1
|
Shekhar R, Raghavendra VB, Rachitha P. A comprehensive review of mycotoxins, their toxicity, and innovative detoxification methods. Toxicol Rep 2025; 14:101952. [PMID: 40162074 PMCID: PMC11954124 DOI: 10.1016/j.toxrep.2025.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
A comprehensive overview of food mycotoxins, their toxicity, and contemporary detoxification techniques is given in this article. Mycotoxins, which are harmful secondary metabolites generated by a variety of fungi, including Fusarium, Aspergillus, and Penicillium, provide serious health concerns to humans and animals. These include hepatotoxicity, neurotoxicity, and carcinogenicity. Mycotoxins are commonly found in basic food products, as evidenced by recent studies, raising worries about public health and food safety. The article discusses detection techniques such as enzyme-linked immunosorbent assays (ELISA), and quick strip tests. Moreover, the use of various control systems associated with the detoxification of mycotoxinis highlighted. In addition, novel detoxification strategies such as nanotechnology, plant extracts, and omics studies were also discussed. When taken as a whole, this analysis helps to clarify the pressing need for efficient management and monitoring techniques to prevent mycotoxin contamination in the food chain.
Collapse
Affiliation(s)
| | | | - P. Rachitha
- Department of Biotechnology, Teresian College, Siddarthanagar, Mysore 570011, India
| |
Collapse
|
2
|
Pandey P, Lakhanpal S, Bishoyi AK, Jyothi SR, Mishra S, Verma M, Singh A, Alam MW, Rab SO, Saeed M, Khan F. Biosynthesis of silver nanoparticles from plant extracts: a comprehensive review focused on anticancer therapy. Front Pharmacol 2025; 16:1600347. [PMID: 40438589 PMCID: PMC12116548 DOI: 10.3389/fphar.2025.1600347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Cancer is a deadly disease and is one of the primary causes of mortality worldwide. Cancer therapy presents significant challenges, such as chemotherapy resistance, high toxicity, recurrence, and metastasis. As a result, the development of novel therapeutic agents for cancer continues to be a top goal to expand the number of efficient treatments available. The advent of nanotechnology is an important turning point in several scientific disciplines. Owing to the increasing difficulty of this problem, researchers have begun to focus their attention on the possibility of employing plants or extracts from plants as a potential tumor treatment. More than 3,000 medicinal plant species have been documented worldwide for their utilization in cancer treatment. Nevertheless, crude plant extracts lack specificity, and their dosages are not clearly specified. To enhance the therapeutic efficacy of these natural substances, researchers have used them in conjunction with silver nanoparticles (AgNPs). Plants possess intricate phytochemical components including sugars, polyphenols, amino acids, flavonoids, terpenoids, alkaloids, and proteins, which can function as reducing and stabilizing agents. In recent years, the application of plant-derived AgNPs has increased significantly, particularly in cancer treatment. These green-synthesized AgNPs are regarded as outstanding tools for the detection of cancer and targeted drug delivery at the tumor site. By leveraging the distinctive characteristics of nanoparticles and the antioxidant and anticancer qualities of plants, these green-synthesized AgNPs selectively eradicate tumor cells while sparing normal healthy cells. This comprehensive review aimed to summarize the key aspects of plant extracts as anticancer agents, biosynthesis of AgNPs, and recent advancements in the antitumor efficacy of green-synthesized AgNPs.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - S. Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Swati Mishra
- Department of Pharmacology, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Li Y, Yang F, Mu B, Ma Y, Wang A, Liu X. Attapulgite-Assisted In Situ Anchoring of Ultrasmall Ag Nanoparticles for Enhanced Eradication of Multidrug-Resistant Bacterial Biofilms and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26310-26322. [PMID: 40261827 DOI: 10.1021/acsami.5c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Silver nanoparticles (Ag NPs) have emerged as a promising solution to combat biofilm-related infections caused by multidrug-resistant bacteria. However, their practical application remains limited due to their tendency to aggregate and exhibit high toxicity at elevated concentrations. Here, we developed a Citrus limon peel water extract-mediated hydrothermal process to facilitate the heterogeneous nucleation of Ag NPs on attapulgite (APT) nanorods and prepared Ag/APT nanocomposites with ultrasmall Ag NPs (<2 nm) uniformly anchored on APT nanorods. Ascorbic acid and polyphenols in Citrus limon peel extract acted as electron donors to reduce Ag+ to Ag0, while the interfacial interaction of APT nanorods induced heterogeneous nucleation and confined the growth of Ag nanocrystals, resulting in ultrasmall Ag NPs. As a result, due to the synergistic effect of the targeted biofilm-binding affinity of APT nanorods and the siginificantly increased specific surface area of Ag NPs conducive to the release of Ag+ ions, the obtained Ag/APT nanocomposites exhibited enhanced eradication activities on antimicrobial-resistant bacterial biofilms and accelerated wound healing in MRSA-infected wound models. Additionally, attributing to the low dosage of Ag, Ag/APT exhibited exceptional biocompatibility both in vitro and in vivo. This work provides a simple and green strategy for the preparation of highly active Ag-based antibacterial nanomaterials and sheds new light on the development of advanced antimicrobial agents for wound healing.
