1
|
Mokhtare B, Saglam YS. Investigation of the Zingerone's effects on wound healing in induced diabetic rats model. Arch Dermatol Res 2025; 317:484. [PMID: 39994064 DOI: 10.1007/s00403-025-03924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
The prevalence of diabetic wound patients is increasing, rendering the management of these chronic wounds both costly and challenging. Zingerone a bioactive compound derived from ginger (Zingiber officinale) has antidiabetic and antioxidant properties. This study evaluated the therapeutic effects of Zingerone, alone and in combination with metformin, on diabetic wound healing in a rat model. The experimental groups: control wound (C), diabetic plus wound (D + W), plus Metformin (D + W + M), plus Zingerone (D + W + Z), and plus Metformin and Zingerone (D + W + M + Z). On the seventh, fourteenth, and twenty-first days of the study histological examinations (H&E, Masson Trichrome staining), immunohistochemistry for growth factors, collagen markers, and cytokeratin. biochemical analyses of oxidative stress, antioxidant enzyme levels and level of inflammation (ELISA) were conducted. In addition to lowering oxidative stress and inflammation, the results showed that the groups treated with Zingerone considerably improved tissue regeneration, angiogenesis, collagen formation, tissue maturation, and keratinization. Zingerone enhanced these therapeutic effects when used with metformin. These results demonstrate Zingerone's promise as a therapeutic agent in the therapy of diabetic wounds and its capacity to improve healing results, especially when combined with metformin.
Collapse
Affiliation(s)
- Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Dicle University, Diyarbakir, Türkiye.
| | - Yavuz Selim Saglam
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
2
|
Lee PC, Li CZ, Lu CT, Zhao MH, Lai SM, Liao MH, Peng CL, Liu HT, Lai PS. Microcurrent Cloth-Assisted Transdermal Penetration and Follicular Ducts Escape of Curcumin-Loaded Micelles for Enhanced Wound Healing. Int J Nanomedicine 2023; 18:8077-8097. [PMID: 38164267 PMCID: PMC10758166 DOI: 10.2147/ijn.s440034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Larger nanoparticles of bioactive compounds deposit high concentrations in follicular ducts after skin penetration. In this study, we investigated the effects of microcurrent cloth on the skin penetration and translocation of large nanoparticle applied for wound repair applications. Methods A self-assembly of curcumin-loaded micelles (CMs) was prepared to improve the water solubility and transdermal efficiency of curcumin. Microcurrent cloth (M) was produced by Zn/Ag electrofabric printing to facilitate iontophoretic transdermal delivery. The transdermal performance of CMs combined with M was evaluated by a transdermal system and confocal microscopy. The CMs/iontophoretic combination effects on nitric oxide (NO) production and inflammatory cytokines were evaluated in Raw 264.7 cells. The wound-healing property of the combined treatment was assessed in a surgically created full-thickness circular wound mouse model. Results Energy-dispersive X-ray spectroscopy confirmed the presence of Zn/Ag on the microcurrent cloth. The average potential of M was measured to be +214.6 mV in PBS. Large particle CMs (CM-L) prepared using surfactant/cosurfactant present a particle size of 142.9 nm with a polydispersity index of 0.319. The solubility of curcumin in CM-L was 2143.67 μg/mL, indicating 250-fold higher than native curcumin (8.68 μg/mL). The combined treatment (CM-L+M) demonstrated a significant ability to inhibit NO production and increase IL-6 and IL-10 secretion. Surprisingly, microcurrent application significantly improved 20.01-fold transdermal performance of curcumin in CM-L with an obvious escape of CM-L from follicular ducts to surrounding observed by confocal microscopy. The CM-L+M group also exhibited a better wound-closure rate (77.94% on day 4) and the regenerated collagen intensity was approximately 2.66-fold higher than the control group, with a closure rate greater than 90% on day 8 in vivo. Conclusion Microcurrent cloth play as a promising iontophoretic transdermal drug delivery accelerator that enhances skin penetration and assists CMs to escape from follicular ducts for wound repair applications.
