50000 0001 2150 8805Biosorption and Water Treatment Research Laboratory, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900 South Africa
| | - Linda Ouma
- grid.494616.80000 0004 4669 2655Department of Science, Technology and Engineering, Kibabii University, P. O. Box 1699, Bungoma, 50200 Kenya
| | - Saheed Sanni
- grid.442351.50000 0001 2150 8805Biosorption and Water Treatment Research Laboratory, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900 South Africa
| | - Agnes Pholosi
- grid.442351.50000 0001 2150 8805Biosorption and Water Treatment Research Laboratory, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900 South Africa
| |
Collapse
|