1
|
Zimmerman E, Sturrock A, Reilly CA, Burrell-Gerbers KL, Warren K, Mir-Kasimov M, Zhang MA, Pierce MS, Helms MN, Paine R. Aryl Hydrocarbon Receptor Activation in Pulmonary Alveolar Epithelial Cells Limits Inflammation and Preserves Lung Epithelial Cell Integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:600-611. [PMID: 39033086 PMCID: PMC11335325 DOI: 10.4049/jimmunol.2300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a receptor/transcription factor widely expressed in the lung. The physiological roles of AHR expressed in the alveolar epithelium remain unclear. In this study, we tested the hypothesis that alveolar epithelial AHR activity plays an important role in modulating inflammatory responses and maintaining alveolar integrity during lung injury and repair. AHR is expressed in alveolar epithelial cells (AECs) and is active. AHR activation with the endogenous AHR ligand, FICZ (5,11-dihydroindolo[3,2-b] carbazole-6-carboxaldehyde), significantly suppressed inflammatory cytokine expression in response to inflammatory stimuli in primary murine AECs and in the MLE-15 epithelial cell line. In an LPS model of acute lung injury in mice, coadministration of FICZ with LPS suppressed protein leak, reduced neutrophil accumulation in BAL fluid, and suppressed inflammatory cytokine expression in lung tissue and BAL fluid. Relevant to healing following inflammatory injury, AHR activation suppressed TGF-β-induced expression of genes associated with epithelial-mesenchymal transition. Knockdown of AHR in primary AECs with shRNA or in CRISPR-Cas-9-induced MLE-15 cells resulted in upregulation of α-smooth muscle actin (αSma), Col1a1, and Fn1 and reduced expression of epithelial genes Col4a1 and Sdc1. MLE-15 clones lacking AHR demonstrated accelerated wound closure in a scratch model. AHR activation with FICZ enhanced barrier function (transepithelial electrical resistance) in primary murine AECs and limited decline of transepithelial electrical resistance following inflammatory injury. AHR activation in AECs preserves alveolar integrity by modulating inflammatory cytokine expression while enhancing barrier function and limiting stress-induced expression of mesenchymal genes.
Collapse
Affiliation(s)
- Elizabeth Zimmerman
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Anne Sturrock
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Christopher A. Reilly
- Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT
| | | | - Kristi Warren
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Mustafa Mir-Kasimov
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Mingyang A. Zhang
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Megan S. Pierce
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - My N. Helms
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Robert Paine
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| |
Collapse
|
2
|
López-Valdez N, Rojas-Lemus M, Bizarro-Nevares P, González-Villalva A, Casarrubias-Tabarez B, Cervantes-Valencia ME, Ustarroz-Cano M, Morales-Ricardes G, Mendoza-Martínez S, Guerrero-Palomo G, Fortoul TI. The multiple facets of the club cell in the pulmonary epithelium. Histol Histopathol 2024; 39:969-982. [PMID: 38329181 DOI: 10.14670/hh-18-713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The non-ciliated bronchiolar cell, also referred to as "club cell", serves as a significant multifunctional component of the airway epithelium. While the club cell is a prominent epithelial type found in rodents, it is restricted to the bronchioles in humans. Despite these differences, the club cell's importance remains undisputed in both species due to its multifunctionality as a regulatory cell in lung inflammation and a stem cell in lung epithelial regeneration. The objective of this review is to examine different aspects of club cell morphology and physiology in the lung epithelium, under both normal and pathological conditions, to provide a comprehensive understanding of its importance in the respiratory system.
Collapse
Affiliation(s)
- Nelly López-Valdez
- Department of Cellular and Tisular Biology, School of Medicine, UNAM, Ciudad de México, México
| | - Marcela Rojas-Lemus
- Department of Cellular and Tisular Biology, School of Medicine, UNAM, Ciudad de México, México
| | | | | | | | | | - Martha Ustarroz-Cano
- Department of Cellular and Tisular Biology, School of Medicine, UNAM, Ciudad de México, México
| | | | - Shamir Mendoza-Martínez
- Department of Cellular and Tisular Biology, School of Medicine, UNAM, Ciudad de México, México
| | | | - Teresa I Fortoul
- Department of Cellular and Tisular Biology, School of Medicine, UNAM, Ciudad de México, México.
| |
Collapse
|
3
|
Kayalar Ö, Rajabi H, Konyalilar N, Mortazavi D, Aksoy GT, Wang J, Bayram H. Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Front Immunol 2024; 15:1324552. [PMID: 38524119 PMCID: PMC10957538 DOI: 10.3389/fimmu.2024.1324552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Air pollution plays an important role in the mortality and morbidity of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Particulate matter (PM) is a significant fraction of air pollutants, and studies have demonstrated that it can cause airway inflammation and injury. The airway epithelium forms the first barrier of defense against inhaled toxicants, such as PM. Airway epithelial cells clear airways from inhaled irritants and orchestrate the inflammatory response of airways to these irritants by secreting various lipid mediators, growth factors, chemokines, and cytokines. Studies suggest that PM plays an important role in the pathogenesis of chronic airway diseases by impairing mucociliary function, deteriorating epithelial barrier integrity, and inducing the production of inflammatory mediators while modulating the proliferation and death of airway epithelial cells. Furthermore, PM can modulate epithelial plasticity and airway remodeling, which play central roles in asthma and COPD. This review focuses on the effects of PM on airway injury and epithelial plasticity, and the underlying mechanisms involving mucociliary activity, epithelial barrier function, airway inflammation, epithelial-mesenchymal transition, mesenchymal-epithelial transition, and airway remodeling.