Collapse
Affiliation(s)
- Pei-Chi Lee
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Zhao
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, National Atomic Research Institute, Taoyuan, Taiwan
| | - Hsin-Tung Liu
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Liu X, Fan H, Meng Z, Wu Z, Gu R, Zhu X, Gan H, Dou G. Combined Silver Sulfadiazine Nanosuspension with Thermosensitive Hydrogel: An Effective Antibacterial Treatment for Wound Healing in an Animal Model. Int J Nanomedicine 2023; 18:679-691. [PMID: 36816331 PMCID: PMC9930683 DOI: 10.2147/ijn.s395004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Silver sulfadiazine (AgSD) is widely used in burn wound treatment due to its broad-spectrum antibacterial activity. However, its application in wound healing is greatly hindered by the low solubility of AgSD particles and their cellular cytotoxicity. Herein, we studied the safety and in vivo efficacy of nano-sized silver sulfadiazine loaded in poloxamer thermosensitive hydrogel (NS/Gel). Methods In NS/Gel, silver sulfadiazine was prepared into silver sulfadiazine nanosuspension (NS) to improve the solubility and enhance its antibacterial activity, whereas the poloxamer thermosensitive hydrogel was selected as a drug carrier of NS to achieve slow drug release and reduced cytotoxicity. The acute toxicity of silver sulfadiazine nanosuspension was first evaluated in healthy mice, and its median lethal dose (LD50) was calculated by the modified Karber method. Furthermore, in vivo antibacterial effect and wound healing property of NS/Gel were evaluated on the infected deep second-degree burn wound mice model. Results The mortality ratio of mice was concentration-dependent, and the LD50 for silver sulfadiazine nanosuspension was estimated to be 252.1 mg/kg (230.8 to 275.4 mg/kg, 95% confidence limit). The in vivo dosages used for burn wound treatment (40-50 mg/kg) were far below LD50 (252.1 mg/kg). NS/Gel significantly accelerated wound healing in the deep second wound infection mice model, achieving > 85% wound contraction on day 14. Staphylococcus aureus in the wound region was eradicated after 7 days in NS/Gel group, while the bacterial colony count was still measurable in the control group. Histological analysis and cytokines measurement confirmed that the mice treated with NS/Gel exhibited well-organized epithelium and multiple keratinized cell layers compared to control groups with the modulated expression of IL-6, VEGF, and TGF-β. Conclusion The combination of silver sulfadiazine nanosuspension and thermo-responsive hydrogel has great potential in clinical burn wound treatment.
Collapse
Affiliation(s)
- Xiaoya Liu
- Department of Pharmacy, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, 518026, People’s Republic of China,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Haiyang Fan
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518102, People’s Republic of China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China,Correspondence: Guifang Dou; Hui Gan, Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China, Tel +86 10 66932951, Fax +86 10 66931993, Email ;
| |
Collapse
|
4
|
Self-Emulsifying Phospholipid Preconcentrates for the Enhanced Photoprotection of Luteolin. Pharmaceutics 2022; 14:pharmaceutics14091896. [PMID: 36145644 PMCID: PMC9506472 DOI: 10.3390/pharmaceutics14091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to ultraviolet B (UVB) leads to the overproduction of reactive oxygen species (ROS), causing higher risks of skin disorders. Luteolin (Lut) is a naturally occurring antioxidant that can absorb a broad range of ultraviolet light, but its water solubility and skin permeability are limited and insufficient. The aim of the current study was to develop a Lut-loaded self-emulsifying phospholipid preconcentrate (LSEPP) for enhancing the solubility, permeability, and photoprotective activity of Lut. The designed formulations were firstly examined for their droplet size, zeta potential, dispersity, and in vitro corneum permeability after dispensing the preconcentrate to form an emulsion; the optimized formulation was further characterized for its emulsified morphology, compatibility with excipients, stability in the preconcentrate form, and photoprotective activity by the HaCaT cell model under the emulsified status. The optimized LSEPP formulation attained a smaller droplet size (140.6 ± 24.2 nm) with the addition of 1,8-cineole and increased the permeability of Lut by 7-fold. As evidenced in the cell model studies, the optimized LSEPP formulation can efficiently deliver Lut into HaCaT cells after emulsification and result in a 115% better cell viability as well as a 203% stronger ROS scavenging capability, compared with those of unformulated Lut after UVB irradiation. To sum up, we have successfully developed an LSEPP formulation, which is a safe and promising topical delivery system for enhancing the photoprotective effects of Lut.
