1
|
Zhang Q, Sioud M. Tumor-Associated Macrophage Subsets: Shaping Polarization and Targeting. Int J Mol Sci 2023; 24:7493. [PMID: 37108657 PMCID: PMC10138703 DOI: 10.3390/ijms24087493] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Among the innate immune cells recruited to the tumor site, macrophages are the most abundant cell population and are present at all stages of tumor progression. They undergo M1/M2 polarization in response to signals derived from TME. M1 macrophages suppress tumor growth, while their M2 counterparts exert pro-tumoral effects by promoting tumor growth, angiogenesis, metastasis, and resistance to current therapies. Several subsets of the M2 phenotype have been observed, often denoted as M2a, M2b, M2c, and M2d. These are induced by different stimuli and differ in phenotypes as well as functions. In this review, we discuss the key features of each M2 subset, their implications in cancers, and highlight the strategies that are being developed to harness TAMs for cancer treatment.
Collapse
Affiliation(s)
- Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, P.O. Box 1068, 0316 Oslo, Norway
| | - Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
| |
Collapse
|
2
|
Enhancing the Stability of Tumor Homing LyP-1 Peptide Using Cyclization and Retro Grafting Strategies. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
3
|
Moudgil A, Salve R, Gajbhiye V, Chaudhari BP. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem Phys Lipids 2023; 250:105258. [PMID: 36375540 DOI: 10.1016/j.chemphyslip.2022.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The global cancer burden is witnessing an upsurge with breast cancer surpassing other cancers worldwide. Furthermore, an escalation in the breast cancer caseload is also expected in the coming years. The conventional therapeutic regimens practiced routinely are associated with many drawbacks to which nanotechnological interventions offer a great advantage. But how eminent could liposomes and their advantages be in superseding these existing therapeutic modalities? A solution is reflected in this review that draws attention to a decade-long journey embarked upon by researchers in this wake. This text is a comprehensive discussion of liposomes, the front runners of the drug delivery systems, and their active and passive targeting approaches for breast cancer management. Active targeting has been studied over the decade by many receptors overexpressed on the breast cancer cells and passive targeting with many drug combinations. The results converge on the fact that the actively targeted formulations exhibit a superior efficacy over their non-targeted counterparts and the all liposomal formulations are efficacious over the free drugs. This undoubtedly underlines the dominion of liposomal formulations over conventional chemotherapy. These investigations have led to the development of different liposomal formulations with active and passive targeting capacities that could be explored in depth. Acknowledging and getting a deeper insight into the liposomal evolution through time also unveiled many imperfections and unchartered territories that can be explored to deliver dexterous liposomal formulations against breast cancer and more in the clinical trial pipeline.
Collapse
Affiliation(s)
- Aliesha Moudgil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India.
| |
Collapse
|
4
|
Engineered liposomes targeting the gut-CNS Axis for comprehensive therapy of spinal cord injury. J Control Release 2021; 331:390-403. [PMID: 33485884 DOI: 10.1016/j.jconrel.2021.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
Effective curative therapies for spinal cord injury (SCI), which is often accompanied by intestinal complications, are lacking. Potential therapeutic targets include astrocytes and their enteric nervous system counterpart, enteric glial cells (EGCs). Based on shared biomarkers and similar functions of both cell types, we designed an orally administered targeted delivery system in which the neuropeptide apamin, stabilized by sulfur replacement with selenium, was adopted as a targeting moiety, and the liposome surface was protected with a non-covalent cross-linked chitosan oligosaccharide lactate layer. The system effectively permeated through oral absorption barriers, targeted local EGCs and astrocytes after systemic circulation, allowing for comprehensive SCI therapy. Given the involvement of the gut-organ axis in a growing number of diseases, our research may shed light on new aspects of the oral administration route as a bypass for multiple interventions and targeted therapy.
