1
|
Urvasizoglu G, Kilic A, Capik O, Gundogdu M, Karatas OF. CXCL14 and miR-4484 serves as potential salivary biomarkers for early detection of peri-implantitis. Odontology 2024; 112:864-871. [PMID: 38087011 DOI: 10.1007/s10266-023-00876-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/16/2023] [Indexed: 07/25/2024]
Abstract
Peri-implantitis develops in 43.3% of implant patients, which affects tissues around the implant that may ultimately cause implant loss if not treated properly. Due to difficulties in detecting peri-implantitis in its early phases, implant failures are constantly on the rise. Therefore, new specific molecular markers need to be identified to prevent or limit disease progression in peri-implantitis patients. We investigated levels of CXCL9, CXCL12, and CXCL14 in saliva samples of 45 patients with commercially pure grade 4/5 Titanium-Aluminum-Vanadium implants. We analyzed the correlation of the chemokine levels using Pearson's Correlation test and investigated their power to discriminate peri-implantitis vs. non-peri-implantitis patients using receiver operating characteristic analysis. Our in silico investigation revealed CXCL9, CXCL12, and CXCL14 as predicted targets of miR-4484, which has been demonstrated as a powerful biomarker candidate for early detection of peri-implantitis in our previous study. We measured high CXCL9 and low CXCL14 levels in the saliva of peri-implantitis patients. We also reported that the CXCL14 level showed a significant positive correlation with miR-4484. Besides, CXCL14 together with miR-4484 in saliva differentiated peri-implantitis patients from non-peri-implantitis individuals with 100% success. We offer differential expressions of CXCL14 and miR-4484 in the saliva of patients with peri-implantitis as potential salivary biomarkers for early detection of this disease.
Collapse
Affiliation(s)
- Gelengul Urvasizoglu
- Department of Oral and Maxillofacial Surgery, Ataturk University, 25240, Erzurum, Turkey.
| | - Ahsen Kilic
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Mustafa Gundogdu
- Prosthodontics Department, Izmir Democracy University, Izmir, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey.
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
2
|
Pervin B, Gizer M, Şeker ME, Erol ÖD, Gür SN, Polat EG, Değirmenci B, Korkusuz P, Aerts‐Kaya F. Bone marrow mesenchymal stromal cells support regeneration of intestinal damage in a colitis mouse model, independent of their CXCR4 expression. Clin Transl Sci 2024; 17:e13821. [PMID: 38742709 PMCID: PMC11092303 DOI: 10.1111/cts.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of CXCR4high and CXCR4low MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.
Collapse
Affiliation(s)
- Burcu Pervin
- Department of Stem Cell SciencesHacettepe University Graduate School of Health SciencesAnkaraTurkey
- Hacettepe University Center for Stem Cell Research and Development (PediSTEM)AnkaraTurkey
| | - Merve Gizer
- Department of Stem Cell SciencesHacettepe University Graduate School of Health SciencesAnkaraTurkey
- Micro‐Electro‐Mechanic Systems (MEMS) CenterMiddle East Technical UniversityAnkaraTurkey
| | - Mehmet Emin Şeker
- Department of Stem Cell SciencesHacettepe University Graduate School of Health SciencesAnkaraTurkey
- Hacettepe University Center for Stem Cell Research and Development (PediSTEM)AnkaraTurkey
| | - Özgür Doğuş Erol
- Department of Stem Cell SciencesHacettepe University Graduate School of Health SciencesAnkaraTurkey
- Hacettepe University Center for Stem Cell Research and Development (PediSTEM)AnkaraTurkey
| | - Sema Nur Gür
- Department of Stem Cell SciencesHacettepe University Graduate School of Health SciencesAnkaraTurkey
- Hacettepe University Center for Stem Cell Research and Development (PediSTEM)AnkaraTurkey
| | - Ece Gizem Polat
- Department of Stem Cell SciencesHacettepe University Graduate School of Health SciencesAnkaraTurkey
- Hacettepe University Center for Stem Cell Research and Development (PediSTEM)AnkaraTurkey
| | - Bahar Değirmenci
- Department of Molecular Biology and GeneticsBilkent UniversityAnkaraTurkey
| | - Petek Korkusuz
- Micro‐Electro‐Mechanic Systems (MEMS) CenterMiddle East Technical UniversityAnkaraTurkey
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Fatima Aerts‐Kaya
- Department of Stem Cell SciencesHacettepe University Graduate School of Health SciencesAnkaraTurkey
- Hacettepe University Center for Stem Cell Research and Development (PediSTEM)AnkaraTurkey
- Hacettepe University Experimental Animals Application and Research Center (HÜDHAM)AnkaraTurkey
| |
Collapse
|
3
|
Dai CL, Yang HX, Liu QP, Rahman K, Zhang H. CXCL6: A potential therapeutic target for inflammation and cancer. Clin Exp Med 2023; 23:4413-4427. [PMID: 37612429 DOI: 10.1007/s10238-023-01152-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Chemokines were originally defined as cytokines that affect the movement of immune cells. In recent years, due to the increasing importance of immune cells in the tumor microenvironment (TME), the role of chemokines has changed from a single "chemotactic agent" to a key factor that can regulate TME and affect the tumor phenotype. CXCL6, also known as granulocyte chemoattractant protein-2 (GCP-2), can recruit neutrophils to complete non-specific immunity in the process of inflammation. Cancer-related genes and interleukin family can promote the abnormal secretion of CXCL6, which promotes tumor growth, metastasis, epithelial mesenchymal transformation (EMT) and angiogenesis in the TME. CXCL6 also has a role in promoting fibrosis and tissue damage repair. In this review, we focus on the regulatory network affecting CXCL6 expression, its role in the progress of inflammation and how it affects tumorigenesis and progression based on the TME, in an attempt to provide a potential target for the treatment of diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Li X, Ling Y, Huang X, Zhou T, Wu