1
|
Alarcón‐Sánchez MA, Rodríguez‐Montaño R, Lomelí‐Martínez SM, Heboyan A. Relationship Between MCP-1 Levels in GCF and Periodontitis: A Systematic Review With Meta-Analysis and Analysis of Molecular Interactions. J Cell Mol Med 2025; 29:e70545. [PMID: 40344491 PMCID: PMC12061638 DOI: 10.1111/jcmm.70545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 05/11/2025] Open
Abstract
Monocyte chemoattractant protein 1 (MCP-1) is involved in monocyte chemotaxis, endothelial activation and regulation of leukocyte function in biological activities that promote inflammation, such as in periodontitis. A systematic review and meta-analysis was conducted with the primary objective of investigating the roles of MCP-1 in the gingival crevicular fluid (GCF) of subjects with chronic periodontitis compared to periodontally healthy subjects. The study protocol adhered to PRISMA guidelines. Digital searches were carried out across several databases, including PubMed, Dentistry & Oral Science Source, ScienceDirect, Scopus, Web of Science and Google Scholar. The quality of the studies was evaluated using the JBI tool for cross-sectional studies and clinical trials. To assess the concentration of MCP-1 in the GCF of the exposure group versus the control group, a meta-analysis was conducted employing a random-effects model. The search strategy yielded 1694 articles, with 14 studies meeting the inclusion criteria and 10 articles subjected to quantitative analysis. A total of 497 subjects were examined, comprising 298 cases and 199 controls. The meta-analysis indicated a significant increase in MCP-1 levels in the GCF of individuals with chronic periodontitis compared to healthy subjects (GCF: SMD = 20.29, 95% CI: 10.33-30.25, Z = 3.992, p = 0.001*). GCF MCP-1 levels are elevated in periodontitis compared to healthy controls, suggesting its potential future use as a diagnostic tool in clinical settings.
Collapse
Affiliation(s)
- Mario Alberto Alarcón‐Sánchez
- Molecular Biology Department, University Center of Health SciencesUniversity of Guadalajara (CUCS‐UdeG)GuadalajaraJaliscoMexico
- Institute of Research in Dentistry, Department of Integral Dental ClinicsUniversity Center of Health Sciences, University of Guadalajara (CUCS‐UdeG)GuadalajaraJaliscoMexico
| | - Ruth Rodríguez‐Montaño
- Institute of Research in Dentistry, Department of Integral Dental ClinicsUniversity Center of Health Sciences, University of Guadalajara (CUCS‐UdeG)GuadalajaraJaliscoMexico
- Department of Health and Illness as an Individual and Collective Process, University Center of TlajomulcoUniversity of Guadalajara (CUTLAJO‐UdeG)Tlajomulco de ZuñigaJaliscoMexico
| | | | - Artak Heboyan
- Department of Prosthodontics, Faculty of StomatologyYerevan State Medical University after Mkhitar HeratsiYerevanArmenia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of Prosthodontics, School of DentistryTehran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Agger AE, Samara A, Geng T, Olstad OK, Reseland JE. Mimicking and in vitro validating chronic inflammation in human gingival fibroblasts. Arch Oral Biol 2025; 169:106113. [PMID: 39447377 DOI: 10.1016/j.archoralbio.2024.106113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE The aim of this study was to identify and validate in vitro conditions that may mimic the translational, cytokine and chemokine profiles observed in human inflamed gingiva in vivo. DESIGN Primary human gingiva fibroblast cells (HFIB-G) were cultured under serum starvation conditions (0 - 10 %), supplemented with increasing lipopolysaccharide (LPS) concentrations (0.1, 1, or 10 µg/ml) from two bacterial strains E. coli and P. gingivalis and 0.1, 1, or 10 ng/ml recombinant interleukin 1β (IL-1β), alone or in combinations. The levels of cytokines/chemokines were measured in the cell culture medium by Luminex, and gene expression was quantified by Affymetrix microarrays at 24, 48 and 72 h. RESULTS Inflammation markers were not elevated after stimulation with P. gingivalis LPS, while E. coli LPS and IL-1β individually increased the secretion of interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) to the cell culture medium. IL-1β administration also increased the secretion of several factors, including tumor necrosis factor (TNFα). However, the combination of 1 µg/ml E. coli LPS, 1 ng/ml IL-1β and serum starvation led to increased secretion of IL-6, TNFα, in addition to other factors found in inflamed tissue. Gene expression analyses revealed that this combination not only enhanced the expression interleukins/chemokines genes but also T helper cell signaling and matrix metalloproteinases. CONCLUSION Serum reduction in cell culture medium together with the administration of E. coli LPS and IL-1β resulted in gene expression and secreted cytokine/chemokine profiles similar to that found in vivo during chronic inflammation.
Collapse
Affiliation(s)
- Anne Eriksson Agger
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway; FUTURE, Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway.
| | - Athina Samara
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway; FUTURE, Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway.
| | - Tianxiang Geng
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.
| | | | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway; FUTURE, Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Fadli NA, Abdul Rahman M, Karsani SA, Ramli R. Oral and Gingival Crevicular Fluid Biomarkers for Jawbone Turnover Diseases: A Scoping Review. Diagnostics (Basel) 2024; 14:2184. [PMID: 39410587 PMCID: PMC11475764 DOI: 10.3390/diagnostics14192184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Gingival crevicular fluid (GCF) and oral fluid have emerged as promising diagnostic tools for detecting biomarkers. This review aimed to evaluate the existing literature on using oral fluids as a source of biomarkers for bone turnover diseases affecting the jawbone. A comprehensive search strategy was executed between August 2014 and August 2024 across five major databases (Web of Science, EBSCOhost Dentistry & Oral Sciences Source, Cochrane Library, Scopus, and PubMed) and grey literature sources. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) was applied. The screening was facilitated using Rayyan at rayyan.ai and Endnote X20 software tools, culminating in the evaluation of 14,965 citations from databases and 34 from grey literature. Following rigorous scrutiny, 37 articles were selected for inclusion in this review, encompassing diseases such as periodontitis, medication-related osteonecrosis of the jaw (MRONJ), and osteoporosis. The quality of the included observational studies was assessed using the Revised Risk of Bias Assessment Tool for Non-Randomized Studies (RoBANS 2). Interleukin-1 beta (IL-1β), sclerostin, osteoprotegerin (OPG), and interleukin-34 (IL-34) emerged as significant biomarkers in GCF, and they were mainly from periodontitis and osteoporosis. Osteocalcin (OC), IL-1β, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), OPG, and matrix metalloproteinase-9 (MMP-9) were significant in oral fluid or saliva, and they were from periodontitis, MRONJ, and osteoporosis. These findings underscore the potential use of oral fluids, which are regarded as non-invasive tools for biomarker identification in bone turnover. Many biomarkers overlap, and it is important to identify other specific biomarkers to enable accurate diagnosis of these conditions.
