1
|
Barik P, Mondal S. Immunomodulatory effects of metal nanoparticles: current trends and future prospects. NANOSCALE 2025; 17:10433-10461. [PMID: 40202489 DOI: 10.1039/d5nr01030f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The advent of nanotechnology has steered into a new era of medical advancements, with metal nanoparticles (MNPs) emerging as potent agents for precise regulation of the immune system. This review provides a comprehensive overview of the immunomodulatory roles of MNPs, including gold, silver, and metal oxide nanoparticles, in regulating innate and adaptive immunity. Additionally, we discuss the immunological effects of metal ions and metal complexes, offering a comparative analysis with nanoparticulate systems. We analyse cutting-edge strategies utilising MNPs to optimise vaccine efficacy, achieve targeted delivery to immune cells, and orchestrate inflammatory responses. Additionally, we discuss the therapeutic potential of MNPs in combating autoimmune diseases, cancers, and infectious agents, which is evaluated within the framework of precision medicine. Furthermore, we critically assess challenges such as biocompatibility, potential toxicity, and regulatory hurdles. Finally, we propose future directions for integrating MNPs with advanced delivery systems and other nanomaterials to propel the frontiers of immunotherapy. This review aims to provide a foundational understanding of MNP-mediated immunomodulation, inspiring further research and development in this burgeoning field.
Collapse
Affiliation(s)
- Puspendu Barik
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Samiran Mondal
- Department of Chemistry, Rammohan College (University of Calcutta), 102/1-Raja Rammohan Sarani, Kolkata 700009, West Bengal, India.
| |
Collapse
|
2
|
Shahgordi S, Oroojalian F, Hashemi E, Hashemi M. Recent advances in development of nano-carriers for immunogene therapy in various complex disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:134-147. [PMID: 35655600 PMCID: PMC9124536 DOI: 10.22038/ijbms.2022.59718.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/01/2022] [Indexed: 01/25/2023]
Abstract
Immunotherapy is a novel preference for the treatment of various complex diseases. Considering the application of varying agents for suppression or activation of the immune system, immunogene therapy was confirmed to stand as a proper alternative for other immunotherapeutic strategies due to its capability in targeting cells with more specificity that leads to controlling the expression of therapeutic genes. This method facilitates the local and single-dose application of most gene therapies that result in the usage of high therapeutic doses with a low risk of systemic side effects while being cost-efficient in long-term administrations. However, the existing barriers between the administration site and cell nucleus limited the clinical uses of genetic materials. These challenges can be overcome through the promising method of exerting non-carriers with high stability, low toxicity/immunogenicity, and simple modifications. In this study, we attempted to review the potential of nanoparticle application throughout the immunogene therapy of different diseases including cancer, microbial diseases, allergies, inflammatory bowel disease, rheumatoid arthritis, and respiratory infections. We included the outline of some challenges and opportunities in regards to the delivery of genetic materials that are based on nano-systems through immunotherapy of these disorders. Next to the promising future of these vectors, more detailed analyses are required to overcome the current limitations in clinical approaches.
Collapse
Affiliation(s)
- Sanaz Shahgordi
- Immunology Department, Faculty of Medicine, Golestan University of Medical Science, Gorgan, Iran, Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad, University of Medical Sciences, Mashhad, Iran,Corresponding author: Maryam Hashemi. Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-31801219;
| |
Collapse
|
3
|
Liu D, Deng B, Liu Z, Ma B, Leng X, Kong D, Ji T, Liu L. Enhanced Antitumor Immune Responses via a Self-Assembled Carrier-Free Nanovaccine. NANO LETTERS 2021; 21:3965-3973. [PMID: 33886338 DOI: 10.1021/acs.nanolett.1c00648] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanovaccines have emerged as promising agents for cancer immunotherapy. However, insufficient antitumor immunity caused by inefficient antigen/adjuvant loading and complicated preparation processes are the major obstacles that limit their clinical application. Herein, two adjuvants, monophosphatidyl A (MPLA) and CpG ODN, with antigens were designed into a nanovaccine to overcome the above obstacles. This nanovaccine was constructed with adjuvants (without additional materials) through facile self-assembly, which not only ensured a high loading efficacy and desirable safety but also facilitated clinical translation for convenient fabrication. More importantly, the selected adjuvants could achieve a notable immune response through synergistic activation of Toll-like receptor 4 (TLR4) and TLR9 signaling pathways, and the resulting nanovaccine remarkably inhibited the tumor growth and prolonged the survival of tumor-implanted mice. This nanovaccine system provides an effective strategy to construct vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Dan Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Bo Deng
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Zongran Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Ma
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Xigang Leng
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Deling Kong