Collapse
|
5
|
Paskal W, Kopka M, Stachura A, Paskal AM, Pietruski P, Pełka K, Woessner AE, Quinn KP, Galus R, Wejman J, Włodarski P. Single Dose of N-Acetylcysteine in Local Anesthesia Increases Expression of HIF1α, MAPK1, TGFβ1 and Growth Factors in Rat Wound Healing. Int J Mol Sci 2021; 22:8659. [PMID: 34445365 PMCID: PMC8395485 DOI: 10.3390/ijms22168659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023] Open
Abstract
In this study, we aimed to investigate the influence of N-acetylcysteine (NAC) on the gene expression profile, neoangiogenesis, neutrophils and macrophages in a rat model of incisional wounds. Before creating wounds on the backs of 24 Sprague-Dawley rats, intradermal injections were made. Lidocaine-epinephrin solutions were supplemented with 0.015%, 0.03% or 0.045% solutions of NAC, or nothing (control group). Scars were harvested on the 3rd, 7th, 14th and 60th day post-surgery. We performed immunohistochemical staining in order to visualize macrophages (anti-CD68), neutrophils (anti-MPO) and newly formed blood vessels (anti-CD31). Additionally, RT-qPCR was used to measure the relative expression of 88 genes involved in the wound healing process. On the 14th day, the number of cells stained with anti-CD68 and anti-CD31 antibodies was significantly larger in the tissues treated with 0.03% NAC compared with the control. Among the selected genes, 52 were upregulated and six were downregulated at different time points. Interestingly, NAC exerted a significant effect on the expression of 45 genes 60 days after its administration. In summation, a 0.03% NAC addition to the pre-incisional anesthetic solution improves neovasculature and increases the macrophages' concentration at the wound site on the 14th day, as well as altering the expression of numerous genes that are responsible for the regenerative processes.
Collapse
Affiliation(s)
- Wiktor Paskal
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Michał Kopka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Albert Stachura
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adriana M. Paskal
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Piotr Pietruski
- Centre of Postgraduate Medical Education, Department of Replantation and Reconstructive Surgery, Gruca Teaching Hospital, 05-400 Otwock, Poland;
| | - Kacper Pełka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.E.W.); (K.P.Q.)
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.E.W.); (K.P.Q.)
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Jarosław Wejman
- Department of Pathology, Centre of Postgraduate Medical Education, 00-416 Warsaw, Poland;
| | - Paweł Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| |
Collapse
|
6
|
Polydopamine-modified collagen sponge scaffold as a novel dermal regeneration template with sustained release of platelet-rich plasma to accelerate skin repair: A one-step strategy. Bioact Mater 2021; 6:2613-2628. [PMID: 33615046 PMCID: PMC7881170 DOI: 10.1016/j.bioactmat.2021.01.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Although employed to release growth factors (GFs) for regenerative medicine, platelet-rich plasma (PRP) has been hindered by issues like burst effect. Based on collagen sponge scaffolds (CSSs) modified with polydopamine (pDA), a novel dermal regeneration template (DRT) was designed. However, whether it could efficiently deliver PRP and even foster wound healing remained unclear. In this work, after PRP was prepared and pDA-modified CSSs (pDA-CSSs) were fabricated, microscopic observation, GFs release assay and in-vitro biological evaluations of pDA-CSSs with PRP (pDA-CSS@PRP) were performed, followed by BALA-C/nu mice full-thickness skin defects implanted with pDA-CSS@PRP covered by grafted skins (termed as a One-step strategy). As a result, scanning electron microscope demonstrated more immobilized platelets on pDA-CSS' surface with GFs' controlled release via enzyme-linked immunosorbent assay, compared with CSSs. In line with enhanced in-vitro proliferation, adhesion and migration of keratinocytes & endothelial cells, pDA-CSS@PRP were histologically revealed to accelerate wound healing with less scar via rapid angiogenesis, arrangement of more mature collagen, guiding cells to spread, etc. In conclusion, pDA-CSSs have potential to serve as a novel DRT capable of delivering PRP, which may foster full-thickness skin defect healing by means of a One-step strategy.