Collapse
Affiliation(s)
- Nurfatima Azzahra Fadli
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Mariati Abdul Rahman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Roszalina Ramli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
4
|
Relvas M, Mendes-Frias A, Gonçalves M, Salazar F, López-Jarana P, Silvestre R, Viana da Costa A. Salivary IL-1β, IL-6, and IL-10 Are Key Biomarkers of Periodontitis Severity. Int J Mol Sci 2024; 25:8401. [PMID: 39125970 PMCID: PMC11312971 DOI: 10.3390/ijms25158401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
To explore severity and progression biomarkers, we examined the clinical relevance of multiple cytokines and mediators involved in the inflammatory response in periodontitis. A cohort of 68 patients was enrolled in the study and periodontal status assessed by the current classification of periodontal diseases. Immune mediators present in saliva, of both patients and healthy controls, were quantified using a Legendplex-13 panel. Clinic parameters were significantly higher in PD patients compared with HC, with a strong significant association with the disease severity (stage) (p < 0.001), but not with progression (grade). The panel of immune mediators evidenced elevated levels of pro-inflammatory cytokines IL-6 and IL-1β as disease established (p < 0.01). IL-1β/IL-1RA ratio was increased in PD patients, being associated with disease stage. An anti-inflammatory response was spotted by higher IL-10. Lower levels of IL-23 and IP-10 were associated with disease severity. No significant statistical differences were found by grade classification. Moreover, salivary IL-1β and IL-6 exhibited significant positive correlations with several clinical measurements (PI, BOP, PPD, CAL), while IP-10 showed a statistical negative correlation with BOP, PPD, and CAL. These insights highlight the complexity of the periodontitis inflammatory network and the potential of cytokines as biomarkers for refined diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marta Relvas
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), CRL, 4585-116 Gandra, Portugal
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.M.-F.); (R.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Gonçalves
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Filomena Salazar
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), CRL, 4585-116 Gandra, Portugal
| | - Paula López-Jarana
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), CRL, 4585-116 Gandra, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.M.-F.); (R.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Alexandra Viana da Costa
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
5
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Knie LV, Leknes KN, Xue Y, Lie SA, Bunæs DF. Serum biomarker levels in smokers and non-smokers following periodontal therapy. A prospective cohort study. BMC Oral Health 2024; 24:463. [PMID: 38627806 PMCID: PMC11020793 DOI: 10.1186/s12903-024-04196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND To compare presence and levels of serum cytokines in smokers and non-smokers with periodontitis following periodontal therapy. METHODS Thirty heavy smokers and 30 non-smokers with stage III or IV periodontitis were included in this prospective cohort study. Clinical data and blood serum were collected at baseline (T0), after step I-III (T1), and after 12 months step IV periodontal therapy (T2). Cytokine IL-1β, IL-6, IL-8, TNF-α, IL-10, and IP-10 levels were measured using multiplex kit Bio-Plex Human Pro™ Assay. Linear regression models with cluster robust variance estimates to adjust for repeated observations were used to test intra- and intergroup levels for each marker, IL-6 and IL-8 defined as primary outcomes. RESULTS Clinical outcomes improved in both groups following therapy (p < 0.05). IL-6 levels increased with 75.0% from T0-T2 among smokers (p = 0.004). No significant intra- or intergroup differences were observed for IL-8. Higher levels of TNF-α (44.1%) and IL-10 (50.6%) were detected in smokers compared with non-smokers at T1 (p = 0.007 and p = 0.037, respectively). From T1-T2, differences in mean change over time for levels of TNF-α and IL-10 were observed in smokers compared with non-smokers (p = 0.005 and p = 0.008, respectively). CONCLUSION Upregulated levels of serum cytokines in smokers indicate a systemic effect of smoking following periodontal therapy. Differences in cytokine levels between smokers and non-smokers demonstrate a smoking induced modulation of specific systemic immunological responses in patients with severe periodontitis.
Collapse
Affiliation(s)
- Lorenz V Knie
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadsveien 19, Bergen, N-5009, Norway
- Oral Health Centre of Expertise Rogaland, Stavanger, Norway
| | - Knut N Leknes
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadsveien 19, Bergen, N-5009, Norway
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadsveien 19, Bergen, N-5009, Norway
- Faculty of Health Sciences, Department of Clinical Dentistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Stein Atle Lie
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadsveien 19, Bergen, N-5009, Norway
| | - Dagmar F Bunæs
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadsveien 19, Bergen, N-5009, Norway.
| |
Collapse
|
7
|
Gupta S, Mohindra R, Ramola M, Kanta P, Singla M, Malhotra M, Mehta N, Goyal A, Singh MP. Convergence of inflammatory response: Salivary cytokine dynamics in coronavirus disease 2019 and periodontal disease. J Indian Soc Periodontol 2024; 28:113-121. [PMID: 38988958 PMCID: PMC11232810 DOI: 10.4103/jisp.jisp_508_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Background Periodontal disease is associated with immune dysregulation, and cytokines released can add on to the coronavirus disease 2019 (COVID-19)-associated cytokine storm, further worsening the related adverse outcomes. Specific studies investigating cytokine levels in COVID-19 patients with periodontal disease are lacking. Examining the correlation between these conditions could aid in categorizing risk categories, determining referrals, and strengthening oral hygiene protocols. The current study sought to evaluate cytokine levels in the saliva of COVID-19-positive patients with and without periodontal disease. Materials and Methods Twenty-six COVID-19-positive patients were subjected to periodontal examination, saliva collection, and assessment of cytokine levels through cytokine bead-based multiplex assay, using fluorescence-encoded beads with flow cytometry (BD FACS LSRFortessa). Eleven cytokines were assessed (interleukin [IL] 2, 4, 6, 10, 17A, and interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-α), chemokine ligand 2 (CCL2/monocyte chemoattractant protein-1), C-X-C motif chemokine ligand (CXCL) 8/IL 8, CXCL 9/monokine-induced gamma interferon [MIG]), and CXCL 10 (chemokine IFN-gamma inducible protein 10 kDa). The cytokine levels of the recruited subjects were also compared graphically with the salivary cytokine levels reported in the literature for health, COVID-19, and periodontal disease alone. Results Out of 26 COVID-19-positive patients, 17 had periodontal disease. Levels of all cytokines were raised in patients with both diseases when compared to values reported in literature for health, periodontal disease alone, or COVID-19 alone. However, there was no statistical difference among the recruited subjects for IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-gamma, TNF-α, CCL2, CXCL 8, and CXCL 10. MIG levels were found to be higher in periodontally healthy, COVID-19-positive subjects (P = 0.01). Conclusions Periodontal disease might contribute to the COVID-19-induced cytokine storm, potentially amplifying its impact.