Collapse
|
5
|
Li C, Li J, Xu Y, Zhan Y, Li Y, Song T, Zheng J, Yang H. Application of Phage-Displayed Peptides in Tumor Imaging Diagnosis and Targeting Therapy. Int J Pept Res Ther 2020; 27:587-595. [PMID: 32901205 PMCID: PMC7471523 DOI: 10.1007/s10989-020-10108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Phage display is an effective and powerful technique that provides a route to discovery unique peptides targeting to tumor cells. Specifically binding peptides are considered as the valuable target directing molecule fragments with potential efficiency to improve the current tumor clinic, and offer new approaches for tumor prevention, diagnosis and treatment. We focus on the recent advances in the isolation of tumor-targeting peptides by biopanning methods, with particular emphasis on molecular imaging, and pharmaceutical targeting therapy.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Zhan
- 518 Hospital of PLA, Xi'an, 710043 Shaanxi China
| | - Yu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Tingting Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| |
Collapse
|
6
|
Abstract
The identification of markers expressed by pathological cells or their microenvironment would help to distinguish such cells from the normal tissues. The strategies derived from this theory can be a promising modality for imaging and treating diseases. LyP-1, a tumor homing peptide, can selectively bind to its receptor p32 protein overexpressed in various tumor-associated cells and atherosclerotic plaque macrophages. During recent decades, multiple types of LyP-1-based imaging probes and drug delivery systems have been designed and developed for diagnostic and therapeutic applications. This review first introduces LyP-1 and its receptor p32, as well as its homing, internalization and proapoptotic properties. Next, we highlight recent studies focusing on the applications of LyP-1-based strategies in the diagnosis and treatment of tumors, metastatic lesions, and atherosclerotic plaques. Finally, several limitations in the clinical translation of LyP-1-based bioconjugates are summarized.
Collapse
Affiliation(s)
- Ningning Song
- a Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Lingzhou Zhao
- a Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Meilin Zhu
- b School of Basic Medical Sciences, Ningxia Medical University , Yinchuan , People's Republic of China
| | - Jinhua Zhao
- a Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
7
|
Newman MR, Benoit DSW. In Vivo Translation of Peptide-Targeted Drug Delivery Systems Discovered by Phage Display. Bioconjug Chem 2018; 29:2161-2169. [PMID: 29889510 DOI: 10.1021/acs.bioconjchem.8b00285] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Therapeutic compounds with narrow therapeutic windows and significant systemic side effects benefit from targeted drug delivery strategies. Peptide-protein interactions are often exploited for targeting, with phage display a primary method to identify high-affinity peptide ligands that bind cell surface and matrix bound receptors preferentially expressed in target tissues. After isolating and sequencing high-binding phages, peptides are easily synthesized and chemically modified for incorporation into drug delivery systems, including peptide-drug conjugates, polymers, and nanoparticles. This review describes the phage display methodology to identify targeting peptide sequences, strategies to functionalize drug carriers with phage-derived peptides, specific examples of drug carriers with in vivo translation, and limitations and future applications of phage display to drug delivery.