Collapse
|
7
|
Lee HJ, Jeong M, Na YG, Kim SJ, Lee HK, Cho CW. An EGF- and Curcumin-Co-Encapsulated Nanostructured Lipid Carrier Accelerates Chronic-Wound Healing in Diabetic Rats. Molecules 2020; 25:molecules25204610. [PMID: 33050393 PMCID: PMC7587202 DOI: 10.3390/molecules25204610] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Nanostructured lipid carriers (NLC) are capable of encapsulating hydrophilic and lipophilic drugs. The present study developed an NLC containing epidermal growth factor (EGF) and curcumin (EGF–Cur-NLC). EGF–Cur-NLC was prepared by a modified water-in-oil-in-water (w/o/w) double-emulsion method. The EGF–Cur-NLC particles showed an average diameter of 331.8 nm and a high encapsulation efficiency (81.1% and 99.4% for EGF and curcumin, respectively). In vitro cell studies were performed using two cell types, NIH 3T3 fibroblasts and HaCaT keratinocytes. The results showed no loss of bioactivity of EGF in the NLC formulation. In addition, EGF–Cur-NLC improved in vitro cell migration, which mimics the wound healing process. Finally, EGF–Cur-NLC was evaluated in a chronic wound model in diabetic rats. We found that EGF–Cur-NLC accelerated wound closure and increased the activity of antioxidant enzymes. Overall, these results reveal the potential of the NLC formulation containing EGF and curcumin to promote healing of chronic wounds.
Collapse
Affiliation(s)
- Hye-Jin Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.-J.L.); (M.J.); (Y.-G.N.); (S.-J.K.)
| | - Moses Jeong
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.-J.L.); (M.J.); (Y.-G.N.); (S.-J.K.)
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.-J.L.); (M.J.); (Y.-G.N.); (S.-J.K.)
| | - Sung-Jin Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.-J.L.); (M.J.); (Y.-G.N.); (S.-J.K.)
| | - Hong-Ki Lee
- Animal Model Research Group, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do 53212, Korea
- Correspondence: (H.-K.L.); (C.-W.C.); Tel.: +82-42-821-7301 (H.-K.L.); +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (H.-K.L. & C.-W.C.)
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.-J.L.); (M.J.); (Y.-G.N.); (S.-J.K.)
- Correspondence: (H.-K.L.); (C.-W.C.); Tel.: +82-42-821-7301 (H.-K.L.); +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (H.-K.L. & C.-W.C.)