Collapse
Affiliation(s)
- Shipra Gupta
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritin Mohindra
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Ramola
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Poonam Kanta
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mohita Singla
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenakshi Malhotra
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Mehta
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashima Goyal
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mini P Singh
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Panahipour L, Botta S, Abbasabadi AO, Afradi Z, Gruber R. Enamel Matrix Derivative Suppresses Chemokine Expression in Oral Epithelial Cells. Int J Mol Sci 2023; 24:13991. [PMID: 37762294 PMCID: PMC10530986 DOI: 10.3390/ijms241813991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Epithelial cells in periodontitis patients increasingly express chemokines, suggesting their active involvement in the inflammatory process. Enamel matrix derivative (EMD) is an extract of porcine fetal tooth germs clinically applied to support the regrowth of periodontal tissues. Periodontal regeneration might benefit from the potential anti-inflammatory activity of EMD for epithelial cells. Our aim was, therefore, to set up a bioassay where chemokine expression is initiated in the HSC2 oral squamous carcinoma cell line and then test EMD for its capacity to lower the inflammatory response. To establish the bioassay, HSC2 cells being exposed to TNFα and LPS from E. coli (Escherichia coli) or P. gingivalis (Porphyromonas gingivalis) were subjected to RNAseq. Here, TNFα but not LPS caused a robust increase of chemokines, including CXCL1, CXCL2, CXCL8, CCL5, and CCL20 in HSC2 cells. Polymerase chain reaction confirmed the increased expression of the respective chemokines in cells exposed to TNFα and IL-1β. Under these conditions, EMD reduced the expression of all chemokines at the transcriptional level and CXCL8 by immunoassay. The TGF-β receptor type I kinase-inhibitor SB431542 reversed the anti-inflammatory activity. Moreover, EMD-activated TGF-β-canonical signaling was visualized by phosphorylation of smad3 and nuclear translocation of smad2/3 in HSC2 cells and blocked by SB431542. This observation was confirmed with primary oral epithelial cells where EMD significantly lowered the SB431542-dependent expression of CXCL8. In summary, our findings suggest that TGF-β signaling mediates the effects of EMD to lower the forced expression of chemokines in oral epithelial cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Sara Botta
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Zohreh Afradi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
9
|
Alamri MM, Antonoglou GN, Proctor G, Balsa-Castro C, Tomás I, Nibali L. Biomarkers for diagnosis of stage III, grade C with molar incisor pattern periodontitis in children and young adults: a systematic review and meta-analysis. Clin Oral Investig 2023; 27:4929-4955. [PMID: 37535199 PMCID: PMC10492694 DOI: 10.1007/s00784-023-05169-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
AIM To explore the existing salivary, gingival crevicular fluid (GCF), blood, and serum biomarkers associated with grade C molar-incisor pattern (C/MIP) periodontitis in systemically healthy children and young adults. MATERIALS AND METHODS Cross-sectional, case-control, and cohort studies on stage III grade C periodontitis or former equivalent diagnosis with analysis of molecular biomarkers in saliva, GCF, blood, or serum were retrieved from six databases and screened based on the eligibility criteria. The risk of bias in included studies was evaluated. Meta-analysis was planned for biomarkers assessed using the same detection methods and sample type in at least two papers. RESULTS Out of 5621 studies identified at initial screening, 28 papers were included in the qualitative analysis of which 2 were eligible for meta-analysis for IgG in serum samples. Eighty-seven biomarkers were assessed with the majority being higher in cases than in controls. Only the meta-analysis of total serum IgG with low heterogeneity value revealed a significant increase in its levels in C/MIPs compared to controls (standardised mean difference: 1.08; 95% CI: 0.76, 1.40). CONCLUSION There is a paucity of data on biomarkers associated with molar-incisor pattern periodontitis. Although serum IgG levels are raised, other more specific biomarkers in saliva, GCF, and blood/serum may be promising but require further investigation.
Collapse
Affiliation(s)
- Meaad M Alamri
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Georgios N Antonoglou
- Centre for Dental Education, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Gordon Proctor
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute Foundation of Santiago (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute Foundation of Santiago (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Luigi Nibali
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
10
|
Hao CP, Cao NJ, Zhu YH, Wang W. The impact of smoking on periodontitis patients' GCF/serum cytokine profile both before and after periodontal therapy: a meta-analysis. BMC Oral Health 2023; 23:60. [PMID: 36726081 PMCID: PMC9893604 DOI: 10.1186/s12903-023-02768-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Smoking is an established modifying factor for the host immune response of periodontitis patients. However, its exact influence remains unclear. We aimed to compare the cytokine profile of periodontitis patients with and without smoking habits both before and after periodontal therapy to preliminarily explore its influence on the host immune response to periodontitis. METHODS The protocol of the present meta-analysis was registered in the International Prospective Register of Systematic Reviews (PROSPERO) under the code CRD42021255656. Meta-analysis was performed for each cytokine if at least three studies were included. We synthesized the evidence to compare the cytokine profile of periodontitis with and without smoking both in gingival cervical fluid (GCF) and serum to explore the impact of smoking on periodontitis both locally and systemically. Moreover, we also compared the cytokine profile of the two groups of patients after periodontal therapy to explore the effect of smoking on the outcome of periodontal therapy. RESULTS Fifteen studies were included in this meta-analysis. We found that there was no significant difference between the two groups of patients in the baseline cytokine profile. However, after periodontal therapy, smoking periodontitis patients showed significantly higher IL-1β levels in their GCF than nonsmoking patients. DISCUSSION There was no significant difference between smoking and nonsmoking periodontitis patients in the baseline cytokine profile. However, after periodontal therapy, smoking periodontitis patients showed significantly higher IL-1β levels in their GCF than nonsmoking patients, which indicates that smoking may impair the response of periodontitis to periodontal treatment.