Collapse
Affiliation(s)
- Maureen R Newman
- Center for Musculoskeletal Research, Department of Orthopaedics , University of Rochester Medical Center , Rochester , New York 14642 , United States
| | - Danielle S W Benoit
- Center for Musculoskeletal Research, Department of Orthopaedics , University of Rochester Medical Center , Rochester , New York 14642 , United States
| |
Collapse
|
8
|
Jia Z, Gong Y, Pi Y, Liu X, Gao L, Kang L, Wang J, Yang F, Tang J, Lu W, Li Q, Zhang W, Yan Z, Yu L. pPB Peptide-Mediated siRNA-Loaded Stable Nucleic Acid Lipid Nanoparticles on Targeting Therapy of Hepatic Fibrosis. Mol Pharm 2017; 15:53-62. [PMID: 29148802 DOI: 10.1021/acs.molpharmaceut.7b00709] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatic fibrosis is a necessary process in the development of liver diseases such as hepatic cirrhosis and its complications, which has become a serious threat to human health. Currently, antifibrotic drug treatment is ineffective, and one reason should be the lack of liver targeting ability. In this report, polypeptide pPB-modified stable nucleic acid lipid nanoparticles (pPB-SNALPs) were prepared to selectively deliver siRNAs against heat shock protein 47 to the liver for targeted therapy of hepatic fibrosis. First, siRNA sequences with high silencing efficiency were screened based on siRNA transfection efficacy. Then, pPB-SNALPs were prepared, which showed a narrow size distribution with a diameter in the range of 110-130 nm and a neutral z-potential of 0 mV. As evidenced by the in vitro and in vivo targeting study, compared with unmodified SNALP, pPB-SNALP showed increased uptake by LX-2 cells and primary hepatic stellate cells (HSC) of mice in vitro and showed increased liver distribution and HSC uptake in vivo. In addition, pPB-SNALP also exhibited an enhanced inhibitory effect on TAA-induced hepatic fibrosis mice with high gp46 mRNA expression in vivo. In summary, our results demonstrated that pPB-SNALP is an effective liver-targeted delivery system. This study could lay a good foundation for the targeted gene therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Zongxiang Jia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Yan Gong
- Department of Geriatrics, Huashan Hospital, Fudan University , Shanghai 200040, P.R. China
| | - Yufang Pi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Xueying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Lipeng Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Liqing Kang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Jing Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education , Shanghai 201203, P.R. China
| | - Qinghua Li
- Department of Hepatology and Pancreatology, Shanghai East Hospital, Tongji University , Shanghai 200120, P.R. China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University , Shanghai 200062, P.R. China
| | - Zhiqiang Yan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Lei Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| |
Collapse
|
9
|
Yu J, Sun L, Zhou J, Gao L, Nan L, Zhao S, Peng T, Han L, Wang J, Lu W, Zhang L, Wang Y, Yan Z, Yu L. Self-Assembled Tumor-Penetrating Peptide-Modified Poly(l-γ-glutamylglutamine)–Paclitaxel Nanoparticles Based on Hydrophobic Interaction for the Treatment of Glioblastoma. Bioconjug Chem 2017; 28:2823-2831. [DOI: 10.1021/acs.bioconjchem.7b00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Yu
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lei Sun
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jinge Zhou
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lipeng Gao
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lijuan Nan
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Shimin Zhao
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Ting Peng
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lin Han
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jing Wang
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, P.R. China
| | - Lin Zhang
- Department
of Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital of ZheJiang University, Shaoxing 312000, P.R. China
| | - Yiting Wang
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Zhiqiang Yan
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lei Yu
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
10
|