S, Zhang S, Zhou H, Kang Y, Wang L, Wang X, Yin W. Rosa Roxburghii Tratt Fruit Extract Prevents Dss-Induced Ulcerative Colitis in Mice by Modulating the Gut Microbiota and the IL-17 Signaling Pathway. Nutrients 2023; 15:4560. [PMID: 37960213 PMCID: PMC10650662 DOI: 10.3390/nu15214560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Ulcerative colitis (UC) is a non-specific inflammatory bowel illness characterized by intestinal mucosal barrier degradation, inflammation, oxidative damage, and gut microbiota imbalances. Rosa roxburghii Tratt Fruit extract (RRTE) was extracted from Rosa roxburghii Tratt fruit, exhibiting an excellent prevention effect against UC; RRTE could prevent the damage of DSS-induced human normal colonic epithelial (NCM 460) cells, especially in cell viability and morphology, and oxidative damage. Additionally, in UC mice, RRTE could limit the intestinal mucosal barrier by increasing the expression of intestinal tight junction proteins and mucin, reducing inflammation and oxidative damage in colon tissue. More importantly, RRTE can increase the abundance of beneficial bacteria to regulate gut microbiota such as Ruminococcus, Turicibacter, and Parabacteroides, and reduce the abundance of harmful bacteria such as Staphylococcus and Shigella. Furthermore, transcriptomics of colonic mucosal findings point out that the beneficial effect of RRTE on UC could be attributed to the modulation of inflammatory responses such as the IL-17 and TNF signaling pathways. The qPCR results confirm that RRTE did involve the regulation of several genes in the IL-17 signaling pathway. In conclusion, RRTE could prevent DSS-induced damage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xingjie Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Yihan Ling
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Xiaoyi Huang
- Department of Clinical Nutrition, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Shouxun Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Shuwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Heting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Yuhong Kang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Liqun Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Xiaomeng Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| |
Collapse
|
5
|
Bagherzadeh F, Mohammadi-Moghadam F. New insights into the role of metal(loid)s in the development of ulcerative colitis: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66486-66493. [PMID: 37118388 DOI: 10.1007/s11356-023-27167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023]
Abstract
The relationship between heavy metals and ulcerative colitis (UC) was investigated in several studies, but their results were not consistent. Therefore, in this systematic review study, the positive and negative effects of metal(loid)s (Zn, Cu, Fe, Se, Pb, Ni, and As) on UC disease were investigated. In this systematic search, 13 original articles from 1993 to 2021 were identified in Google Scholar, Science Direct, Scopus, PubMed, and the Web of Science databases. In included studies, the concentrations of heavy metals and essential elements were measured in the blood, serum, intestinal biopsies, and hair samples of the patients. Some studies have also examined the heavy metal concentration in UC patients' diet and their drinking water. In the serum samples, Pb (220 ± 108 mg/L) and Cu (401.5 ± 104 µg/L) had the maximum concentrations among the other elements, as well as Zn and Fe had the highest levels in hair and intestinal tissue samples, respectively. In light of the selected articles, there is a possibility of a preventive role for Se and Zn in UC development. Moreover, exposure to Fe can exacerbate the symptoms of the disease. In conclusion, this review reveals that toxic metals, as ubiquitous environmental pollutants, can contribute to the exacerbation of inflammatory intestinal symptoms, and consumption of essential elements can play a vital role in the control of UC, and it is important to pay attention to them in health decisions.
Collapse
Affiliation(s)
- Farideh Bagherzadeh
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fazel Mohammadi-Moghadam
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Chen Q, Bei S, Zhang Z, Wang X, Zhu Y. Identification of diagnostic biomarks and immune cell infiltration in ulcerative colitis. Sci Rep 2023; 13:6081. [PMID: 37055577 PMCID: PMC10102327 DOI: 10.1038/s41598-023-33388-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/12/2023] [Indexed: 04/15/2023] Open
Abstract
We aimed to explore diagnostic biomarks and immune cell infiltration characteristics in ulcerative colitis (UC). We used the dataset GSE38713 as the training set and dataset GSE94648 as the test set. A total of 402 differentially expressed genes (DEGs) were obtained from GSE38713. Annotating, visualizing, and integrating discovery of these differential genes was performed using Gene Ontology (GO), Kyoto Gene and Genome Encyclopedia Pathway (KEGG), and Gene Set Enrichment Analysis (GSEA). Protein-protein interaction networks were constructed from the STRING database, and protein functional modules were identified using the CytoHubba plugin of Cytoscape. Random forest and LASSO regression were used to screen for UC-related diagnostic markers, and ROC curves were generated to validate their diagnostic value. The composition of 22 immune cells was analyzed, and the immune cell infiltration in UC was analyzed using CIBERSORT. Results: Seven diagnostic markers associated with UC were identified: TLCD3A, KLF9, EFNA1, NAAA,WDR4, CKAP4, and CHRNA1. Immune cell infiltration assessment revealed that macrophages M1, activated dendritic cells, and neutrophil cells infiltrated relatively more compared to normal control samples. Our results suggest a new functional feature of UC and suggest potential biomarkers for UC through comprehensive analysis of integrated gene expression data.