Collapse
Affiliation(s)
- Chun-Ping Hao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, People's Republic of China
| | - Nan-Jue Cao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, People's Republic of China
| | - Yu-He Zhu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, People's Republic of China
| | - Wei Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
11
|
Effects of estradiol on the virulence traits of Porphyromonas gingivalis. Sci Rep 2022; 12:13881. [PMID: 35974048 PMCID: PMC9381592 DOI: 10.1038/s41598-022-17019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Porphyromonas gingivalis has been strongly associated to active periodontitis sites. A number of studies have tried to elucidate the association between female steroid sex hormones and gingival health. However, until now, there is limited knowledge on estradiol effects on the virulence traits of P. gingivalis. The aim of the study was to investigate the impact of estradiol exposure on the virulence characteristics of P. gingivalis strain W50. We found that a pre- and postmenopausal concentration of estradiol increased the growth and biofilm formation of P. gingivalis W50. We also found that estradiol increased the release of lysine and arginine gingipains from W50. We then showed that IL-1β, CXCL10 and TGF-β1 release from gingival epithelial cells was significantly lowered by W50 pre-exposed to estradiol compared to W50 alone. Real time-qPCR showed that the gene expression of IL-18, IL-6, IL-8, TGF-β1 and NLRP3 in gingival epithelial cells was significantly lowered by W50 pre-exposed to estradiol compared to W50 alone. We also found that estradiol in a dose-dependent manner increased P. gingivalis colonization and invasion of gingival epithelial cells. Taken together, our findings show that estradiol has the ability to alter the virulence traits of P. gingivalis.
Collapse
|
12
|
Sampath C, Harris EP, Berthaud V, Tabatabai MA, Wilus DM, Crayton MA, Moss K, Webster-Cyriaque J, Southerland JH, Koethe JR, Gangula PR. Periodontal Treatment Reduces Circulating Pro-Inflammatory Cytokine and Chemokine Levels in African American HIV+ Individuals with Virological Suppression. JOURNAL OF DENTAL APPLICATIONS 2022; 8:477-487. [PMID: 36274905 PMCID: PMC9583701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Introduction Periodontal Disease (PD), a chronic inflammatory disease, is highly prevalent among Persons Living With HIV (PLWH) and is characterized by microbial symbiosis and oxidative stress. Our hypothesis stipulates that periodontal therapy attenuates systemic inflammatory and bacterial burden while improving periodontal status in PLWH. Methods Sixteen African Americans (AA) with suppressed HIV viremia on long-term Antiretroviral Therapy (ART) were recruited to this study. Participants were placed into two groups, based on their dental care status: group 1 (In-Care, IC) and group 2 (Out of Care, OC). Periodontal health was investigated at baseline, 3 months, 6 months, and 12 months. Cytokine/chemokines, microbial phyla, and Asymmetric Dimethylarginine (ADMA, a marker for endothelial cell dysfunction) levels were assessed in the serum. Statistical comparisons between groups and at different visits were performed using multiple comparison tests. Results Across longitudinal visits, periodontal treatment significantly reduced the levels of several cytokines and chemokines. At baseline, the out of care group had significantly higher blood levels of ADMA and actinobacteria than the IC group. Periodontal treatment significantly altered the abundance of circulating genomic bacterial DNA for various phyla in out of care group. Conclusions Periodontal treatment interventions effectively attenuated circulating pro-inflammatory cytokines and altered microbial translocation, both critical drivers of systemic inflammation in PLWH.
Collapse
Affiliation(s)
- C Sampath
- Department of Oral Diagnostic Sciences & Research in Biochemistry Meharry Medical College, School of Dentistry, USA
| | - E P Harris
- Department of Oral Diagnostic Sciences & Research in Biochemistry Meharry Medical College, School of Dentistry, USA
- Meharry Community Wellness Center, USA
| | | | - M A Tabatabai
- Department of Biostatistics, School of Graduate Studies and Research, USA
| | - D M Wilus
- School of Graduate Studies and Research, USA
| | - M A Crayton
- Department of Oral Diagnostic Sciences & Research in Biochemistry Meharry Medical College, School of Dentistry, USA
| | - K Moss
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, USA
| | | | - J H Southerland
- University of Texas Medical Branch at Galveston, Galveston, USA
| | - J R Koethe
- Vanderbilt University Medical Center, USA
| | - P R Gangula
- Department of Oral Diagnostic Sciences & Research in Biochemistry Meharry Medical College, School of Dentistry, USA
| |
Collapse
|
13
|
Lari S, Hiyari S, de Araújo Silva DN, de Brito Bezerra B, Ishii M, Monajemzadeh S, Cui ZK, Tetradis S, Lee M, Pirih FQ. Local delivery of a CXCR3 antagonist decreases the progression of bone resorption induced by LPS injection in a murine model. Clin Oral Investig 2022; 26:5163-5169. [PMID: 35462591 PMCID: PMC9710470 DOI: 10.1007/s00784-022-04484-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/05/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES This experimental study was carried out to investigate the effects of locally delivered nanoparticles (AMG-487 NP) containing a CXCR3 antagonist in inhibiting the progression of LPS-induced inflammation, osteoclastic activity, and bone resorption on a murine model. MATERIALS AND METHODS Thirty, 7-week-old C57BL/6 J male mice were used. Inflammatory bone loss was induced by Porphyromonas gingivalis-lipopolysaccharide (P.g.-LPS) injections between the first and second maxillary molars, bilaterally, twice a week for 6 weeks (n = 20). AMG-487 NP were incorporated into a liposome carrier and locally delivered on sites where P.g.-LPS was injected. Control mice (n = 10) were injected with vehicle only. Experimental groups included (1) control, (2) LPS, and (3) LPS + NP. At the end of 1 and 6 weeks, mice were euthanized, maxillae harvested, fixed, and stored for further analysis. RESULTS Volumetric bone loss analysis revealed, at 1 week, an increase in bone loss in the LPS group (47.9%) compared to control (27.4%) and LPS + NP (27.8%) groups. H&E staining demonstrated reduced inflammatory infiltrate in the LPS + NP group compared to LPS group. At 6 weeks, volumetric bone loss increased in all groups; however, treatment with the CXCR3 antagonist (LPS + NP) significantly reduced bone loss compared to the LPS group. CXCR3 antagonist treatment significantly reduced osteoclast numbers when compared to LPS group at 1 and 6 weeks. CONCLUSIONS This study showed that local delivery of a CXCR antagonist, via nanoparticles, in a bone resorption model, induced by LPS injection, was effective in reducing inflammation, osteoclast numbers, and bone loss. CLINICAL RELEVANCE CXCR3 blockade can be regarded as a novel target for therapeutic intervention of bone loss. It can be a safe and convenient method for periodontitis treatment or prevention applicable in clinical practice.