David A. Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Adv Drug Deliv Rev 2017; 119:120-142. [PMID: 28506743 DOI: 10.1016/j.addr.2017.05.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/17/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Since their initial discovery more than 30years ago, tumor-homing peptides have become an increasingly useful tool for targeted delivery of therapeutic and diagnostic agents into tumors. Today, it is well accepted that cells at the tumor microenvironment (TME) contribute in many ways to cancer development and progression. Tumor-homing peptide-decorated nanomedicines can interact specifically with surface receptors expressed on cells in the TME, improve cellular uptake of nanomedicines by target cells, and impair tumor growth and progression. Moreover, peptide ligand-modified nanomedicines can potentially accumulate in the target tissue at higher concentrations than would small conjugates, thus increasing overall target tissue exposure to the therapeutic agent, enhance therapeutic efficacy and reduce side effects. This review describes the most studied peptide ligands aimed at targeting cells in the TME, discusses major obstacles and principles in the design of ligands for drug targeting and provides an overview of homing peptides in ligand-targeted nanomedicines that are currently in development for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
11
|
Zhou JE, Yu J, Gao L, Sun L, Peng T, Wang J, Zhu J, Lu W, Zhang L, Yan Z, Yu L. iNGR-Modified Liposomes for Tumor Vascular Targeting and Tumor Tissue Penetrating Delivery in the Treatment of Glioblastoma. Mol Pharm 2017; 14:1811-1820. [DOI: 10.1021/acs.molpharmaceut.7b00101] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jing-e Zhou
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Jing Yu
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Lipeng Gao
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Lei Sun
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Ting Peng
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Jing Wang
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Jianzhong Zhu
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People’s
Hospital, Shaoxing Hospital of ZheJiang University, Shaoxing 312000 People’s Republic of China
| | - Zhiqiang Yan
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Lei Yu
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
12
|
Strzelecka P, Czaplinska D, Sadej R, Wardowska A, Pikula M, Lesner A. Simplified, serine-rich theta-defensin analogues as antitumour peptides. Chem Biol Drug Des 2017; 90:52-63. [PMID: 28004513 DOI: 10.1111/cbdd.12927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023]
Abstract
θ-defensins belong to the family of host defence peptides. They are the only known example of cyclic polypeptides in animal proteomes. This study presents the synthesis of simplified θ-defensin analogues with pairs of cysteine replaced either by alanine, leucine or serine residues. Cytotoxicity tests were performed on human mammary epithelial (HB2) and breast cancer (SKBR3, MDA-MB-231) cell lines to determine whether peptides are selectively targeting cancer cells. The effect of these peptides was also evaluated in 3D Matrigel cultures, which are based on extracellular matrix components and therefore closely represent in vivo conditions. Finally, to determine whether analogues are able to sensitize MDA-MB-231 triple-negative breast cancer cells to chemotherapeutics, we co-administrated peptides with cisplatin or doxorubicin hydrochloride also in 3D Matrigel cultures. Additionally, cytotoxicity towards peripheral blood mononuclear cells and haemolytic effect were examined for a chosen representative of synthesized compounds. The results showed that positively charged serine-containing θ-defensin derivatives were more cytotoxic towards breast cancer cells (SKBR3, MDA-MB-231) than towards mammary epithelial cells (HB2). Analogues enhanced the effect of cisplatin and doxorubicin hydrochloride on triple-negative breast cancer cell line (MDA-MB-231).
Collapse
Affiliation(s)
- Paulina Strzelecka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Dominika Czaplinska
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Rafal Sadej
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Anna Wardowska
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Michal Pikula
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Adam Lesner
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
13
|
Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev 2017; 110-111:80-101. [PMID: 27539561 DOI: 10.1016/j.addr.2016.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022]
Abstract
Liposomal nanomedicine has led to clinically useful cancer therapeutics like Doxil and DaunoXome. In addition, peptide-functionalized liposomes represent an effective drug and gene delivery vehicle with increased cancer cell specificity, enhanced tumor-penetrating ability and high tumor growth inhibition. The goal of this article is to review the recently published literature of the peptide-amphiphiles that were used to functionalize liposomes, to highlight successful designs that improved drug and gene delivery to cancer cells in vitro, and cancer tumors in vivo, and to discuss the current challenges of designing these peptide-decorated liposomes for effective cancer treatment.