| |
Collapse
|
8
|
Al-Hassan JM, Hinek A, Renno WM, Wang Y, Liu YF, Guan R, Wen XY, Litvack ML, Lindenmaier A, Afzal M, Paul B, Oommen S, Nair D, Kumar J, Khan MA, Palaniyar N, Pace-Asciak C. Potential Mechanism of Dermal Wound Treatment With Preparations From the Skin Gel of Arabian Gulf Catfish: A Unique Furan Fatty Acid (F6) and Cholesta-3,5-Diene (S5) Recruit Neutrophils and Fibroblasts to Promote Wound Healing. Front Pharmacol 2020; 11:899. [PMID: 32625093 PMCID: PMC7314935 DOI: 10.3389/fphar.2020.00899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Preparations from Arabian Gulf catfish (Arius bilineatus, Val) epidermal gel secretion (PCEGS) effectively heal chronic wounds in diabetic patients. However, specific lipid components of PCEGS that are responsible for various aspects of wound healing are unknown. Here, we report for the first time that, i) a unique preparation containing only proteins and lipids (Fraction B, FB), derived from the PCEGS accelerated the healing of experimental dermal wounds in female rats (transdermal punch biopsy) in vivo. Histological analyses showed that topical treatment of these wounds with FB promoted the migration of fibroblasts, facilitated the production of extracellular matrix (collagen, fibronectin), induced capillary formation and recruitment of immune cells, and accelerated overall wound healing by day 4 (tested at 1, 2, 3, 4, and 10 days; n=15 for vehicle; n=15 for FB treatment), ii) the lipids responsible for different stages of wound healing were separated into a protein-free bioactive lipid fraction, Ft, which contained a few common long-chain fatty acids, a unique furan fatty acid (F6) and a cholesterol metabolite, cholesta-3,5-diene (S5). Ft (the partially purified lipid fraction of PCEGS), and F6 and S5 present in Ft, proved to be bioactive for wound healing in human dermal fibroblasts. Ft increased the production and extracellular deposition of collagen and fibronectin, ex vivo, iii) Ft and its subcomponents, pure F6 and S5, also promoted human dermal fibroblast migration into the scratch wound gaps, ex vivo, iv) Ft, F6, and S5 promoted the recruitment of neutrophils (Green fluorescence protein labeled) to the site of injury in the transected tailfins of transgenic zebrafish, in vivo, v) Ft, but not F6 or S5, promoted the regeneration of tissues at the wound site in the transgenic zebrafish tailfin, in vivo. Therefore, we conclude that lipid fraction Ft from PCEGS contains the components necessary to promote complete wound healing, and F6 and S5 are responsible for promoting fibroblast and neutrophil recruitment to the site of wounds.
Collapse
Affiliation(s)
- Jassim M Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Aleksander Hinek
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Yanting Wang
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - Yuan Fang Liu
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - Rui Guan
- Departments of Lab Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xiao-Yen Wen
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Departments of Lab Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael L Litvack
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - Andras Lindenmaier
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohammad Afzal
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Bincy Paul
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | | | - Divya Nair
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Jijin Kumar
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Meraj A Khan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Lab Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cecil Pace-Asciak
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Said A, Wahid F, Bashir K, Rasheed HM, Khan T, Hussain Z, Siraj S. Sauromatum guttatum extract promotes wound healing and tissue regeneration in a burn mouse model via up-regulation of growth factors. PHARMACEUTICAL BIOLOGY 2019; 57:736-743. [PMID: 31652081 PMCID: PMC6830190 DOI: 10.1080/13880209.2019.1676266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/22/2019] [Accepted: 09/30/2019] [Indexed: 05/17/2023]
Abstract
Contexts: Sauromatum guttatum (Wall.) Schott (Araceae) has been traditionally used for the treatment of wounds. Objectives: This study evaluates the healing and tissue regeneration potential of S. guttatum extract in burn wounds. Materials and methods: S. guttatum extract was analysed using various chemical tests, thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Moreover, the extract was tested against burn associated bacteria and minimum inhibitory concentration (MIC) was also calculated. Wound healing and tissue regeneration potential was assessed using a thermally induced burn BALBc mouse model. S. guttatum extract (2% w/w) prepared in petroleum jelly, vehicle and positive control [silver sulfadiazine (SD)] groups was applied three times a day. The treatment was continued for 15 d and wound closure was measured and photographed on day 5, 10 and 15. The burnt tissues excised from wounds were subjected to histological and comparative gene expression analysis. Results: The results of the chemical tests indicated the presence of alkaloids, saponins, phenols, phytosterols, tannins, and flavonoids, while TLC and HPLC analysis indicated the presence of various compounds. The extract showed excellent activity against the tested pathogens. The lowest MIC (125 µg/mL) was observed against Staphylococcus aureus. A considerable decrease in wound area (72%) was observed in extract-treated group. Histological examination of extract-treated group showed good signs of wound healing with complete re-epithelialization and better tissue regeneration. Comparative gene expression analysis revealed the up-regulation of wound healing related PDGF, EGF and FGF genes. Conclusions: S. guttatum extract may be used to isolate bioactive constituents for the treatment of burn wounds.