Collapse
Affiliation(s)
- Soma Lari
- School of Dentistry, Section of Periodontics, University of California, Los Angeles, Los Angeles, Los Angeles, CA, USA
| | - Sarah Hiyari
- School of Dentistry, Section of Periodontics, University of California, Los Angeles, Los Angeles, Los Angeles, CA, USA
| | - Davi Neto de Araújo Silva
- School of Dentistry, Section of Periodontics, University of California, Los Angeles, Los Angeles, Los Angeles, CA, USA
- Dentistry Department, Rio Grande do Norte Federal University, Natal, RN, Brazil
| | - Beatriz de Brito Bezerra
- School of Dentistry, Section of Periodontics, University of California, Los Angeles, Los Angeles, Los Angeles, CA, USA
| | - Makiko Ishii
- Division of Periodontology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Urayasu, Japan
| | - Sepehr Monajemzadeh
- School of Dentistry, Section of Periodontics, University of California, Los Angeles, Los Angeles, Los Angeles, CA, USA
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Sotirios Tetradis
- School of Dentistry, Section of Oral Radiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Min Lee
- School of Dentistry, Section of Biomaterials Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Flavia Q Pirih
- School of Dentistry, Section of Periodontics, University of California, Los Angeles, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Keyser BM. Cytotoxicity, oxidative stress, and inflammatory response of smokeless tobacco extracts and cytotoxicity of combustible cigarette whole smoke in a 3D oral organotypic buccal cell model. Toxicol Mech Methods 2022; 32:352-361. [PMID: 34923904 DOI: 10.1080/15376516.2021.2009949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Oral disease is frequently associated with viral and environmental exposures and oral hygiene. The use of tobacco is a risk factor in the development of oral disease. Cytotoxicity, inflammatory response, and oxidative stress have been reported to have a role in the development of oral disease. These three endpoints were evaluated in a 3D human oral buccal model, EpiOral™, following exposure to CORESTA reference smokeless tobacco products (CRPs) and cigarette whole smoke. CRPs for Swedish style snus (CRP1), moist snuff (CRP2), and dry snuff (CRP3) were each extracted in complete artificial saliva (CAS) with a ratio of 300 mg CRP to 1 mL of CAS. Each of the CRP extracts (15-300 mg/ml) were applied to the apical side of a 3D organotypic buccal cell model for 24 or 48 h continuously, then cytotoxicity (LDH), oxidative stress (8-isoprostane), and inflammatory response (IP10, IL-1α, and IL-8) were measured. Experiments with 3R4F cigarettes were conducted by exposing the buccal tissues to whole smoke for a maximum of 2.5 h. Cytotoxicity (MTT) was measured 24 h post-exposure. Exposure of buccal tissues to whole smoke from a cigarette induced a dose-dependent cytotoxic response. In contrast, the CRP extracts elicited minimal cytotoxicity (<15%) when compared to CAS (vehicle control), but time- and dose-dependent effects on oxidative stress and inflammatory response were observed. Collectively, these data demonstrate that a 3D organotypic buccal human model may be used to assess biological mechanisms (MOAs) involved in the development of oral disease following exposure to smokeless tobacco products and may be applicable for differentiation between tobacco product categories.
Collapse
Affiliation(s)
- Brian M Keyser
- Scientific & Regulatory Affairs, RAI Services Company, Winston-Salem, NC, USA
| |
Collapse
|
15
|
Nie M, Li H, Liu P, Dang P. HMBOX1 attenuates LPS-induced periodontal ligament stem cell injury by inhibiting CXCL10 expression through the NF-κB signaling pathway. Exp Ther Med 2022; 23:224. [PMID: 35222701 PMCID: PMC8812104 DOI: 10.3892/etm.2022.11148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Homeobox containing 1 (HMBOX1) is a member of the homeobox transcription factor family that has been reported to serve an important role in numerous biological processes. The present study aimed to determine the role of HMBOX1 in the pathogenesis of periodontitis. Human periodontal ligament stem cells (hPDLSCs) were treated with liposaccharide (LPS) and transfected with a HMBOX1 overexpression (Ov-HMBOX1) plasmid or small interfering (si)-C-X-C motif chemokine ligand 10 (CXCL10) plasmids. The effects of Ov-HMBOX1 on cell proliferation, inflammation and apoptosis were subsequently investigated using Cell Counting Kit-8, ELISA for analysis of IL-6, TNF-α and IL-1β levels, TUNEL and western blotting assays for analysis of Bcl-2, Bax, cleaved caspase-3 and caspase-3 levels, respectively. Furthermore, the potential effects of HMBOX1 on the mRNA and protein levels of CXCL10 and the NF-κB signaling pathway were investigated by using reverse transcription-quantitative PCR and western blotting. Finally, the physiological processes of lipopolysaccharide (LPS)-induced hPDLSCs overexpressing HMBOX1 were assessed following treatment with phorbol 12-myristate 13-acetate (PMA), a NF-κB agonist. The results revealed that Ov-HMBOX1 transfection promoted proliferation whilst alleviating inflammation and apoptosis in LPS-induced hPDLSCs. Ov-HMBOX1 reduced the expression of CXCL10 by suppressing the NF-κB signaling pathway. PMA treatment inhibited the proliferation of LPS-induced hPDLSCs transfected with Ov-HMBOX1, which was reversed by transfection with si-CXCL10. In conclusion, results of the present study provided evidence that HMBOX1 can attenuate LPS-induced hPDLSC injury by downregulating CXCL10 expression via the NF-κB signaling pathway, which may provide a novel insight into the development of potentially novel treatment strategies for periodontitis.