Collapse
|
14
|
Jiang Y, Liu S, Zhang Y, Li H, He H, Dai J, Jiang T, Ji W, Geng D, Elzatahry AA, Alghamdi A, Fu D, Deng Y, Zhao D. Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Biomaterials 2017; 115:9-18. [PMID: 27871003 DOI: 10.1016/j.biomaterials.2016.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 01/17/2023]
Abstract
Immobilization of a ligand that selectively interacts with cancer cells to nanomaterials can enhance their diagnostic and therapeutic efficiency. In this study, we firstly demonstrate the high expression of receptor for cyclic nine-amino acid peptide LyP-1 (Cys-Gly-Asn-Lys-Arg-Thr-Arg-Gly-Cys) in both mouse and human pancreatic cancer. Based on these findings, sub-50 nm multifunctional superparamagnetic mesoporous nanospheres with surface modified with LyP-1 are rationally designed. Theses nanospheres have a core of silica-protected magnetite nanoparticle and a shell of FITC-labeled mesoporous silica, and they are able to specifically recognize and conjugate with the pancreatic cancer cell in vitro, as verified by the combined techniques of fluorescent imaging and T2 weight magnetic resonance imaging. After systematic administration, these LyP-1 immobilized nanospheres are found to actively target to mouse orthotopic xenograft of pancreatic cancer, which opens up the door for applications in early probing and diagnosis of pancreatic cancer by the multimodal imaging.
Collapse
Affiliation(s)
- Yongjian Jiang
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaojun Liu
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Hengchao Li
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hang He
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Juntao Dai
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Jiang
- Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Weihang Ji
- Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daoying Geng
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Abdulaziz Alghamdi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Deliang Fu
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China; State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Hyaluronic acid embedded cellulose acetate phthlate core/shell nanoparticulate carrier of 5-fluorouracil. Int J Biol Macromol 2016; 87:449-59. [DOI: 10.1016/j.ijbiomac.2015.11.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 11/23/2022]
|
16
|
Zhan C, Li C, Wei X, Lu W, Lu W. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Adv Drug Deliv Rev 2015; 90:101-18. [PMID: 25959429 DOI: 10.1016/j.addr.2015.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/13/2023]
Abstract
Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, PR China
| | - Xiaoli Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
17
|
Zhang Y, Chen T, Yuan P, Tian R, Hu W, Tang Y, Jia Y, Zhang L. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells. Carbohydr Polym 2015; 133:31-8. [PMID: 26344251 DOI: 10.1016/j.carbpol.2015.06.102] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 12/28/2022]
Abstract
Self-assembled pectin nanoparticles was prepared and evaluated for delivering the hydrophobic drug, honokiol (HK), to HepG2 cells. These hydrophobic drug-loaded nanoparticles were developed without using any surfactant and organic solvent. Hydroxypropyl-β-cyclodextrin (HCD) was used to fabricate an inclusion complex with HK (HKHCD) to increase the solubility of the drug and thus facilitate its encapsulation and dispersion in the pectin nanoparticles. Investigation of the in vitro release indicated that the drug-loaded nanoparticles exhibited a higher drug release rate than free honokiol and an effective sustained-release. Cytotoxicity, cell apoptosis and cellular uptake studies further confirmed that the pectin nanoparticles with galactose residues generated higher cytotoxicity than free honokiol on HepG2 cells which highly expressed asialoglycoprotein receptors (ASGR). Nevertheless, these findings were not observed in ASGR-negative A549 cells under similar condition. Therefore, pectin nanoparticles demonstrated a specific active targeting ability to ASGR-positive HepG2 cells and could be used as a potential drug carrier for treatment of liver-related tumors.
Collapse
Affiliation(s)
- Yuxia Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Pei Yuan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Rui Tian
- The Experimental Teaching Centre, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital, Chongqing 400030, PR China
| | - Yalan Tang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuntao Jia
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
18
|
Abstract
Pancreatic cancer is an insidious type of cancer with its symptoms manifested upon extensive disease. The overall 5-year survival rates between 0.4 and 4%. Surgical resection is an option for only 10% of the patients with pancreatic cancer. Local recurrence and hepatic metastases occur within 2 years after surgery. There are currently several molecular pathways investigated and novel targeted treatments are on the market. However; the nature of pancreatic cancer with its ability to spread locally in the primary site and lymph nodes indicates that further experimentation with local interventional therapies could be a future treatment proposal as palliative care or adjunct to gene therapy and chemotherapy/radiotherapy. In the current review, we will summarize the molecular pathways and present the interventional treatment options for pancreatic cancer.