Collapse
Affiliation(s)
- Qin Chen
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, No. 25 Dongfeng East Road, Panlong District, Kunming, 650011, Yunnan Province, China.
| | - Shaosheng Bei
- Department of Anorectal, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, No. 25 Dongfeng East Road, Panlong District, Kunming, 650011, Yunnan Province, China
| | - Xiaofeng Wang
- Department of Colorectal Surgery, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunying Zhu
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, No. 25 Dongfeng East Road, Panlong District, Kunming, 650011, Yunnan Province, China
| |
Collapse
|
7
|
Hu W, Fang T, Zhou M, Chen X. Identification of hub genes and immune infiltration in ulcerative colitis using bioinformatics. Sci Rep 2023; 13:6039. [PMID: 37055495 PMCID: PMC10101977 DOI: 10.1038/s41598-023-33292-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine, whose pathogenesis is not fully understood. Given that immune infiltration plays a key role in UC progression, our study aimed to assess the level of immune cells in UC intestinal mucosal tissues and identify potential immune-related genes. The GSE65114 UC dataset was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between healthy and UC tissues were identified using the "limma" package in R, while their Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined with the clusterProfiler package. Protein-protein interaction network analysis and visualization were performed with STRING and Cytoscape. Immune cell infiltration was calculated with CIBERSORT. The relationship between hub genes and immune-infiltrated cells in UC was determined by Pearson correlation. A total of 206 DEGs were identified, of which 174 were upregulated and 32 downregulated. GO and KEGG functional classification indicated DEG enrichment in immune response pathways, including Toll-like receptor signaling, IL-17 signaling, and immune system process and chemokine signaling. 13 hub genes were identified. Infiltration matrix analysis of immune cells showed abundant plasma cells, memory B cells, resting CD4 memory T cells, γδ T cells, M0 and M1 macrophages, and neutrophils in UC intestinal tissues. Correlation analysis revealed 13 hub genes associated with immune-infiltrated cells in UC. 13 hub genes associated with immune-infiltrated cells in UC were identified; they included CXCL13, CXCL10, CXCL9, CXCL8, CCL19, CTLA4, CCR1, CD69, CD163, IL7R, PECAM1, TLR8 and TLR2. These genes could potentially serve as markers for the diagnosis and treatment of UC.
Collapse
Affiliation(s)
- Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Mingxuan Zhou
- Department of General Practice, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China.
| |
Collapse
|
8
|
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, Rigi A, Kiasari BA. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res 2023; 28:47. [PMID: 36707899 PMCID: PMC9881387 DOI: 10.1186/s40001-023-01008-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-β (TGFβ), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Maria V Mikhailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Soheil Rasoolzadegan
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Falaki
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Azad University, Zahedan, Iran.
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Annamalai P, Thangam EB. Vitex trifolia L. modulates inflammatory mediators via down-regulation of the NF-κB signaling pathway in carrageenan-induced acute inflammation in experimental rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115583. [PMID: 36028166 DOI: 10.1016/j.jep.2022.115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vitex trifolia L. (V. trifolia L.), commonly known as the three-leaved chaste tree, is extensively employed in traditional Chinese medicine (TCM) to treat various conditions associated with inflammation. AIM OF THE STUDY The present study aimed to delineate the molecular mechanisms responsible for the anti-inflammatory effect of V. trifolia L. in carrageenan (CA)-induced acute inflammation in experimental rats. MATERIALS AND METHODS CA-induced rat paw edema model was adopted to investigate the anti-inflammatory effect of methanolic extract from leaves of V. trifolia L. (VTME) in vivo. Leukocyte infiltration into the site of inflammation was determined by histopathological analysis. Further, the effect of VTME on CA-induced local and systemic levels of specific cytokines was quantified by enzyme-linked immunosorbent assay (ELISA). Moreover, its impact on the nuclear translocation of nuclear factor Kappa B (NF-κB) was analyzed by employing the western blotting technique. RESULTS VTME at the doses of 100 mg/kg and 200 mg/kg significantly inhibited the paw edema induced by CA (p < 0.05) and effectively reduced the inflammatory leukocyte infiltration. Further, VTME markedly inhibited the CA-induced levels of Interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α in tissue, and that of cytokine-induced neutrophil chemoattractant (CINC)-2/C-X-C motif chemokine (CXCL)3 and CINC-3/CXCL2 in tissue as well as in serum. On the other hand, VTME significantly upregulated the tissue concentration of anti-inflammatory cytokine IL-10. Moreover, VTME significantly attenuated the CA-induced IκBα degradation and nuclear translocation of NF-κB p65. CONCLUSIONS Our results demonstrate the potent anti-inflammatory effect of V. trifolia L. in vivo, providing insight into its molecular mechanism, which is mediated through down-regulation of NF-κB signal transduction.