Collapse
Affiliation(s)
- Minyuan Nie
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, P.R. China
| | - Heng Li
- Department of Paediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Puhe Liu
- Department of Stomatology, The First Dental Hospital, Wuhai, Inner Mongolia Autonomous Region 016000, P.R. China
| | - Ping Dang
- Department of Stomatology, Amcare Women's and Children's Hospital, Beijing 100016, P.R. China
| |
Collapse
|
16
|
McDew-White M, Lee E, Alvarez X, Sestak K, Ling BJ, Byrareddy SN, Okeoma CM, Mohan M. Cannabinoid control of gingival immune activation in chronically SIV-infected rhesus macaques involves modulation of the indoleamine-2,3-dioxygenase-1 pathway and salivary microbiome. EBioMedicine 2022; 75:103769. [PMID: 34954656 PMCID: PMC8715300 DOI: 10.1016/j.ebiom.2021.103769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HIV/SIV-associated periodontal disease (gingivitis/periodontitis) (PD) represents a major comorbidity affecting people living with HIV (PLWH) on combination anti-retroviral therapy (cART). PD is characterized by chronic inflammation and dysbiosis. Nevertheless, the molecular mechanisms and use of feasible therapeutic strategies to reduce/reverse inflammation and dysbiosis remain understudied and unaddressed. METHODS Employing a systems biology approach, we report molecular, metabolome and microbiome changes underlying PD and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (Δ9-THC)] in uninfected and SIV-infected rhesus macaques (RMs) untreated (VEH-untreated/SIV) or treated with vehicle (VEH/SIV) or Δ9-THC (THC/SIV). FINDINGS VEH- untreated/SIV but not THC/SIV RMs showed significant enrichment of genes linked to anti-viral defense, interferon-β, NFκB, RIG-1, and JAK-STAT signaling. We focused on the anti-microbial DUOX1 and immune activation marker IDO1 that were reciprocally regulated in the gingiva of VEH-untreated/SIV RMs. Both proteins localized to the gingival epithelium and CD163+ macrophages, and showed differential expression in the gingiva of THC/SIV and VEH/SIV RMs. Additionally, inflammation-associated miR-21, miR-142-3p, miR-223, and miR-125a-5p showed significantly higher expression in the gingiva of VEH/SIV RMs. In human primary gingival epithelial cells, miR-125a-5p post-transcriptionally downregulated DUOX1 and THC inhibited IDO1 protein expression through a cannabinoid receptor-2 mediated mechanism. Interestingly, THC/SIV RMs showed relatively reduced plasma levels of kynurenine, kynurenate, and the neurotoxic quinolinate compared to VEH/SIV RMs at 5 months post SIV infection (MPI). Most importantly, THC blocked HIV/SIV-induced depletion of Firmicutes and Bacteroidetes, and reduced Gammaproteobacteria abundance in saliva. Reduced IDO1 protein expression was associated with significantly (p<0.05) higher abundance of Prevotella, Lactobacillus (L. salivarius, L. buchneri, L. fermentum, L. paracasei, L. rhamnosus, L. johnsonii) and Bifidobacteria and reduced abundance of the pathogenic Porphyromonas cangingivalis and Porphyromonas macacae at 5MPI. INTERPRETATION The data provides deeper insights into the molecular mechanisms underlying HIV/SIV-induced PD and more importantly, the anti-inflammatory and anti-dysbiotic properties of THC in the oral cavity. Overall, these translational findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis and potentially metabolic disease/syndrome in PLWH on cART and those with no access to cART or do not suppress the virus under cART. FUNDING Research reported in this publication was supported by the National Institutes of Health Award Numbers R01DA052845 (MM and SNB), R01DA050169 (MM and CO), R01DA042524 and R56DE026930 (MM), and P51OD011104 and P51OD011133. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Marina McDew-White
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Eunhee Lee
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Xavier Alvarez
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Karol Sestak
- PreCliniTria, LLC., Mandeville, LA 70471, United States; Tulane National Primate Research Center, Covington LA 70433, United States
| | - Binhua J Ling
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Chioma M Okeoma
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, United States
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States.
| |
Collapse
|
17
|
Chae YK, Shin SY, Kang SW, Choi SC, Nam OH. Differential gene expression profiles of periodontal soft tissue from rat teeth after immediate and delayed replantation: a pilot study. J Periodontal Implant Sci 2021; 52:127-140. [PMID: 35505574 PMCID: PMC9064781 DOI: 10.5051/jpis.2104300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose In dental avulsion, delayed replantation usually has an uncertain prognosis. After tooth replantation, complex inflammatory responses promote a return to periodontal tissue homeostasis. Various types of cytokines are produced in the inflammatory microenvironment, and these cytokines determine the periodontal tissue response. This study aimed to identify the gene expression profiles of replanted teeth and evaluate the functional differences between immediate and delayed replantation. Methods Maxillary molars from Sprague-Dawley rats were extracted, exposed to a dry environment, and then replanted. The animals were divided into 2 groups according to the extra-oral time: immediate replantation (dry for 5 minutes) and delayed replantation (dry for 60 minutes). Either 3 or 7 days after replantation, the animals were sacrificed. Periodontal soft tissues were harvested for mRNA sequencing. Hallmark gene set enrichment analysis was performed to predict the function of gene-gene interactions. The normalized enrichment score (NES) was calculated to determine functional differences. Results The hallmark gene sets enriched in delayed replantation at 3 days were oxidative phosphorylation (NES=2.82, Q<0.001) and tumor necrosis factor-alpha (TNF-α) signaling via the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway (NES=1.52, Q=0.034). At 7 days after delayed replantation, TNF-α signaling via the NF-κB pathway (NES=–1.82, Q=0.002), angiogenesis (NES=–1.66, Q=0.01), and the transforming growth factor-beta signaling pathway (NES=–1.46, Q=0.051) were negatively highlighted. Conclusions Differentially expressed gene profiles were significantly different between immediate and delayed replantation. TNF-α signaling via the NF-κB pathway was marked during the healing process. However, the enrichment score of this pathway changed in a time-dependent manner between immediate and delayed replantation.
Collapse
Affiliation(s)
- Yong Kwon Chae
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seo Young Shin
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sang Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
18
|
Akkermansia muciniphila and Its Pili-Like Protein Amuc_1100 Modulate Macrophage Polarization in Experimental Periodontitis. Infect Immun 2020; 89:IAI.00500-20. [PMID: 33020212 DOI: 10.1128/iai.00500-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease triggered by dysbiosis of the oral microbiome. Porphyromonas gingivalis is strongly implicated in periodontal inflammation, gingival tissue destruction, and alveolar bone loss through sustained exacerbation of the host response. Recently, the use of other bacterial species, such as Akkermansia muciniphila, has been suggested to counteract inflammation elicited by P. gingivalis In this study, the effects of A. muciniphila and its pili-like protein Amuc_1100 on macrophage polarization during P. gingivalis infection were evaluated in a murine model of experimental periodontitis. Mice were gavaged with P. gingivalis alone or in combination with A. muciniphila or Amuc_1100 for 6 weeks. Morphometric analysis demonstrated that the addition of A. muciniphila or Amuc_1100 significantly reduced P. gingivalis-induced alveolar bone loss. This decreased bone loss was associated with a proresolutive phenotype (M2) of macrophages isolated from submandibular lymph nodes as observed by flow cytometry. Furthermore, the expression of interleukin 10 (IL-10) at the RNA and protein levels was significantly increased in the gingival tissues of the mice and in macrophages exposed to A. muciniphila or Amuc_1100, confirming their anti-inflammatory properties. This study demonstrates the putative therapeutic interest of the administration of A. muciniphila or Amuc_1100 in the management of periodontitis through their anti-inflammatory properties.