Collapse
Affiliation(s)
- Özgecan Kayalar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Hadi Rajabi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Nur Konyalilar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Deniz Mortazavi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Gizem Tuşe Aksoy
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Türkiye
| |
Collapse
|
4
|
Upadhyay S, Rahman M, Rinaldi S, Koelmel J, Lin EZ, Mahesh PA, Beckers J, Johanson G, Pollitt KJG, Palmberg L, Irmler M, Ganguly K. Assessment of wood smoke induced pulmonary toxicity in normal- and chronic bronchitis-like bronchial and alveolar lung mucosa models at air-liquid interface. Respir Res 2024; 25:49. [PMID: 38245732 PMCID: PMC10799428 DOI: 10.1186/s12931-024-02686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.
Collapse
Affiliation(s)
- Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Selina Rinaldi
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354, Freising, Germany
| | - Gunnar Johanson
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
5
|
Tsai ML, Hsu SH, Wang LT, Liao WT, Lin YC, Kuo CH, Hsu YL, Feng MC, Kuo FC, Hung CH. Di(2-ethylhexyl) phthalate mediates IL-33 production via aryl hydrocarbon receptor and is associated with childhood allergy development. Front Immunol 2023; 14:1193647. [PMID: 37545493 PMCID: PMC10401841 DOI: 10.3389/fimmu.2023.1193647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Background Few studies assess cord blood biomarkers to predict prenatal exposure to di(2-ethylhexyl) phthalate (DEHP) on the development of allergic diseases later in childhood. IL-33 has been indicated to play an important role in allergic diseases. We evaluated the association of prenatal DEHP exposure and IL-33 in cord blood on the development of allergic diseases. We also investigated the mechanism of DEHP in human lung epithelial cells and asthma animal models. Methods 66 pregnant women were recruited, and their children followed when they were aged 3 years. Maternal urinary DEHP metabolites were determined using liquid chromatography-electrospray-ionization-tandem mass spectrometry. The effect of DEHP on IL-33 production was investigated in human lung epithelial cells and club cell-specific aryl hydrocarbon receptor (AhR) deficiency mice. ELISA and RT-PCR, respectively, measured the IL-33 cytokine concentration and mRNA expression. Results The concentrations of maternal urinary DEHP metabolites and serum IL-33 in cord blood with childhood allergy were significantly higher than those in the non-childhood allergy group. DEHP and MEHP could induce IL-33 production and reverse by AhR antagonist and flavonoids in vitro. Enhanced ovalbumin-induced IL-4 and IL-33 production in bronchoalveolar lavage fluid (BALF) by DEHP exposure and suppressed in club cell-specific AhR null mice. Kaempferol has significantly reversed the DEHP effect in the asthma animal model. Conclusions Cord blood IL-33 level was correlated to childhood allergy and associated with maternal DEHP exposure. IL-33 might be a potential target to assess the development of DEHP-related childhood allergic disease. Flavonoids might be the natural antidotes for DEHP.
Collapse
Affiliation(s)
- Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ting Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Ting Liao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program of Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Hung Kuo
- Ta-Kuo Clinic, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Chu Feng
- Department of Superintendent, High Commissioner, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Fu-Chen Kuo
- Department of Gynecology and Obstetrics, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Rahman M, Irmler M, Introna M, Beckers J, Palmberg L, Johanson G, Upadhyay S, Ganguly K. Insight into the pulmonary molecular toxicity of heated tobacco products using human bronchial and alveolar mucosa models at air-liquid interface. Sci Rep 2022; 12:16396. [PMID: 36180488 PMCID: PMC9525689 DOI: 10.1038/s41598-022-20657-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Heated tobacco products (HTP) are novel nicotine delivery products with limited toxicological data. HTP uses heating instead of combustion to generate aerosol (HTP-smoke). Physiologically relevant human bronchial and alveolar lung mucosa models developed at air-liquid interface were exposed to HTP-smoke to assess broad toxicological response (n = 6-7; ISO puffing regimen; compared to sham; non-parametric statistical analysis; significance: p < 0.05). Elevated levels of total cellular reactive oxygen species, stress responsive nuclear factor kappa-B, and DNA damage markers [8-hydroxy-2'-deoxyguanosine, phosphorylated histone H2AX, cleaved poly-(ADP-Ribose) polymerase] were detected in HTP-smoke exposed bronchial and/or alveolar models. RNA sequencing detected differential regulation of 724 genes in the bronchial- and 121 genes in the alveolar model following HTP-smoke exposure (cut off: p ≤ 0.01; fold change: ≥ 2). Common enriched pathways included estrogen biosynthesis, ferroptosis, superoxide radical degradation, xenobiotics, and α-tocopherol degradation. Secreted levels of interleukin (IL)1ꞵ and IL8 increased in the bronchial model whereas in the alveolar model, interferon-γ and IL4 increased and IL13 decreased following HTP-smoke exposure. Increased lipid peroxidation was detected in HTP-smoke exposed bronchial and alveolar models which was inhibited by ferrostatin-1. The findings form a basis to perform independent risk assessment studies on different flavours of HTP using different puffing topography and corresponding chemical characterization.
Collapse
Affiliation(s)
- Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Micol Introna
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354, Freising, Germany
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Gunnar Johanson
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|