Collapse
Affiliation(s)
- Ali Said
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
- Fazli Wahid Department of Biotechnology, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Kashif Bashir
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | | | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zohaib Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Sami Siraj
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
- CONTACT Sami Siraj Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
10
|
Jee JP, Pangeni R, Jha SK, Byun Y, Park JW. Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy. Int J Nanomedicine 2019; 14:5449-5475. [PMID: 31409998 PMCID: PMC6647010 DOI: 10.2147/ijn.s213883] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We created and evaluated an enhanced topical delivery system featuring a combination of highly skin-permeable growth factors (GFs), quercetin (QCN), and oxygen; these synergistically accelerated re-epithelialization and granulation tissue formation of/in diabetic wounds by increasing the levels of GFs and antioxidants, and the oxygen partial pressure, at the wound site. METHODS To enhance the therapeutic effects of exogenous administration of GFs for the treatment of diabetic wounds, we prepared highly skin-permeable GF complexes comprised of epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), platelet-derived growth factor-A (PDGF-A), and basic fibroblast growth factor (bFGF), genetically attached, via the N-termini, to a low-molecular-weight protamine (LMWP) to form LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, and LMWP-bFGF, respectively. Furthermore, quercetin (QCN)- and oxygen-carrying 1-bromoperfluorooctane (PFOB)-loaded nanoemulsions (QCN-NE and OXY-PFOB-NE) were developed to improve the topical delivery of QCN and oxygen, respectively. After confirming the enhanced penetration of LMWP-GFs, QCN-NE, and oxygen delivered from OXY-PFOB-NE across human epidermis, we evaluated the effects of combining LMWP-GFs, QCN-NE, and OXY-PFOB-NE on proliferation of keratinocytes and fibroblasts, and the chronic wound closure rate of a diabetic mouse model. RESULTS The optimal ratios of LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, LMWP-bFGF, QCN-NE, and OXY-PFOB-NE were 1, 1, 0.02, 0.02, 0.2, and 60, respectively. Moreover, a Carbopol hydrogel containing LMWP-GFs, QCN-NE, and OXY-PFOB-NE (LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL) significantly improved scratch-wound recovery of keratinocytes and fibroblasts in vitro compared to that afforded by hydrogels containing each component alone. LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL significantly accelerated wound-healing in a diabetic mouse model, decreasing wound size by 54 and 35% compared to the vehicle and LMWP-GFs, respectively. CONCLUSION LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL synergistically accelerated the healing of chronic wounds, exerting both rapid and prolonged effects.
Collapse
Affiliation(s)
- Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju61452, Republic of Korea
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam58554, Republic of Korea
| | - Saurav Kumar Jha
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam58554, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam58554, Republic of Korea
| |
Collapse
|
11
|
Xu J, Min D, Guo G, Liao X, Fu Z. Experimental study of epidermal growth factor and acidic fibroblast growth factor in the treatment of diabetic foot wounds. Exp Ther Med 2018; 15:5365-5370. [PMID: 29904416 DOI: 10.3892/etm.2018.6131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/21/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the effect of epidermal growth factor (EGF) and acidic fibroblast growth factor (aFGF) on the healing of diabetic foot wounds. A total of 199 patients with diabetic foot ulcers were recruited and randomly divided into four groups: A recombinant human EGF group (n=50), an aFGF group (n=50), a combined EGF and aFGF group (n=50) and a normal saline control group (n=49). Patients in all groups received a daily dressing change and growth factor reagents were applied topically when dressing. To observe the time required for each stage of wound healing, the epidermal healing rate and granulation tissue growth were recorded. Following 3-4 days of treatment, the wound healing stage was similar in all groups. Later stages (following 4 days) of wound healing were achieved significantly faster in the combined group compared with the control group (P<0.05). The rate of wound healing in the EGF group was similar to that observed in the combination group. No significant difference was observed between the EGF and aFGF groups during the initial period of wound healing. However, in the later stage (following 4 days), the combined use of recombinant human EGF and aFGF had a marked positive effect on wound healing when compared with the control group. Growth factors have extensive biological activities with functions including promoting cell proliferation as well as rehabilitating and regenerating tissues, which serve important roles in wound healing.