Collapse
Affiliation(s)
- Yalong Li
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, P. R. China
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Fangfang Yang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Bin Mu
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yulong Ma
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, P. R. China
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Xinyue Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, P. R. China
| |
Collapse
|
4
|
Zhang J, Chen Y, Xu Y, Zhao Z, Xu X. Salicylic Acid-Mediated Silver Nanoparticle Green Synthesis: Characterization, Enhanced Antimicrobial, and Antibiofilm Efficacy. Pharmaceutics 2025; 17:532. [PMID: 40284526 PMCID: PMC12030525 DOI: 10.3390/pharmaceutics17040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Objectives: Silver nanoparticles (AgNPs) were synthesized via an easy and rapid biogenic synthesis approach, utilizing the dual capabilities of salicylic acid as both a reducing and capping agent. Methods: The characterization of Salicylic Acid-Mediated Silver Nanoparticle (SA-AgNPs) was conducted using a variety of techniques, including ultraviolet-visible spectroscopy, dynamic light scattering, scanning electron microscopy combined with energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, as well as thermogravimetric analysis paired with differential scanning calorimetry. Results: SA-AgNPs demonstrated significant antibacterial properties against both Gram-positive (methicillin-resistant Staphylococcus epidermidis, Staphylococcus aureus, Cutibacterium acnes, methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli), with minimum inhibitory concentrations (MICs) of 8, 9, 8, 4, and 6 μg/mL, respectively. At a concentration of 32 μg/mL, SA-AgNPs exhibited 99.9% killing efficiency against Escherichia coli (E. coli), Cutibacterium acnes (C. acnes), and methicillin-resistant Staphylococcus aureus (MRSA), within 4, 16, and 12 h, respectively. At the same concentration, SA-AgNPs effectively inhibited 95.61% of MRSA biofilm formation. SA-AgNPs induced the leakage of intracellular macromolecular substances by increasing the membrane permeability, which ultimately caused bacterial apoptosis. Conclusions: Overall, this study presents a fast and environmentally friendly approach for synthesizing SA-AgNPs, with potential applications as nano antibiotics antibacterial coatings for implantable medical devices and wound dressings.