Collapse
|
19
|
CXCL5, CXCL8, and CXCL10 regulation by bacteria and mechanical forces in periodontium. Ann Anat 2020; 234:151648. [PMID: 33221386 DOI: 10.1016/j.aanat.2020.151648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the expressions of CXCL5, CXCL8, and CXCL10 in periodontal cells and tissues in response to microbial signals and/or biomechanical forces. METHODS Human gingival biopsies from inflamed and healthy sites were used to examine the chemokine expressions and protein levels by real-time PCR and immunohistochemistry. The chemokines were also investigated in gingival biopsies from rats submitted to experimental periodontitis and/or tooth movement. Furthermore, chemokine levels were determined in human periodontal fibroblasts stimulated by the periodontopathogen Fusobacterium nucleatum and/or constant tensile forces (CTS) by real-time PCR and ELISA. Additionally, gene expressions were evaluated in periodontal fibroblasts exposed to F. nucleatum and/or CTS in the presence and absence of a MAPK inhibitor by real-time PCR. RESULTS Increased CXCL5, CXCL8, and CXCL10 levels were observed in human and rat gingiva from sites of inflammation as compared with periodontal health. The rat experimental periodontitis caused a significant (p<0.05) increase in alveolar bone resorption, which was further enhanced when combined with tooth movement. In vitro, F. nucleatum caused a significant upregulation of CXCL5, CXCL8, and CXCL10 at 1 day. Once the cells were exposed simultaneously to F. nucleatum and CTS, the chemokines regulation was significantly enhanced. The transcriptional findings were also observed at protein level. Pre-incubation with the MEK1/2 inhibitor significantly (p<0.05) inhibited the stimulatory actions of F. nucleatum either alone or in combination with CTS on the expression levels of CXCL5, CXCL8, and CXCL10 at 1d. CONCLUSIONS Our data provide original evidence that biomechanical strain further increases the stimulatory actions of periodontal bacteria on the expressions of these chemokines. Therefore, biomechanical loading in combination with periodontal infection may lead to stronger recruitment of immunoinflammatory cells to the periodontium, which might result in an aggravation of periodontal inflammation and destruction.
Collapse
|
20
|
Narvekar A, Valverde Estepa A, Naqvi A, Nares S. Used dental implant healing abutments elicit immune responses: A comparative analysis of detoxification strategies. Clin Implant Dent Relat Res 2020; 22:730-738. [PMID: 33063441 DOI: 10.1111/cid.12956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/09/2020] [Accepted: 09/30/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE To determine if healing abutments (HA) can be "decontaminated" using four strategies available in clinical settings and compare the detoxification efficacy by quantifying residual biomaterial and capacity to elicit an inflammatory response in-vitro. MATERIALS AND METHODS Forty HA collected from subjects following intraoral use were randomly distributed into four test groups (A-D): A: autoclave only, B: ultrasonic bath plus autoclave, C: prophy-jet plus autoclave, and D: Scrub sponge plus autoclave. New, sterile HA: group E (Control). Residual protein concentration was determined by Micro BCA assay and stained with Phloxine B for macroscopic examination. HA were placed in human CD14+ monocyte derived-macrophage (mo-Mφ) cultures and supernatant collected at 4, 24, 48, and 5 days to analyze cytokine profiles using multiplex bead assay. RESULTS Test groups showed visible differences in "decontamination" levels compared to control. Groups C and D showed most effective debris removal and lowest residual protein concentration. Multiplex assay showed marked induction of pro-inflammatory cytokines by groups A and B and to a significantly lower level by groups C and D. CONCLUSION HA were not entirely "decontaminated" using common methods available relative to new, sterile HA and were capable of stimulating an immune response.
Collapse
Affiliation(s)
- Aniruddh Narvekar
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, Illinois, USA
| | - Araceli Valverde Estepa
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, Illinois, USA
| | - Afsar Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, Illinois, USA
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
21
|
A therapeutic oxygen carrier isolated from Arenicola marina decreased P. gingivalis induced inflammation and tissue destruction. Sci Rep 2020; 10:14745. [PMID: 32901057 PMCID: PMC7479608 DOI: 10.1038/s41598-020-71593-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The control of inflammation and infection is crucial for periodontal wound healing and regeneration. M101, an oxygen carrier derived from Arenicola marina, was tested for its anti-inflammatory and anti-infectious potential based on its anti-oxidative and tissue oxygenation properties. In vitro, no cytotoxicity was observed in oral epithelial cells (EC) treated with M101. M101 (1 g/L) reduced significantly the gene expression of pro-inflammatory markers such as TNF-α, NF-κΒ and RANKL in P. gingivalis-LPS stimulated and P. gingivalis-infected EC. The proteome array revealed significant down-regulation of pro-inflammatory cytokines (IL-1β and IL-8) and chemokine ligands (RANTES and IP-10), and upregulation of pro-healing mediators (PDGF-BB, TGF-β1, IL-10, IL-2, IL-4, IL-11 and IL-15) and, extracellular and immune modulators (TIMP-2, M-CSF and ICAM-1). M101 significantly increased the gene expression of Resolvin-E1 receptor. Furthermore, M101 treatment reduced P. gingivalis biofilm growth over glass surface, observed with live/dead analysis and by decreased P. gingivalis 16 s rRNA expression (51.7%) (p < 0.05). In mice, M101 reduced the clinical abscess size (50.2%) in P. gingivalis-induced calvarial lesion concomitant with a decreased inflammatory score evaluated through histomorphometric analysis, thus, improving soft tissue and bone healing response. Therefore, M101 may be a novel therapeutic agent that could be beneficial in the management of P. gingivalis associated diseases.
Collapse
|
22
|
Bone turnover markers in serum but not in saliva correlate with bone mineral density. Sci Rep 2020; 10:11550. [PMID: 32665632 PMCID: PMC7360752 DOI: 10.1038/s41598-020-68442-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Saliva was proposed as a diagnostic tool for systemic diseases. Here we determined the correlation of bone turnover markers in saliva, bone turnover markers in serum and bone mineral density in postmenopausal osteoporotic and healthy women. Forty postmenopausal osteoporotic and 40 age-matched healthy non-osteoporotic females were recruited for this case–control study. Serum and stimulated saliva levels of osteocalcin, N-terminal propeptide of type I collagen, bone-specific alkaline phosphatase and cross-linked-C-telopeptide of type I collagen were determined. Bone mineral density of the lumbar spine, proximal femur, and total hip were obtained. We show that osteocalcin and cross-linked-C-telopeptide of type I collagen (CTX) reached detectable levels in saliva while N-terminal propeptide of type I collagen and alkaline phosphatase were close or below the detection limit. Serum levels of bone turnover markers were significantly higher than saliva levels. Correlation analysis revealed a strong correlation of serum osteocalcin and, to a lesser extent, also serum CTX values with bone mineral density in lumbar spine, femoral neck, or total hip, respectively. There was, however, no significant correlation of bone mineral density with the respective bone turnover markers in saliva. There was a trend that saliva osteocalcin correlates with femoral neck (p = 0.16) or total hip (p = 0.06). There was also no association between serum and saliva bone turnover markers. This study reveals that saliva cannot replace the withdrawal of serum to evaluate bone metabolism.
