1
|
Cai R, Zhu H, Liu Y, Sha H, Peng W, Yin R, Zhou G, Fang Y. To be, or not to be: the dilemma of immunotherapy for non-small cell lung cancer harboring various driver mutations. J Cancer Res Clin Oncol 2023; 149:10027-10040. [PMID: 37261523 PMCID: PMC10423141 DOI: 10.1007/s00432-023-04919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Lung cancer is one of primary cancer type with high incidence and mortality, non-small cell lung cancer (NSCLC) is the most common type of lung cncer. For advanced lung cancer, traditional chemotherapy and targeted therapy become difficult to solve the dilemma of further progress. In recent years, with the clinical application of immunotherapy, the therapeutic strategy of lung cancer has changed dramatically. At present, immunotherapy has shown conspicuous efficacy in NSCLC patients with high expression of programmed death-ligand 1 (PD-L1) and high tumor mutational burden (TMB). The discovery of driver mutations brings delightful hope for targeted cancer therapy. However, it remains controversial whether immunotherapy can be used in NSCLC patients with these specific driver mutations. METHOD This article summarized the latest research progresses of immunotherapy in advanced NSCLC. We paid close attention to the relevance of various driver mutations and immunotherapy in NSCLC patients, and summarized the predictive effects of several driver mutations and immunotherapy. RESULTS The mutations of KRAS, KRAS+TP53, EPHA (especially EPHA5), ZFHX3, ZFHX3+TP53, NOTCH, BRAF and LRP1B+FAT3 have potential to be used as biomarkers to predict the positive effectiveness of immunotherapy. ZFHX3, ZFHX3+TP53, STKII/LKB1+KEAP1+SMARCA4+PBRM1 mutations in LUAD patients get more positive effect in immunotherapy. While the mutations of EGFR, KEAP1, STKII/LKB1+KRAS, EML4-ALK, MET exon 14 skipping mutation, PBRM1, STKII/LKB1+KEAP1+SMARCA4+PBRM1, ERBB2, PIK3CA and RET often indicate poor benefit from immunotherapy. CONCLUSION Many gene mutations have been shown to be associated with immunotherapy efficacy. Gene mutations should be combined with PD-L1, TMB, etc. to predict the effect of immunotherapy.
Collapse
Affiliation(s)
- Ruoxue Cai
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, People's Republic of China
| | - Hongyu Zhu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, People's Republic of China
| | - Ying Liu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, People's Republic of China
| | - Huanhuan Sha
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Weiwei Peng
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, People's Republic of China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, People's Republic of China.
| | - Ying Fang
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
2
|
Zhou K, Li S, Zhao Y, Cheng K. Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1127071. [PMID: 36845142 PMCID: PMC9944349 DOI: 10.3389/fimmu.2023.1127071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) in the form of anti-CTLA-4 and anti-PD-1/PD-L1 have become the frontier of cancer treatment and successfully prolonged the survival of patients with advanced non-small cell lung cancer (NSCLC). But the efficacy varies among different patient population, and many patients succumb to disease progression after an initial response to ICIs. Current research highlights the heterogeneity of resistance mechanisms and the critical role of tumor microenvironment (TME) in ICIs resistance. In this review, we discussed the mechanisms of ICIs resistance in NSCLC, and proposed strategies to overcome resistance.
Collapse
Affiliation(s)
- Kexun Zhou
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital Sichuan University, Chengdu, China
| | - Yi Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Ke Cheng
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Teng J, Zhou K, Lv D, Wu C, Feng H. Case Report: PTEN Mutation Induced by anti-PD-1 Therapy in Stage IV Lung Adenocarcinoma. Front Pharmacol 2022; 13:714408. [PMID: 35677433 PMCID: PMC9168362 DOI: 10.3389/fphar.2022.714408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
Lung cancer is the most common solid tumor in the worldwide. Targeted therapy and immunotherapy are important treatment options in advanced non-small cell lung cancer (NSCLC). The association of PTEN mutation and tumor immunotherapy is less established for patients with NSCLC. We present the case of an Asian woman diagnosed with stage IV lung adenocarcinoma harboring an ERBB2 mutation. She received Nivolumab treatment when her disease progresses after previous chemotherapy and Afatinib treatment. However, the patient did not response to Nivolumab. PTEN mutation was detected by next-generation sequencing (NGS) after treatment with Nivolumab. PTEN, a secondary mutation, may be served as a biomarker of resistance to anti-PD-1 immunotherapy in lung adenocarcinoma. The relationship between PTEN mutation and immunotherapy is complex and needs further study.