Collapse
Affiliation(s)
- Parvathi Annamalai
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Elden Berla Thangam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
10
|
Network Pharmacology Analysis and Experimental Validation of Kaempferol in the Treatment of Ischemic Stroke by Inhibiting Apoptosis and Regulating Neuroinflammation Involving Neutrophils. Int J Mol Sci 2022; 23:ijms232012694. [PMID: 36293548 PMCID: PMC9604352 DOI: 10.3390/ijms232012694] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Kaempferol, a natural plant flavonoid compound, has a neuroprotective effect on ischemic stroke, while the specific mechanism remains unclear. In the current study, we applied the comprehensive strategy that combines network pharmacology and experimental evaluation to explore the potential mechanism of kaempferol in the treatment of cerebral ischemia. First, network pharmacology analysis identified the biological process of kaempferol, suggesting that kaempferol may partly help in treating ischemic stroke by regulating apoptosis and inflammatory response. Then, we evaluated the efficacy of kaempferol in the acute stage of ischemic stroke and elucidated its effects and possible mechanisms on cell apoptosis and neuroinflammation involved by neutrophils. The results showed that kaempferol could significantly reduce the modified neurological severity score (mNSS), and reduce the volume of cerebral infarction and the degree of cerebral edema. In terms of anti-apoptosis, kaempferol could significantly reduce the number of TUNEL-positive cells, inhibit the expression of pro-apoptotic proteins and promote the expression of anti-apoptotic proteins. Kaempferol may play an anti-apoptotic role by up-regulating the expression level of the BDNF-TrkB-PI3K/AKT signaling pathway. In addition, we found that kaempferol inhibited neuron loss and the activation of glial cells, as well as the expression level of the inflammatory protein COX-2 and the classic pro-inflammatory signaling pathway TLR4/MyD88/NF-κB in the ischemic brain, reduced MPO activity and neutrophil counts in peripheral blood, and down-regulated neutrophil aggregation and infiltration in the ischemic brain. Western blot revealed that kaempferol down-regulated the activation of the JAK1/STAT3 signaling pathway in neutrophils and ischemic brains. Our study showed that kaempferol inhibited the activation and number of neutrophils in the rat peripheral blood and brain, which may be related to the down-regulation of the JAK1/STAT3 pathway.
Collapse
|
11
|
Wu Q, Tu H, Li J. Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Front Pharmacol 2022; 13:914730. [PMID: 35837284 PMCID: PMC9273993 DOI: 10.3389/fphar.2022.914730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over recent years, C-X-C motif ligand 7 (CXCL7) has received widespread attention as a chemokine involved in inflammatory responses. Abnormal production of the chemokine CXCL7 has been identified in different inflammatory diseases; nevertheless, the exact role of CXCL7 in the pathogenesis of inflammatory diseases is not fully understood. Persistent infection or chronic inflammation can induce tumorigenesis and progression. Previous studies have shown that the pro-inflammatory chemokine CXCL7 is also expressed by malignant tumor cells and that binding of CXCL7 to its cognate receptors C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2) can influence tumor biological behavior (proliferation, invasion, metastasis, and tumor angiogenesis) in an autocrine and paracrine manner. CXCL7 and its receptor CXCR1/CXCR2, which are aberrantly expressed in tumors, may represent new targets for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Qianmiao Wu
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medicine, Nanchang University, Nanchang, China
| | - Huaijun Tu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Li
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Cruz-Muñoz JR, Barrios-García T, Valdez-Morales EE, Durán-Vazquez MF, Méndez-Rodríguez KB, Barajas-Espinosa A, Ochoa-Cortes F, Martínez-Saldaña MC, Gómez-Aguirre YA, Alba RG. Ethanolic extract from Lepidium virginicum L. ameliorates DNBS-induced colitis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115056. [PMID: 35104576 DOI: 10.1016/j.jep.2022.115056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/23/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lepidium virginicum L. (Brassicaceae) is a plant widely used in traditional Mexican medicine as an expectorant, diuretic, and as a remedy to treat diarrhea and dysentery, infection-derived gastroenteritis. However, there is no scientific study that validates its clinical use as an anti-inflammatory in the intestine. AIM OF THE STUDY This study aimed to investigate the anti-inflammatory properties of the ethanolic extract of Lepidium virginicum L. (ELv) in an animal model of inflammatory bowel disease (IBD)-like colitis. MATERIALS AND METHODS The 2,4-dinitrobenzene sulfonic acid (DNBS) animal model of IBD was used. Colitis was induced by intrarectal instillation of 200 mg/kg of DNBS dissolved vehicle, 50% ethanol. Control rats only received the vehicle. Six hours posterior to DNBS administration, ELv (3, 30, or 100 mg/kg) was administered daily by gavage or intraperitoneal injection. The onset and course of the inflammatory response were monitored by assessing weight loss, stool consistency, and fecal blood. Colonic damage was evaluated by colon weight/length ratio, histopathology, colonic myeloperoxidase (MPO) activity, and gene expression of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), chemokine C-X-C motif ligand 1 (CXCL-1), and interleukin-6 (IL-6). RESULTS Rats treated with DNBS displayed significant weight loss, diarrhea, fecal blood, colon shortening, a significant increase in immune cell infiltration and MPO activity, as well as increased proinflammatory cytokine expression. Intraperitoneal administration of ELv significantly reduced colon inflammation, whereas oral treatment proved to be ineffective. In fact, intraperitoneal ELv significantly attenuated the clinical manifestations of colitis, immune cell infiltration, MPO activity, and pro-inflammatory (CXCL-1, TNF-α, and IL-1β) gene expression in a dose-dependent manner. CONCLUSION Traditional medicine has employed ELv as a remedy for common infection-derived gastrointestinal symptoms; however, we hereby present the first published study validating its anti-inflammatory properties in the mitigation of DNBS-induced colitis.