Collapse
Affiliation(s)
| | | | | | | | - Xinjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Cai R, Cheng Q, Zhao J, Zhou P, Wu Z, Ma X, Hu Y, Wang H, Lan X, Zhou J, Tao G. Sericin-Assisted Green Synthesis of Gold Nanoparticles as Broad-Spectrum Antimicrobial and Biofilm-Disrupting Agents for Therapy of Bacterial Infection. Int J Nanomedicine 2025; 20:3559-3574. [PMID: 40125431 PMCID: PMC11930024 DOI: 10.2147/ijn.s494616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Background Tens of millions of people die from wound infections globally each year, and nearly 80% of tissue infections are associated with bacterial biofilms. However, overuse of antibiotics can lead to bacterial resistance. Therefore, it is critical to develop simple and effective strategies to kill bacteria and remove biofilms. Methods The present study used sericin as a reducing and stabilizing agent to synthesize sericin-gold nanoparticles (Ser-Au NPs) and tested its colloidal stability under different pH and salt concentration conditions. Subsequently, functional gold nanocomposites (Ser-Au@MMI) were synthesized by combining Ser-Au NPs with 2-mercapto-1-methylimidazole (MMI). The antimicrobial effect of Ser-Au@MMI was checked by MIC, antimicrobial activity test, and in vitro cytotoxicity was assessed using CCK-8 assay. In vitro anti-biofilm effect was observed by fluorescence microscopy and SEM. Finally, the anti-infective therapeutic efficacy of Ser-Au@MMI was determined in an in vivo rat-infected wound model. Results Sericin as a reducing and stabilizing agent to synthesize Ser-Au NPs exhibited excellent colloidal stability under different pH and salt concentration conditions. The TEM, EDS, and XPS analyses confirmed the successful synthesis of Ser-Au@MMI. It exhibited higher antibacterial activity due to the synergistic effect of MMI and AuNP, which can achieve a bactericidal effect by destroying the integrity of bacterial cell walls and structure. In addition, Ser-Au@MMI10 (HAuCl4:MMI =1:10) concentration (64 μg/mL) could effectively disrupt biofilms formed by four species of bacteria and kill them, including P. aeruginosa, B. subtilis, E. coli, and S. aureus, but was not cytotoxic to mouse fibroblasts (L929) cells. Infected wound modeling showed that Ser-Au@MMI10 accelerated infected wound healing in vivo. Conclusion Ser-Au@MMI nanocomposites are prepared through a facile and environmentally friendly strategy and have the advantages of excellent bactericidal effect and low toxicity, which has the potential for application as a broad-spectrum antimicrobial agent and biofilm disrupting agent in healthcare.
Collapse
Affiliation(s)
- Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qian Cheng
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiayu Zhao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Peirong Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zhaodan Wu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xuemin Ma
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yajuan Hu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Huiyue Wang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jing Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
6
|
Vadakkan K, Jose B, Mapranathukaran VO, Sathishkumar K, Ngangbam AK, Rumjit NP. Biofilm suppression of Pseudomonas aeruginosa by bio-engineered silver nanoparticles from Hellenia speciosa rhizome extract. Microb Pathog 2025; 198:107105. [PMID: 39527987 DOI: 10.1016/j.micpath.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Bacterial biofilm, a persistent issue in healthcare equipment and typical infections, is exacerbated by the pathogenesis and antibiotic tolerance of Pseudomonas aeruginosa. This bacterium remains a significant concern in the global healthcare sector. Silver nanoparticles, with their potent antibacterial properties, have emerged as a promising solution. This study, therefore, is of utmost importance as it aims to delve into the parameters influencing the biogenic nanoparticle-assisted regulation of bacterial adherence by Pseudomonas aeruginosa. The nano-sized particles were bioengineered using Hellenia speciosa rhizome extracts, which mainly included biologically active components such as mequinol, 4-hydroxy-3-methylacetophenone, and phenol, 2,6-dimethoxy, supplemented with the formation of silver nanostructured materials. The nanoclusters were characterized by UV-Vis spectrophotometry, X-ray scattering, and scanning electron microscopy (SEM). According to a microtiter plate experiment, the nanoparticle degraded biofilms up to 94.41 % at dosages varied from 0 to 25 μg/ml. The light microscopy study and the interface architecture of biofilm suppression by electron microscopy demonstrated the nano-sized particle's potential to prevent bacterial adherence.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala, 680020, India; Manipur International University, Imphal, Manipur, 795140, India.