Collapse
|
19
|
Zhang Y, Deng C, Liu S, Wu J, Chen Z, Li C, Lu W. Active Targeting of Tumors through Conformational Epitope Imprinting. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412114] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Zhang Y, Deng C, Liu S, Wu J, Chen Z, Li C, Lu W. Active Targeting of Tumors through Conformational Epitope Imprinting. Angew Chem Int Ed Engl 2015; 54:5157-60. [DOI: 10.1002/anie.201412114] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/18/2022]
|
21
|
Su T, Long Y, Deng C, Feng L, Zhang X, Chen Z, Li C. Construction of a two-in-one liposomal system (TWOLips) for tumor-targeted combination therapy. Int J Pharm 2014; 476:241-52. [DOI: 10.1016/j.ijpharm.2014.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/13/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
|
22
|
Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: Maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release 2014; 193:241-56. [DOI: 10.1016/j.jconrel.2014.04.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/17/2023]
|
23
|
Wang JJ, Huang SW. Research Progress on Novel Carrier-modified Methods and Evaluation of Active Targeting Antitumor Preparation. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
24
|
Yan Z, Yang Y, Wei X, Zhong J, Wei D, Liu L, Xie C, Wang F, Zhang L, Lu W, He D. Tumor-Penetrating Peptide Mediation: An Effective Strategy for Improving the Transport of Liposomes in Tumor Tissue. Mol Pharm 2013; 11:218-25. [DOI: 10.1021/mp400393a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhiqiang Yan
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics
and New Drug Development, Institutes for
Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, P.R. China
| | - Yiyi Yang
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoli Wei
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Jian Zhong
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Daixu Wei
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Lu Liu
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Fei Wang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Lin Zhang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Dannong He
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
25
|
Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics 2013; 5:542-69. [PMID: 24300562 PMCID: PMC3873679 DOI: 10.3390/pharmaceutics5040542] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 02/08/2023] Open
Abstract
Liposomes are used as a delivery vehicle for drug molecules and imaging agents. The major impetus in their biomedical applications comes from the ability to prolong their circulation half-life after administration. Conventional liposomes are easily recognized by the mononuclear phagocyte system and are rapidly cleared from the blood stream. Modification of the liposomal surface with hydrophilic polymers delays the elimination process by endowing them with stealth properties. In recent times, the development of various materials for surface engineering of liposomes and other nanomaterials has made remarkable progress. Poly(ethylene glycol)-linked phospholipids (PEG-PLs) are the best representatives of such materials. Although PEG-PLs have served the formulation scientists amazingly well, closer scrutiny has uncovered a few shortcomings, especially pertaining to immunogenicity and pharmaceutical characteristics (drug loading, targeting, etc.) of PEG. On the other hand, researchers have also begun questioning the biological behavior of the phospholipid portion in PEG-PLs. Consequently, stealth lipopolymers consisting of non-phospholipids and PEG-alternatives are being developed. These novel lipopolymers offer the potential advantages of structural versatility, reduced complement activation, greater stability, flexible handling and storage procedures and low cost. In this article, we review the materials available as alternatives to PEG and PEG-lipopolymers for effective surface modification of liposomes.