Collapse
Affiliation(s)
- José R Cruz-Muñoz
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, C.P. 20100, Mexico.
| | - Tonatiuh Barrios-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, C.P. 20100, Mexico.
| | - Eduardo E Valdez-Morales
- Cátedras CONACYT. Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Av. Universidad s/n. Exhacienda 5 señores Oaxaca, Ciudad Universitaria, C.P 68120, Oaxaca de Juárez Oaxaca, Mexico.
| | - María F Durán-Vazquez
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, C.P. 20100, Mexico.
| | - Karen B Méndez-Rodríguez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, Lomas Segunda Sección, 78210, San Luis Potosí, S.L.P., Mexico.
| | - Alma Barajas-Espinosa
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Calle acceso principal al corredor industrial s/n, Colonia Parque de Poblamiento, C.P. 43000, Huejutla de Reyes, Hidalgo, Mexico.
| | - Fernando Ochoa-Cortes
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Calle acceso principal al corredor industrial s/n, Colonia Parque de Poblamiento, C.P. 43000, Huejutla de Reyes, Hidalgo, Mexico.
| | - María C Martínez-Saldaña
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags., C.P. 20100, Mexico.
| | - Yenny A Gómez-Aguirre
- CONACyT Research Fellow- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags., C.P. 20100, Mexico.
| | - Raquel Guerrero Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, C.P. 20100, Mexico.
| |
Collapse
|
13
|
Jiang Y, Xi Y, Li Y, Zuo Z, Zeng C, Fan J, Zhang D, Tao H, Guo Y. Ethanol promoting the upregulation of C-X-C Motif Chemokine Ligand 1(CXCL1) and C-X-C Motif Chemokine Ligand 6(CXCL6) in models of early alcoholic liver disease. Bioengineered 2022; 13:4688-4701. [PMID: 35156518 PMCID: PMC8973977 DOI: 10.1080/21655979.2022.2030557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver disease (ALD) denotes a series of liver diseases caused by ethanol. Recently, immune-related genes (IRGs) play increasingly crucial role in diseases. However, it’s unclear the role of IRGs in ALD. Bioinformatic analysis was used to discern the core immune-related differential genes (IRDGs) in the present study. Subsequently, Cell Counting Kit-8 say, oil red O staining, and triglyceride detection were employed to explore optimal experimental conditions of establishing hepatocellular models of early ALD. Ultimately, real-time reverse transcription-PCR and immunohistochemistry/immunocytochemistry methods were adopted to verify the expressions of mRNA and proteins of core IRDGs, respectively. C-X-C Motif Chemokine Ligand 1 (Cxcl1) and Cxcl6 were regarded as core IRDGs via integrated bioinformatics analysis. Besides, Lieber Decarli Ethanol feeding and 200 mM and 300 mM ethanol stimulating L02 cells for 36 h can both successfully hepatocellular model. In ethanol groups, the levels of CXCL1 and CXCL6 mRNA were significantly upregulated than pair-fed groups (P < 0.0001). Also, immunohistochemistry revealed that positive particles of CXCL1 and CXCL6 in mice model of early ALD were obviously more than control groups (P < 0.0001). Besides, in L02 hepatocytes stimulated by ethanol, CXCL1 and CXCL6 mRNA were over-expressed, compared with normal L02 cells (P < 0.0001). Meanwhile, immunocytochemistry indicated that CXCL1 and CXCL6 proteins in hepatocellular model of early ALD were higher than normal L02 hepatocytes stimulus (P < 0.0001). Ethanol promoted the upregulation of Cxcl1 and Cxcl6 mRNA and proteins in models of early ALD, denoting their potentiality of acting as biomarkers of ALD.
Collapse
Affiliation(s)
- Yao Jiang
- Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yuge Xi
- Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yiqin Li
- Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhihua Zuo
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chuyi Zeng
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Fan
- Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Dan Zhang
- Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hualin Tao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongcan Guo
- Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Colon Expression of Chemokines and Their Receptors Depending on the Stage of Colitis and Oat Beta-Glucan Dietary Intervention-Crohn's Disease Model Study. Int J Mol Sci 2022; 23:ijms23031406. [PMID: 35163326 PMCID: PMC8835763 DOI: 10.3390/ijms23031406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Crohn’s disease (CD), a condition characterized by chronic inflammation of the gastrointestinal tract with alternating periods of exacerbation and remission, is becoming common around the world. This study aimed to analyze the molecular mechanisms underlying the anti-inflammatory properties of oat beta-glucans of varying molar masses by modulating the expression of chemokines and their receptors as well as other proteins related to both stages of TNBS (2,4,6-trinitrobenzosulfonic acid)-induced colitis, which is an animal model of CD. The experiment involved 96 Sprague–Dawley rats, which were divided into two main groups: control and TNBS-induced colitis. Both groups of rats were further divided into three dietary subgroups, which were fed with standard feed or feed supplemented with low- or high-molar-mass oat beta-glucans for 3 (reflecting acute inflammation) or 7 days (reflecting pre-remission). The gene expression of chemokines and their receptors in the colon wall was determined by RT-PCR, and the expression of selected proteins in the mucosa was determined by immunohistochemical analysis. The results showed that acute and pre-remission stages of colitis were characterized by the increased gene expression of seven chemokines and four chemokine receptors in the colon wall as well as disrupted protein expression of CXCL1, CCL5, CXCR2, CCR5, and OPN in the mucosa. The consumption of oat beta-glucans resulted in decreased expression of most of these genes and modulated the expression of all proteins, with a stronger effect observed with the use of high-molar-mass beta-glucan. To summarize, dietary oat beta-glucans, particularly those of high molar mass, can reduce colitis by modulating the expression of chemokines and their receptors and certain proteins associated with CD.