Collapse
Affiliation(s)
- Junjie Teng
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Radiotherapy, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Kai Zhou
- Department of Radiotherapy, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dongxiao Lv
- Department of Radiotherapy, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Changshun Wu
- Department of Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hong Feng
- Department of Radiotherapy, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
5
|
PTEN Function at the Interface between Cancer and Tumor Microenvironment: Implications for Response to Immunotherapy. Int J Mol Sci 2020; 21:ijms21155337. [PMID: 32727102 PMCID: PMC7432882 DOI: 10.3390/ijms21155337] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Mounting preclinical and clinical evidence indicates that rewiring the host immune system in favor of an antitumor microenvironment achieves remarkable clinical efficacy in the treatment of many hematological and solid cancer patients. Nevertheless, despite the promising development of many new and interesting therapeutic strategies, many of these still fail from a clinical point of view, probably due to the lack of prognostic and predictive biomarkers. In that respect, several data shed new light on the role of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN) in affecting the composition and function of the tumor microenvironment (TME) as well as resistance/sensitivity to immunotherapy. In this review, we summarize current knowledge on PTEN functions in different TME compartments (immune and stromal cells) and how they can modulate sensitivity/resistance to different immunological manipulations and ultimately influence clinical response to cancer immunotherapy.
Collapse
|
6
|
Roelands J, Hendrickx W, Zoppoli G, Mall R, Saad M, Halliwill K, Curigliano G, Rinchai D, Decock J, Delogu LG, Turan T, Samayoa J, Chouchane L, Ballestrero A, Wang E, Finetti P, Bertucci F, Miller LD, Galon J, Marincola FM, Kuppen PJK, Ceccarelli M, Bedognetti D. Oncogenic states dictate the prognostic and predictive connotations of intratumoral immune response. J Immunother Cancer 2020; 8:e000617. [PMID: 32376723 PMCID: PMC7223637 DOI: 10.1136/jitc-2020-000617] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND An immune active cancer phenotype typified by a T helper 1 (Th-1) immune response has been associated with increased responsiveness to immunotherapy and favorable prognosis in some but not all cancer types. The reason of this differential prognostic connotation remains unknown. METHODS To explore the contextual prognostic value of cancer immune phenotypes, we applied a multimodal pan-cancer analysis among 31 different histologies (9282 patients), encompassing immune and oncogenic transcriptomic analysis, mutational and neoantigen load and copy number variations. RESULTS We demonstrated that the favorable prognostic connotation conferred by the presence of a Th-1 immune response was abolished in tumors displaying specific tumor-cell intrinsic attributes such as high transforming growth factor-beta (TGF-β) signaling and low proliferation capacity. This observation was independent of mutation rate. We validated this observation in the context of immune checkpoint inhibition. WNT-β catenin, barrier molecules, Notch, hedgehog, mismatch repair, telomerase activity and AMPK signaling were the pathways most coherently associated with an immune silent phenotype together with mutations of driver genes including IDH1/2, FOXA2, HDAC3, PSIP1, MAP3K1, KRAS, NRAS, EGFR, FGFR3, WNT5A and IRF7. CONCLUSIONS This is the first systematic study demonstrating that the prognostic and predictive role of a bona fide favorable intratumoral immune response is dependent on the disposition of specific oncogenic pathways. This information could be used to refine stratification algorithms and prioritize hierarchically relevant targets for combination therapies.