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanxia Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| |
Collapse
|
4
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
5
|
Kim K, Khang D. Past, Present, and Future of Anticancer Nanomedicine. Int J Nanomedicine 2020; 15:5719-5743. [PMID: 32821098 PMCID: PMC7418170 DOI: 10.2147/ijn.s254774] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
This review aims to summarize the methods that have been used till today, highlight methods that are currently being developed, and predict the future roadmap for anticancer therapy. In the beginning of this review, established approaches for anticancer therapy, such as conventional chemotherapy, hormonal therapy, monoclonal antibodies, and tyrosine kinase inhibitors are summarized. To counteract the side effects of conventional chemotherapy and to increase limited anticancer efficacy, nanodrug- and stem cell-based therapies have been introduced. However, current level of understanding and strategies of nanodrug and stem cell-based therapies have limitations that make them inadequate for clinical application. Subsequently, this manuscript reviews methods with fewer side effects compared to those of the methods mentioned above which are currently being investigated and are already being applied in the clinic. The newer strategies that are already being clinically applied include cancer immunotherapy, especially T cell-mediated therapy and immune checkpoint inhibitors, and strategies that are gaining attention include the manipulation of the tumor microenvironment or the activation of dendritic cells. Tumor-associated macrophage repolarization is another potential strategy for cancer immunotherapy, a method which activates macrophages to immunologically attack malignant cells. At the end of this review, we discuss combination therapies, which are the future of cancer treatment. Nanoparticle-based anticancer immunotherapies seem to be effective, in that they effectively use nanodrugs to elicit a greater immune response. The combination of these therapies with others, such as photothermal or tumor vaccine therapy, can result in a greater anticancer effect. Thus, the future of anticancer therapy aims to increase the effectiveness of therapy using various therapies in a synergistic combination rather than individually.
Collapse
Affiliation(s)
- Kyungeun Kim
- College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Dongwoo Khang
- College of Medicine, Gachon University, Incheon 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.,Gachon Advanced Institute for Health Science & Technology (GAIHST), Gachon University, Incheon 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
6
|
Surendran SP, Moon MJ, Park R, Jeong YY. Bioactive Nanoparticles for Cancer Immunotherapy. Int J Mol Sci 2018; 19:E3877. [PMID: 30518139 PMCID: PMC6321368 DOI: 10.3390/ijms19123877] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/18/2022] Open
Abstract
Currently, immunotherapy is considered to be one of the effective treatment modalities for cancer. All the developments and discoveries in this field up to the recent Nobel Prize add to the interest for research into this vast area of study. Targeting tumor environment as well as the immune system is a suitable strategy to be applied for cancer treatment. Usage of nanoparticle systems for delivery of immunotherapeutic agents to the body being widely studied and found to be a promising area of research to be considered and investigated further. Nanoparticles for immunotherapy would be one of the effective treatment options for cancer therapy in the future due to their high specificity, efficacy, ability to diagnose, imaging, and therapeutic effect. Among the many nanoparticle systems, polylactic-co-glycolic acid (PLGA) nanoparticles, liposomes, micelles, gold nanoparticles, iron oxide, dendrimers, and artificial exosomes are widely used for immunotherapy of cancer. Moreover, the combination therapy found to be the more effective way of treating the tumor. Here, we review the current trends in nanoparticle therapy and efficiency of these nanosystems in delivering antigens, adjuvants, therapeutic drugs, and other immunotherapeutic agents. This review summarizes the currently available bioactive nanoparticle systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Rayoung Park
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| |
Collapse
|
7
|
Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018; 23:E826. [PMID: 29617302 PMCID: PMC6017446 DOI: 10.3390/molecules23040826] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy has been widely applied in clinics. However, the therapeutic potential of chemotherapy against cancer is seriously dissatisfactory due to the nonspecific drug distribution, multidrug resistance (MDR) and the heterogeneity of cancer. Therefore, combinational therapy based on chemotherapy mediated by nanotechnology, has been the trend in clinical research at present, which can result in a remarkably increased therapeutic efficiency with few side effects to normal tissues. Moreover, to achieve the accurate pre-diagnosis and real-time monitoring for tumor, the research of nano-theranostics, which integrates diagnosis with treatment process, is a promising field in cancer treatment. In this review, the recent studies on combinational therapy based on chemotherapy will be systematically discussed. Furthermore, as a current trend in cancer treatment, advance in theranostic nanoparticles based on chemotherapy will be exemplified briefly. Finally, the present challenges and improvement tips will be presented in combination therapy and nano-theranostics.