Collapse
|
15
|
Fattahi N, Abdolahi A, Vahabzadeh Z, Nikkhoo B, Manoochehri F, Goudarzzadeh S, Hassanzadeh K, Izadpanah E, Moloudi MR. Topical phenytoin administration accelerates the healing of acetic acid-induced colitis in rats: evaluation of transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor. Inflammopharmacology 2022; 30:283-290. [PMID: 35022915 DOI: 10.1007/s10787-021-00885-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
Ulcerative colitis (UC), limited to the colon's innermost lining, has become a global health problem. Immunomodulatory and monoclonal antibodies are used to treat UC despite their side effects and limitations. Phenytoin is used to heal wounds owing to its effects on growth factors, collagen, and extracellular matrix synthesis. This study aimed to evaluate the effect of topical phenytoin administration in UC. Phenytoin was administered in two doses during the treatment. Eighty male Wistar rats (230-280 g) were divided randomly into ten groups of sham, control, hydrocortisone, phenytoin 1%, and 3% groups in 6- or 12-day treatment protocols. The UC model was induced by the administration of acetic acid 4% into the colon. Animals were killed on the 7th and 13th postoperative days. The main outcome measures included body weight loss, microscopic score, and ulcer index measured using specific criteria. Growth factors were measured by western blotting. Results illustrated that body weight loss was reversed in the treatment groups. Ulcer index had decreased on 6- and 12-day treatment protocols. Microscopic scores in 6-day enema treatment significantly decreased compared to the control groups. Transforming growth factor-beta (TGFβ) significantly increased in a time-dependent manner and platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) significantly increased in a time- and dose-dependent manner in phenytoin 1% and 3% in the 6- and 12-day protocols. Phenytoin dose- and time-dependently reversed weight loss. In addition, histopathological parameters included microscopic scores, and the ulcer index was decreased through the induction of growth factors TGFβ, PDGF, and VEGF and consequently accelerated ulcer healing.
Collapse
Affiliation(s)
- Nima Fattahi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Alina Abdolahi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakarya Vahabzadeh
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farhad Manoochehri
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Goudarzzadeh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
16
|
Han Y, Liu X, Dong H, Wen D. Screening of characteristic genes in ulcerative colitis by integrating gene expression profiles. BMC Gastroenterol 2021; 21:415. [PMID: 34717557 PMCID: PMC8556884 DOI: 10.1186/s12876-021-01940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/22/2021] [Indexed: 11/12/2022] Open
Abstract
Background This study aimed to screen the feature modules and characteristic genes related to ulcerative colitis (UC) and construct a support vector machine (SVM) classifier to distinguish UC patients. Methods Four datasets that contained UC and control samples were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) with consistency were screened via the MetaDE method. The weighted gene coexpression network (WGCNA) was used to distinguish significant modules based on the four datasets. The protein–protein interaction network was established based on intersection genes. Enrichment analysis of Gene Ontology (GO) biological processes (BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were established based on DAVID. An SVM combined with recursive feature elimination was also applied to construct a disease classifier for the disease diagnosis of UC patients. The efficacy of the SVM classifier was evaluated through receiver operating characteristic curves. Results Twelve highly preserved modules were obtained using the WGCNA, and 2009 DEGs with significant consistency were selected using the MetaDE method. Sixteen significantly related GO BPs and 12 KEGG pathways were obtained, such as cytokine-cytokine receptor interaction, cell adhesion molecules, and leukocyte transendothelial migration. Subsequently, 41 genes were used to construct an SVM classifier, such as CXCL1, CCR2, IL1B, and IL1A. The area under the curve (AUC) was 0.999 in the training dataset, whereas the AUC was 0.886, 0.790, and 0.819 in the validation set (GSE65114, GSE37283, and GSE36807, respectively). Conclusions An SVM classifier based on feature genes might correctly identify healthy people or UC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01940-0.
Collapse
Affiliation(s)
- Yingbo Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Nanguan District, Number 218, Ziqiang Street, Changchun, 130041, China
| | - Xiumin Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Number 218, Ziqiang Street, Nanguan District, Changchun, 130041, China
| | - Hongmei Dong
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Nanguan District, Number 218, Ziqiang Street, Changchun, 130041, China
| | - Dacheng Wen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Nanguan District, Number 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
17
|
Bai L, Scott MKD, Steinberg E, Kalesinskas L, Habtezion A, Shah NH, Khatri P. Computational drug repositioning of atorvastatin for ulcerative colitis. J Am Med Inform Assoc 2021; 28:2325-2335. [PMID: 34529084 PMCID: PMC8510297 DOI: 10.1093/jamia/ocab165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic inflammatory disorder with limited effective therapeutic options for long-term treatment and disease maintenance. We hypothesized that a multi-cohort analysis of independent cohorts representing real-world heterogeneity of UC would identify a robust transcriptomic signature to improve identification of FDA-approved drugs that can be repurposed to treat patients with UC. MATERIALS AND METHODS We performed a multi-cohort analysis of 272 colon biopsy transcriptome samples across 11 publicly available datasets to identify a robust UC disease gene signature. We compared the gene signature to in vitro transcriptomic profiles induced by 781 FDA-approved drugs to identify potential drug targets. We used a retrospective cohort study design modeled after a target trial to evaluate the protective effect of predicted drugs on colectomy risk in patients with UC from the Stanford Research Repository (STARR) database and Optum Clinformatics DataMart. RESULTS Atorvastatin treatment had the highest inverse-correlation with the UC gene signature among non-oncolytic FDA-approved therapies. In both STARR (n = 827) and Optum (n = 7821), atorvastatin intake was significantly associated with a decreased risk of colectomy, a marker of treatment-refractory disease, compared to patients prescribed a comparator drug (STARR: HR = 0.47, P = .03; Optum: HR = 0.66, P = .03), irrespective of age and length of atorvastatin treatment. DISCUSSION & CONCLUSION These findings suggest that atorvastatin may serve as a novel therapeutic option for ameliorating disease in patients with UC. Importantly, we provide a systematic framework for integrating publicly available heterogeneous molecular data with clinical data at a large scale to repurpose existing FDA-approved drugs for a wide range of human diseases.