Collapse
Affiliation(s)
- Jiasheng Xu
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China.,Graduate School of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Dinghong Min
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Guanghua Guo
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Xincheng Liao
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Zhonghua Fu
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
12
|
Li X, Ye X, Qi J, Fan R, Gao X, Wu Y, Zhou L, Tong A, Guo G. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent. Int J Nanomedicine 2016; 11:3993-4009. [PMID: 27574428 PMCID: PMC4993277 DOI: 10.2147/ijn.s104350] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Epidermal growth factor (EGF) is a mitogenic polypeptide that stimulates wound repair; however, precise control over its application is necessary to reduce the side effects and achieve desired therapeutic benefits. Moreover, the extensive oxidative stress during the wound healing process generally inhibits repair of the injured tissues. Topical applications of antioxidants like curcumin (Cur) could protect tissues from oxidative damage and significantly improve tissue remodeling. To achieve much accelerated wound healing effects, we designed a novel dual drug co-loaded in situ gel-forming nanoparticle/hydrogel system (EGF-Cur-NP/H) which acted not only as a supportive matrix for the regenerative tissue, but also as a sustained drug depot for EGF and Cur. In the established excisional full-thickness wound model, EGF-Cur-NP/H treatment significantly enhanced wound closure through increasing granulation tissue formation, collagen deposition, and angiogenesis, relative to normal saline, nanoparticle/hydrogel (NP/H), Cur-NP/H, and EGF-NP/H treated groups. In conclusion, this study provides a biocompatible in situ gel-forming system for efficient topical application of EGF and Cur in the landscape of tissue repair.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Xianlong Ye
- College of Life Science, Northeast Agriculture University, Harbin, People's Republic of China
| | - Jianying Qi
- College of Life Science, Northeast Agriculture University, Harbin, People's Republic of China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Yunzhou Wu
- College of Life Science, Northeast Agriculture University, Harbin, People's Republic of China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
13
|
Abstract
BACKGROUND The regeneration of tissue lost due to trauma or disease is considered as being ideal for reconstruction with respect to repair in which a donor defect arises in a different part of the body. Through a better understanding of the cellular and molecular mechanisms of healing, possibilities for regenerative therapies have been developed in recent years. OBJECTIVES To give an exemplary representation of current regenerative therapy approaches and their effect and clinical application. MATERIAL AND METHODS The PubMed database was searched for different regenerative approaches in plastic surgery and various methods are presented in this article. RESULTS Cell-based approaches, in which autologous mesenchymal stem cells from adipose tissue are preferably used, led to excellent healing results with minimal donor site morbidity. Likewise, growth factor-based approaches or the use of platelet-rich plasma achieve very good results in the field of wound and bone healing. DISCUSSION By using different cells or molecules and thus taking advantage of biological mechanisms, the regenerative capabilities of adult organisms could be improved. Many methods have already been implemented in clinical practice, not only in reconstructive but also in aesthetic surgery. However, the success should not conceal the potential risk that is inherent in both cell and growth factor-based approaches. Until long-term experiences of such therapies have been acquired, they should be used cautiously.
Collapse
Affiliation(s)
- J W Kuhbier
- Klinik für Plastische, Hand- und Wiederherstellungschirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland,
| | | | | | | |
Collapse
|