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur, 680009, Kerala, India
| | | | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, 602105, India
| | | | - Nelson Pynadathu Rumjit
- Marian Centre for Advanced Research, St. Mary's College (Autonomous), Thrissur, Kerala, 680020, India
| |
Collapse
|
7
|
Karczewska-Golec J, Sadowska K, Golec P, Karczewski J, Węgrzyn G. Engineered M13-Derived Bacteriophages Capable of Gold Nanoparticle Synthesis and Nanogold Manipulations. Int J Mol Sci 2024; 25:11222. [PMID: 39457002 PMCID: PMC11508339 DOI: 10.3390/ijms252011222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
For years, gold nanoparticles (AuNPs) have been widely used in medicine and industry. Although various experimental procedures have been reported for their preparation and manipulation, none of them is optimal for all purposes. In this work, we engineered the N-terminus of the pIII minor coat protein of bacteriophage (phage) M13 to expose a novel HLYLNTASTHLG peptide that effectively and specifically binds gold. In addition to binding gold, this engineered phage could synthesize spherical AuNPs of 20 nm and other sizes depending on the reaction conditions, aggregate them, and precipitate gold from a colloid, as revealed by transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM), as well as ultraviolet-visible (UV-vis) and Fourier-transform infrared (FTIR) spectroscopic methods. We demonstrated that the engineered phage exposing a foreign peptide selected from a phage-displayed library may serve as a sustainable molecular factory for both the synthesis of the peptide and the subsequent overnight preparation of AuNPs from gold ions at room temperature and neutral pH in the absence of strong reducing agents, such as commonly used NaBH4. Taken together, the results suggest the potential applicability of the engineered phage and the new, in vitro-identified gold-binding peptide in diverse biomimetic manipulations.
Collapse
Affiliation(s)
- Joanna Karczewska-Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.K.-G.); (P.G.)
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland;
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.K.-G.); (P.G.)
| | - Jakub Karczewski
- Advanced Materials Centre, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
8
|
David M, Enache TA, Barbu-Tudoran L, Bala C, Florescu M. Biologically Synthesized Gold Nanoparticles with Enhanced Antioxidant and Catalytic Properties. Pharmaceuticals (Basel) 2024; 17:1105. [PMID: 39338271 PMCID: PMC11434865 DOI: 10.3390/ph17091105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Increasing levels of reactive oxygen species generate oxidative stress in the human body that can lead to various medical conditions. The use of nanomaterials exhibiting antioxidant properties may prevent these effects. The biological synthesis of metallic nanoparticles using plant extracts with antioxidant properties can offer benefits due to their active compounds. The used extracts contained reducing and stabilizing agents, which were shown to be transferred onto the gold nanoparticles, functionalizing them. Herin, we report a gold nanoparticle synthesis by eco-friendly biological methods (b-AuNPs) using extracts of sea buckthorn, lavender, walnuts, and grapes, obtained through ultrasound-assisted extraction and pressure-enhanced extraction. The obtained b-AuNPs were characterized by UV-Vis and FTIR spectroscopies and visualized using transmission electron microscopy. The catalytic and scavenging effect of the b-AuNPs towards H2O2 (as reactive oxygen species) was evaluated electrochemically, highlighting the protective behavior of b-AuNPs towards lipid peroxidation. All experiments demonstrated the stability and reproducibility of prepared b-AuNPs with enhanced antioxidant and catalytic properties, opening a new perspective for their use in biomedical applications.