Collapse
Affiliation(s)
- Lawrence Bai
- Immunology Program, Stanford University School of Medicine, Stanford, California, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA.,Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
| | - Ethan Steinberg
- Computer Science Program, Department of Computer Science, Stanford University, Stanford, California, USA
| | - Laurynas Kalesinskas
- Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Aida Habtezion
- Immunology Program, Stanford University School of Medicine, Stanford, California, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nigam H Shah
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
18
|
Kim JT, Napier DL, Kim J, Li C, Lee EY, Weiss HL, Wang Q, Evers BM. Ketogenesis alleviates TNFα-induced apoptosis and inflammatory responses in intestinal cells. Free Radic Biol Med 2021; 172:90-100. [PMID: 34087430 PMCID: PMC8355065 DOI: 10.1016/j.freeradbiomed.2021.05.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
The disturbance of strictly regulated self-regeneration in mammalian intestinal epithelium is associated with various intestinal disorders, particularly inflammatory bowel diseases (IBDs). TNFα, which plays a critical role in the pathogenesis of IBDs, has been reported to inhibit production of ketone bodies such as β-hydroxybutyrate (βHB). However, the role of ketogenesis in the TNFα-mediated pathological process is not entirely known. Here, we showed the regulation and role of HMGCS2, the rate-limiting enzyme of ketogenesis, in TNFα-induced apoptotic and inflammatory responses in intestinal epithelial cells. Treatment with TNFα dose-dependently decreased protein and mRNA expression of HMGCS2 and its product, βHB production in human colon cancer cell lines HT29 and Caco2 cells and mouse small intestinal organoids. Moreover, the repressed level of HMGCS2 protein was found in intestinal epithelium of IBD patients with Crohn's disease and ulcerative colitis as compared with normal tissues. Furthermore, knockdown of HMGCS2 enhanced and in contrast, HMGCS2 overexpression attenuated, the TNFα-induced apoptosis and expression of pro-inflammatory chemokines (CXCL1-3) in HT29, Caco2 cells and DLD1 cells, respectively. Treatment with βHB or rosiglitazone, an agonist of PPARγ, which increases ketogenesis, attenuated TNFα-induced apoptosis in the intestinal epithelial cells. Finally, HMGCS2 knockdown enhanced TNFα-induced reactive oxygen species (ROS) generation. In addition, hydrogen peroxide, the major ROS contributing to intestine injury, decreased HMGCS2 expression and βHB production in the intestinal cells and mouse organoids. Our findings demonstrate that increased ketogenesis attenuates TNFα-induced apoptosis and inflammation in intestinal cells, suggesting a protective role for ketogenesis in TNFα-induced intestinal pathologies.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | | | - Jinhwan Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Chang Li
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery, Lexington, KY, 40536, USA
| | | | - Qingding Wang
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
19
|
Zhou X, Peng M, He Y, Peng J, Zhang X, Wang C, Xia X, Song W. CXC Chemokines as Therapeutic Targets and Prognostic Biomarkers in Skin Cutaneous Melanoma Microenvironment. Front Oncol 2021; 11:619003. [PMID: 33767987 PMCID: PMC7985846 DOI: 10.3389/fonc.2021.619003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Background Skin Cutaneous Melanoma (SKCM) is a tumor of the epidermal melanocytes induced by gene activation or mutation. It is the result of the interaction between genetic, constitutional, and environmental factors. SKCM is highly aggressive and is the most threatening skin tumor. The incidence of the disease is increasing year by year, and it is the main cause of death in skin tumors around the world. CXC chemokines in the tumor microenvironment can regulate the transport of immune cells and the activity of tumor cells, thus playing an anti-tumor immunological role and affecting the prognosis of patients. However, the expression level of CXC chemokine in SKCM and its effect on prognosis are still unclear. Method Oncomine, UALCAN, GEPIA, STRING, GeneMANIA, cBioPortal, TIMER, TRRUST, DAVID 6.8, and Metascape were applied in our research. Result The transcription of CXCL1, CXCL5, CXCL8, CXCL9, CXCL10, and CXCL13 in SKCM tissues were significantly higher than those in normal tissues. The pathological stage of SKCM patients is closely related to the expression of CXCL4, CXCL9, CXCL10, CXCL11, CXCL12, and CXCL13. The prognosis of SKCM patients with low transcription levels of CXCL4, CXCL9, CXCL10, CXCL11, and CXCL13 is better. The differential expression of CXC chemokines is mainly associated with inflammatory response, immune response, and cytokine mediated signaling pathways. Our data indicate that the key transcription factors of CXC chemokines are RELA, NF-κB1 and SP1. The targets of CXC chemokines are mainly LCK, LYN, SYK, MAPK2, MAPK12, and ART. The relationship between CXC chemokine expression and immune cell infiltration in SKCM was closed. Conclusions Our research provides a basis for screening SKCM biomarkers, predicting prognosis, and choosing immunotherapy.