Collapse
|
23
|
Abidi AH, Alghamdi SS, Dabbous MK, Tipton DA, Mustafa SM, Moore BM. Cannabinoid type-2 receptor agonist, inverse agonist, and anandamide regulation of inflammatory responses in IL-1β stimulated primary human periodontal ligament fibroblasts. J Periodontal Res 2020; 55:762-783. [PMID: 32562275 DOI: 10.1111/jre.12765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to understand the role of cannabinoid type 2 receptor (CB2R) during periodontal inflammation and to identify anti-inflammatory agents for the development of drugs to treat periodontitis (PD). BACKGROUND Cannabinoid type 2 receptor is found in periodontal tissue at sites of inflammation/infection. Our previous study demonstrated anti-inflammatory responses in human periodontal ligament fibroblasts (hPDLFs) via CB2R ligands. METHODS Anandamide (AEA), HU-308 (agonist), and SMM-189 (inverse agonist) were tested for effects on IL-1β-stimulated cytokines, chemokines, and angiogenic and vascular markers expressed by hPDLFs using Mesoscale Discovery V-Plex Kits. Signal transduction pathways (p-c-Jun, p-ERK, p-p-38, p-JNK, p-CREB, and p-NF-kB) were investigated using Cisbio HTRF kits. ACTOne and Tango™ -BLA functional assays were used to measure cyclic AMP (cAMP) and β-arrestin activity. RESULTS IL-1β stimulated hPDLF production of 18/39 analytes, which were downregulated by the CB2R agonist and the inverse agonist. AEA exhibited pro-inflammatory and anti-inflammatory effects. IL-1β increased phosphoproteins within the first hour except p-JNK. CB2R ligands attenuated p-p38 and p-NFĸB, but a late rise in p-38 was seen with HU-308. As p-ERK levels declined, a significant increase in p-ERK was observed later in the time course by synthetic CB2R ligands. P-JNK was significantly affected by SMM-189 only, while p-CREB was elevated significantly by CB2R ligands at 180 minutes. HU-308 affected both cAMP and β-arrestin pathway. SMM-189 only stimulated cAMP. CONCLUSION The findings that CB2R agonist and inverse agonist may potentially regulate inflammation suggest that development of CB2R therapeutics could improve on current treatments for PD and other oral inflammatory pathologies.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mustafa Kh Dabbous
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA.,College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - David A Tipton
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
24
|
Irani S, Barati I, Badiei M. Periodontitis and oral cancer - current concepts of the etiopathogenesis. Oncol Rev 2020; 14:465. [PMID: 32231765 PMCID: PMC7097927 DOI: 10.4081/oncol.2020.465] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Gingival tissues are attacked by oral pathogens which can induce inflammatory reactions. The immune-inflammatory responses play essential roles in the patient susceptibility to periodontal diseases. There is a wealth of evidence indicating a link between chronic inflammation and risk of malignant transformation of the affected oral epithelium. Periodontitis is associated with an increased risk of developing chronic systemic conditions including autoimmune diseases and different types of cancers. Besides, some risk factors such as smoking, alcohol consumption and human papilloma virus have been found to be associated with both periodontitis and oral cancer. This review article aimed to study the current concepts in pathogenesis of chronic periodontitis and oral cancer by reviewing the related articles.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences
| | - Iman Barati
- Department of Periodontology, Dental Faculty, Hamadan University of Medical Sciences
| | - Mohammadreza Badiei
- Dental Student, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
25
|
Oliveira SHP, Brito VGB, Frasnelli SCT, Ribeiro BDS, Ferreira MN, Queiroz DP, Beltan CT, Lara VS, Santos CF. Aliskiren Attenuates the Inflammatory Response and Wound Healing Process in Diabetic Mice With Periodontal Disease. Front Pharmacol 2019; 10:708. [PMID: 31333451 PMCID: PMC6620569 DOI: 10.3389/fphar.2019.00708] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to characterize the role of local RAS (renin–angiotensin system) in the inflammatory response of normal (N) and diabetic (D) mice with periodontal disease (PD). Diabetes Mellitus (DM) was induced by peritoneal injection of streptozotocin in Balb/c mice. PD was induced by ligature around the first molar in both N and D, irrespective of whether they were treated with aliskiren (50 mg/kg, Alisk). Mandibles were harvested for histomorphometric analyses, and gingival tissue (GT) was collected to evaluate gene expression and extracellular matrix components (ECM). Immunohistochemical (IHC) analyses were used to localize RAS in GT. The production of C-reactive protein (CRP), IL-1β, CXCL2, and CCL8 was evaluated by enzyme-linked immunosorbent assay (ELISA). Renin was found to exacerbate the inflammation and periodontal bone loss at 14 days after PD, and Alisk inhibited this process in GT of N and D. PD increased CRP, CXCL2, CCL8, and IL-1β production in both animals. Alisk could inhibit CRP, CXCL2, and CCL8 primarily in D animals. However, only CCL8 was decreased in N animals after Alisk pretreatment. PD enhanced expression and production of AGT, ACE, AT1R, and AT2R in both N and D. AT1R expression was higher in D with PD, and AT2R expression was higher in N with PD. ACE2 and receptor Mas (MasR) expression and production was elevated in the control group of both animals. PD inhibited ACE2 in N but not in D. MasR expression was unaffected in both N and D with PD. Alisk reduced expression and production of all RAS components in GT of both animals, except for ACE2 in N. RAS staining was observed in all layers of epithelium, basal cell layer, and lamina propria and was higher in N with PD. Col1a1, Col1a2, Col3a1, and fibronectin (Fn1) were increased in both animals with PD. Alisk inhibited Col1a1 and Fn in both animals, Col1a2 was decreased only in D, while levels of Col3a1 remained unchanged in all animal groups. In conclusion, these data demonstrated the presence and functional role of local RAS in GT, exacerbating the inflammatory response, periodontal bone loss, and wound healing processes in both N and D animal groups. In addition, Alisk was able to significantly reduce gingival inflammation, excessive wound healing processes, and periodontal bone loss.
Collapse
Affiliation(s)
- Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sabrina Cruz Tfaile Frasnelli
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Bianca da Silva Ribeiro
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Milena Nunes Ferreira
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Dayane Priscilla Queiroz
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Carluci Taís Beltan
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Vanessa Soares Lara
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| |
Collapse
|