Collapse
Affiliation(s)
- Melinda David
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania;
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii no. 1, 500068 Brasov, Romania
| | - Teodor A. Enache
- National Institute of Material Physics, Atomistilor 405A, 077125 Magurele, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “C. Craciun”, Biology and Geology Faculty, Babes-Bolyai University Cluj-Napoca, 4-6 Clinicilor Str., 400006 Cluj-Napoca, Romania;
- National Institute for R&D of Isotopic and Molecular Technologies (INCDTIM) Cluj-Napoca, 67-103 Donath Str., 400293 Cluj-Napoca, Romania
| | - Camelia Bala
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania;
- Department of Analytical Chemistry and Physical Chemistry, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania
| | - Monica Florescu
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii no. 1, 500068 Brasov, Romania
| |
Collapse
|
9
|
Lima AKO, Souza LMDS, Reis GF, Junior AGT, Araújo VHS, dos Santos LC, da Silva VRP, Chorilli M, Braga HDC, Tada DB, Ribeiro JADA, Rodrigues CM, Nakazato G, Muehlmann LA, Garcia MP. Synthesis of Silver Nanoparticles Using Extracts from Different Parts of the Paullinia cupana Kunth Plant: Characterization and In Vitro Antimicrobial Activity. Pharmaceuticals (Basel) 2024; 17:869. [PMID: 39065720 PMCID: PMC11279972 DOI: 10.3390/ph17070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
The green synthesis of silver nanoparticles (AgNPs) can be developed using safe and environmentally friendly routes, can replace potentially toxic chemical methods, and can increase the scale of production. This study aimed to synthesize AgNPs from aqueous extracts of guarana (Paullinia cupana) leaves and flowers, collected in different seasons of the year, as a source of active biomolecules capable of reducing silver ions (Ag+) and promoting the stabilization of colloidal silver (Ag0). The plant aqueous extracts were characterized regarding their metabolic composition by liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS), phenolic compound content, and antioxidant potential against free radicals. The synthesized AgNPs were characterized by UV/Vis spectrophotometry, dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and scanning electron microscopy coupled to energy-dispersive X-ray spectrometry (EDX). The results demonstrated that the chemical characterization indicated the presence of secondary metabolites of many classes of compounds in the studied aqueous extracts studied, but alkaloids and flavonoids were predominant, which are widely recognized for their antioxidant capabilities. It was possible to notice subtle changes in the properties of the nanostructures depending on parameters such as seasonality and the part of the plant used, with the AgNPs showing surface plasmon resonance bands between 410 and 420 nm using the leaf extract and between 440 and 460 nm when prepared using the flower extract. Overall, the average hydrodynamic diameters of the AgNPs were similar among the samples (61.98 to 101.6 nm). Polydispersity index remained in the range of 0.2 to 0.4, indicating that colloidal stability did not change with storage time. Zeta potential was above -30 mV after one month of analysis, which is adequate for biological applications. TEM images showed AgNPs with diameters between 40.72 to 48.85 nm and particles of different morphologies. EDX indicated silver content by weight between 24.06 and 28.81%. The synthesized AgNPs exhibited antimicrobial efficacy against various pathogenic microorganisms of clinical and environmental interest, with MIC values between 2.12 and 21.25 µg/mL, which is close to those described for MBC values. Therefore, our results revealed the potential use of a native species of plant from Brazilian biodiversity combined with nanotechnology to produce antimicrobial agents.
Collapse
Affiliation(s)
- Alan Kelbis Oliveira Lima
- Nanobiotechnology Laboratory, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil; (A.K.O.L.); (M.P.G.)
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil; (J.A.d.A.R.); (C.M.R.)
| | - Lucas Marcelino dos Santos Souza
- Basic and Applied Bacteriology Laboratory, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (L.M.d.S.S.); (G.N.)
| | - Guilherme Fonseca Reis
- Postgraduate Studies in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Palotina 85950-000, PR, Brazil;
| | - Alberto Gomes Tavares Junior
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil; (A.G.T.J.); (V.H.S.A.); (M.C.)
| | - Victor Hugo Sousa Araújo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil; (A.G.T.J.); (V.H.S.A.); (M.C.)
| | - Lucas Carvalho dos Santos
- Laboratory for the Isolation and Transformation of Organic Molecules, Institute of Chemistry, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil;
| | - Vitória Regina Pereira da Silva
- Post-Graduate Program in Pharmaceuticals Sciences, Faculty of Health Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil;
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil; (A.G.T.J.); (V.H.S.A.); (M.C.)
| | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São Jose dos Campos 12231-280, SP, Brazil; (H.d.C.B.); (D.B.T.)
| | - Dayane Batista Tada
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São Jose dos Campos 12231-280, SP, Brazil; (H.d.C.B.); (D.B.T.)
| | - José Antônio de Aquino Ribeiro
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil; (J.A.d.A.R.); (C.M.R.)
| | - Clenilson Martins Rodrigues
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil; (J.A.d.A.R.); (C.M.R.)
| | - Gerson Nakazato
- Basic and Applied Bacteriology Laboratory, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (L.M.d.S.S.); (G.N.)
| | | | - Mônica Pereira Garcia
- Nanobiotechnology Laboratory, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil; (A.K.O.L.); (M.P.G.)
| |
Collapse
|
10
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|