Collapse
Affiliation(s)
- Xuezhi Zhou
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Manjuan Peng
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Ye He
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Jingjie Peng
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Zhang
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Chao Wang
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Weitao Song
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Li G, Zhang B, Hao J, Chu X, Wiestler M, Cornberg M, Xu CJ, Liu X, Li Y. Identification of Novel Population-Specific Cell Subsets in Chinese Ulcerative Colitis Patients Using Single-Cell RNA Sequencing. Cell Mol Gastroenterol Hepatol 2021; 12:99-117. [PMID: 33545427 PMCID: PMC8081991 DOI: 10.1016/j.jcmgh.2021.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Genome-wide association studies (GWAS) and transcriptome analyses have been performed to better understand the pathogenesis of ulcerative colitis (UC). However, current studies mainly focus on European ancestry, highlighting a great need to identify the key genes, pathways and cell types in colonic mucosal cells of adult UC patients from other ancestries. Here we aimed to identify key genes and cell types in colonic mucosal of UC. METHODS We performed Single-cell RNA sequencing (scRNA-seq) analysis of 12 colon biopsies of UC patients and healthy controls from Chinese Han ancestry. RESULTS Two novel plasma subsets were identified. Five epithelial/stromal and three immune cell subsets show significant difference in abundance between inflamed and non-inflamed samples. In general, UC risk genes show consistent expression alteration in both Immune cells of inflamed and non-inflamed tissues. As one of the exceptions, IgA defection, marking the signal of immune dysfunction, is specific to the inflamed area. Moreover, Th17 derived activation was observed in both epithelial cell lineage and immune cell lineage of UC patients as compared to controls , suggesting a systemic change of immune activities driven by Th17. The UC risk genes show enrichment in progenitors, glial cells and immune cells, and drug-target genes are differentially expressed in antigen presenting cells. CONCLUSIONS Our work identifies novel population-specific plasma cell molecular signatures of UC. The transcriptional signature of UC is shared in immune cells from both inflamed and non-inflamed tissues, whereas the transcriptional response to disease is a local effect only in inflamed epithelial/stromal cells.
Collapse
Affiliation(s)
- Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Bowen Zhang
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Xiaojing Chu
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Miriam Wiestler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, China,Correspondence Address correspondence to: Xinjuan Liu, PhD, Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, 100020, China.
| | - Yang Li
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
21
|
Heidari MH, Razzaghi M, Akbarzadeh Baghban A, Rostami-Nejad M, Rezaei-Tavirani M, Zamanian Azodi M, Zali A, Ahmadzadeh A. Assessment of the Microbiome Role in Skin Protection Against UV Irradiation Via Network Analysis. J Lasers Med Sci 2020; 11:238-242. [PMID: 32802281 PMCID: PMC7369546 DOI: 10.34172/jlms.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Diverse microbiotas which have some contributions to gene expression reside in human skin. To identify the protective role of the skin microbiome against UV exposure, proteinprotein interaction (PPI) network analysis is used to assessment gene expression alteration. Methods: A microarray dataset, GEO accession number GSE117359, was considered in this respect. Differential expressed genes (DEGs) in the germ-free (GF) and specific pathogen-free (SPF) groups are analyzed by GEO2R. The top significant DEGs were assigned for network analysis via Cytoscape 3.7.2 and its applications. Results: A total of 28 genes were identified as significant DEGs and the centrality analysis of the network indicated that only one of the seven hub-bottlenecks was from queried genes. The gene ontology analysis of Il6, Cxcl2, Cxcl1, TNF, Il10, Cxcl10, and Mmp9 showed that the crucial genes were highly enriched in the immune system. Conclusion: The skin microbiome plays a significant role in the protection of skin against UV irradiation and the role of TNF and IL6 is prominent in this regard.
Collapse
Affiliation(s)
- Mohammad Hossein Heidari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Akbarzadeh Baghban
- Proteomics Research Center, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadzadeh
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
SLC1A1, SLC16A9, and CNTN3 Are Potential Biomarkers for the Occurrence of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1204605. [PMID: 32566650 PMCID: PMC7273407 DOI: 10.1155/2020/1204605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Background This study is aimed at identifying unknown clinically relevant genes involved in colorectal cancer using bioinformatics analysis. Methods Original microarray datasets GSE107499 (ulcerative colitis), GSE8671 (colorectal adenoma), and GSE32323 (colorectal cancer) were downloaded from the Gene Expression Omnibus. Common differentially expressed genes were filtered from the three datasets above. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed, followed by construction of a protein-protein interaction network to identify hub genes. Kaplan-Meier survival analysis and TIMER database analysis were used to screen the genes related to the prognosis and tumour-infiltrating immune cells of colorectal cancer. Receiver operating characteristic curves were used to assess whether the genes could be used as markers for the diagnosis of ulcerative colitis, colorectal adenoma, and colorectal cancer. Results A total of 237 differentially expressed genes common to the three datasets were identified, of which 60 were upregulated, 125 were downregulated, and 52 genes that were inconsistently up- and downregulated. Common differentially expressed genes were mainly enriched in the cellular component of extracellular exosome and integral component of membrane categories. Eight hub genes, i.e., CXCL3, CXCL8, CEACAM7, CNTN3, SLC1A1, SLC16A9, SLC4A4, and TIMP1, were related to the prognosis and tumour-infiltrating immune cells of colorectal cancer, and these genes have diagnostic value for ulcerative colitis, colorectal adenoma, and colorectal cancer. Conclusion Three novel genes, CNTN3, SLC1A1, and SLC16A9 were shown to have diagnostic value with respect to the occurrence of colorectal cancer and should be verified in future studies.
Collapse
|