Collapse
Affiliation(s)
- Okhil K Nag
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | | |
Collapse
|
26
|
Yang Y, Yan Z, Wei D, Zhong J, Liu L, Zhang L, Wang F, Wei X, Xie C, Lu W, He D. Tumor-penetrating peptide functionalization enhances the anti-glioblastoma effect of doxorubicin liposomes. NANOTECHNOLOGY 2013; 24:405101. [PMID: 24029287 DOI: 10.1088/0957-4484/24/40/405101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The targeted therapeutic effect of nano drug delivery system for glioblastoma has been hampered by the weak enhanced permeability and retention (EPR) effect of glioblastoma and the low delivering efficiency of NDDS in glioblastoma tissue. In this study, a tumor-penetrating peptide (RGERPPR), the specific ligand of neuropilin-1 overexpressed on glioblastoma and endothelial cells, was used as a targeting moiety to enhance the anti-glioblastoma effect of doxorubicin liposomes. Firstly, RGERPPR-PEG-DSPE was synthesized and used to prepare the RGERPPR peptide-functionalized liposomes (RGE-LS), which showed vesicle sizes of around 90 nm and narrow size distributions. The cellular uptake and in vivo near-infrared fluorescence imaging test displayed that RGE-LS exhibited increased uptake by glioblastoma cells and intracranial glioblastoma tissues. The cytotoxicity assay and anti-glioblastoma study proved that RGERPPR functionalization significantly enhanced the in vitro inhibitory effect of doxorubicin liposomes on glioblastoma cells and prolonged the median survival time of nude mice bearing intracranial glioblastoma. Finally, the immunofluorescence analysis evidenced that RGE-LS were able to penetrate through tumor vessels and stroma and deep into the whole tumor tissue. The results indicated that tumor-penetrating peptide functionalization is an effective strategy for enhancing the anti-glioblastoma effect of doxorubicin liposomes.
Collapse
Affiliation(s)
- Yiyi Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China. National Engineering Research Center for Nanotechnology, Shanghai 200241, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hohenforst-Schmidt W, Zarogoulidis P, Darwiche K, Vogl T, Goldberg EP, Huang H, Simoff M, Li Q, Browning R, Turner FJ, Le Pivert P, Spyratos D, Zarogoulidis K, Celikoglu SI, Celikoglu F, Brachmann J. Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:571-83. [PMID: 23898222 PMCID: PMC3718837 DOI: 10.2147/dddt.s46393] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Strategies to enhance the already established doublet chemotherapy regimen for lung cancer have been investigated for more than 20 years. Initially, the concept was to administer chemotherapy drugs locally to the tumor site for efficient diffusion through passive transport within the tumor. Recent advances have enhanced the diffusion of pharmaceuticals through active transport by using pharmaceuticals designed to target the genome of tumors. In the present study, five patients with non-small cell lung cancer epidermal growth factor receptor (EGFR) negative stage IIIa–IV International Union Against Cancer 7 (UICC-7), and with Eastern Cooperative Oncology Group (ECOG) 2 scores were administered platinum-based doublet chemotherapy using combined intratumoral-regional and intravenous route of administration. Cisplatin analogues were injected at 0.5%–1% concentration within the tumor lesion and proven malignant lymph nodes according to pretreatment histological/cytological results and the concentration of systemic infusion was decreased to 70% of a standard protocol. This combined intravenous plus intratumoral-regional chemotherapy is used as a first line therapy on this short series of patients. To the best of our knowledge this is the first report of direct treatment of involved lymph nodes with cisplatin by endobronchial ultrasound drug delivery with a needle without any adverse effects. The initial overall survival and local response are suggestive of a better efficacy compared to established doublet cisplatin–based systemic chemotherapy in (higher) standard concentrations alone according to the UICC 7 database expected survival. An extensive search of the literature was performed to gather information of previously published literature of intratumoral chemo-drug administration and formulation for this treatment modality. Our study shows a favorable local response, more than a 50% reduction, for a massive tumor mass after administration of five sessions of intratumoral chemotherapy plus two cycles of low-dose intravenous chemotherapy according to our protocol. These encouraging results (even in very sick ECOG 2 patients with central obstructive non-small cell lung cancer having a worse prognosis and quality of life than a non-small cell lung cancer in ECOG 0 of the same tumor node metastasis [TNM]-stage without central obstruction) for a chemotherapy-only protocol that differs from conventional cisplatin-based doublet chemotherapy by the route, target site, and dose paves the way for broader applications of this technique. Finally, future perspectives of this treatment and pharmaceutical design for intratumoral administration are presented.
Collapse
|