Collapse
Affiliation(s)
| | | | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhong-Min Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
8
|
Jadia R, Scandore C, Rai P. Nanoparticles for Effective Combination Therapy of Cancer. INTERNATIONAL JOURNAL OF NANOTECHNOLOGY AND NANOMEDICINE 2016; 1:http://www.opastonline.com/wp-content/uploads/2016/10/nanoparticles-for-effective-combination-therapy-of-cancer-ijnn-16-003.pdf. [PMID: 28540369 PMCID: PMC5439947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cancer continues to remains a major healthcare problem across the world despite strong translational research efforts towards tackling the disease. Surgery, when possible, along with radiation and chemotherapy continue to remain the mainstay of cancer treatment. Novel targeted therapies or biologics and immunotherapies have recently been approved to improve treatment efficacies while reducing collateral damage to normal, non-cancerous tissues. Combination therapies have shown better results than individual monotherapies in the clinic but often the improvements in therapeutic indices remain marginal, at best. Several combinations treatments have been clinically approved for different types of cancer. Nanomedicine, the application of nanotechnology for medicine, has already made some positive impacts on the clinical care in this fight against cancer. Several nano-sized formulations of conventional chemotherapies have been clinically approved. Nanotechnology provides a novel way to deliver combination therapies with spatiotemporal control over drug release. This review explores the recent advances in nanotechnology-mediated combination treatments against cancer. Multifunctional nanomedicines for mechanism-based combination therapies are likely to deliver the right drugs to the right place at the right time for optimal treatment responses with reduced morbidity. No nanomedicine that combines two or more drugs in a single platform has been approved for clinical use yet. This is because several challenges still remain in the development of nano-combinations including but not limited to - the optimal drug ratios in these nanomedicines, control over these drug ratios over multiple batches, large scale, reproducible manufacturing of these nanomedicines and cost of these nano-combinations among others. These challenges need to be addressed soon using a multidisciplinary approach with collaborations between academia, the pharmaceutical industry and the regulatory bodies involved to ensure that nano-combination therapy delivers on its promise of better treatment outcomes while severely reducing morbidity thus improving the quality of life in cancer patients.
Collapse
Affiliation(s)
- Rahul Jadia
- Biomedical Engineering and Biotechnology Program, University of Massachusetts, University Avenue, Lowell, Massachusetts, US
| | - Cody Scandore
- Department of Chemical Engineering, University of Massachusetts, University Avenue, Lowell, Massachusetts, US
| | - Prakash Rai
- Biomedical Engineering and Biotechnology Program, University of Massachusetts, University Avenue, Lowell, Massachusetts, US,Department of Chemical Engineering, University of Massachusetts, University Avenue, Lowell, Massachusetts, US,Corresponding author: Prakash Rai, Department of Chemical Engineering, University of Massachusetts, 1 University Avenue, Lowell, MA 01854, US;
| |
Collapse
|
9
|
The janus facet of nanomaterials. BIOMED RESEARCH INTERNATIONAL 2015; 2015:317184. [PMID: 26075225 PMCID: PMC4449866 DOI: 10.1155/2015/317184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/06/2014] [Indexed: 12/12/2022]
Abstract
Application of nanoscale materials (NMs) displays a rapidly increasing trend in electronics, optics, chemical catalysis, biotechnology, and medicine due to versatile nature of NMs and easily adjustable physical, physicochemical, and chemical properties. However, the increasing abundance of NMs also poses significant new and emerging health and environmental risks. Despite growing efforts, understanding toxicity of NMs does not seem to cope with the demand, because NMs usually act entirely different from those of conventional small molecule drugs. Currently, large-scale application of available safety assessment protocols, as well as their furthering through case-by-case practice, is advisable. We define a standard work-scheme for nanotoxicity evaluation of NMs, comprising thorough characterization of structural, physical, physicochemical, and chemical traits, followed by measuring biodistribution in live tissue and blood combined with investigation of organ-specific effects especially regarding the function of the brain and the liver. We propose a range of biochemical, cellular, and immunological processes to be explored in order to provide information on the early effects of NMs on some basic physiological functions and chemical defense mechanisms. Together, these contributions give an overview with important implications for the understanding of many aspects of nanotoxicity.
Collapse
|