Collapse
Affiliation(s)
- Jessica Roelands
- Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Wouter Hendrickx
- Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Gabriele Zoppoli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Raghvendra Mall
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mohamad Saad
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Kyle Halliwill
- Genomics Research Center (GRC), AbbVie Biotherapeutics, Redwood City, California, USA
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Darawan Rinchai
- Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Lucia G Delogu
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padua, Italy
| | - Tolga Turan
- Genomics Research Center (GRC), AbbVie Biotherapeutics, Redwood City, California, USA
| | - Josue Samayoa
- Genomics Research Center (GRC), AbbVie Biotherapeutics, Redwood City, California, USA
| | | | - Alberto Ballestrero
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | | | | | | | | | | | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Michele Ceccarelli
- Genomics Research Center (GRC), AbbVie Biotherapeutics, Redwood City, California, USA
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
- Istituto di Ricerche Genetiche "G. Salvatore", Biogem s.c.ar.l, 83031, Ariano Irpino, Italy
| | - Davide Bedognetti
- Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
7
|
Titov A, Valiullina A, Zmievskaya E, Zaikova E, Petukhov A, Miftakhova R, Bulatov E, Rizvanov A. Advancing CAR T-Cell Therapy for Solid Tumors: Lessons Learned from Lymphoma Treatment. Cancers (Basel) 2020; 12:cancers12010125. [PMID: 31947775 PMCID: PMC7016531 DOI: 10.3390/cancers12010125] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor (CAR) immunotherapy is one of the most promising modern approaches for the treatment of cancer. To date only two CAR T-cell products, Kymriah® and Yescarta®, have been approved by the Food and Drug Administration (FDA) for the treatment of lymphoblastic leukemia and B-cell lymphoma. Administration of CAR T-cells to control solid tumors has long been envisaged as one of the most difficult therapeutic tasks. The first two clinical trials conducted in sarcoma and neuroblastoma patients showed clinical benefits of CAR T-cells, yet multiple obstacles still hold us back from having accessible and efficient therapy. Why did such an effective treatment for relapsed and refractory hematological malignancies demonstrate only relatively modest efficiency in the context of solid tumors? Is it due to the lucky selection of the “magic” CD19 antigen, which might be one of a kind? Or do lymphomas lack the immunosuppressive features of solid tumors? Here we review the existing knowledge in the field of CAR T-cell therapy and address the heterogeneity of solid tumors and their diverse strategies of immunoevasion. We also provide an insight into prospective developments of CAR T-cell technologies against solid tumors.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (A.V.); (E.Z.); (A.P.); (R.M.)
- Laboratory of Transplantation Immunology, National Hematology Research Centre, 125167 Moscow, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (A.V.); (E.Z.); (A.P.); (R.M.)
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (A.V.); (E.Z.); (A.P.); (R.M.)
| | - Ekaterina Zaikova
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia;
| | - Alexey Petukhov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (A.V.); (E.Z.); (A.P.); (R.M.)
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia;
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (A.V.); (E.Z.); (A.P.); (R.M.)
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (A.V.); (E.Z.); (A.P.); (R.M.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: (E.B.); (A.R.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (A.V.); (E.Z.); (A.P.); (R.M.)
- Correspondence: (E.B.); (A.R.)
| |
Collapse
|
8
|
Revising PTEN in the Era of Immunotherapy: New Perspectives for an Old Story. Cancers (Basel) 2019; 11:cancers11101525. [PMID: 31658667 PMCID: PMC6826982 DOI: 10.3390/cancers11101525] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has emerged as the new therapeutic frontier of cancer treatment, showing enormous survival benefits in multiple tumor diseases. Although undeniable success has been observed in clinical trials, not all patients respond to treatment. Different concurrent conditions can attenuate or completely abrogate the usefulness of immunotherapy due to the activation of several escape mechanisms. Indeed, the tumor microenvironment has an almost full immunosuppressive profile, creating an obstacle to therapeutic treatment. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) governs a plethora of cellular processes, including maintenance of genomic stability, cell survival/apoptosis, migration, and metabolism. The repertoire of PTEN functions has recently been expanded to include regulation of the tumor microenvironment and immune system, leading to a drastic reevaluation of the canonical paradigm of PTEN action with new potential implications for immunotherapy-based approaches. Understanding the implication of PTEN in cancer immunoediting and immune evasion is crucial to develop new cancer intervention strategies. Recent evidence has shown a double context-dependent role of PTEN in anticancer immunity. Here we summarize the current knowledge of PTEN’s role at a crossroads between tumor and immune compartments, highlighting the most recent findings that are likely to change future clinical practice.
Collapse
|
9
|
Cretella D, Digiacomo G, Giovannetti E, Cavazzoni A. PTEN Alterations as a Potential Mechanism for Tumor Cell Escape from PD-1/PD-L1 Inhibition. Cancers (Basel) 2019; 11:1318. [PMID: 31500143 PMCID: PMC6770107 DOI: 10.3390/cancers11091318] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
The recent approval of immune checkpoint inhibitors drastically changed the standard treatments in many advanced cancer patients, but molecular changes within the tumor can prevent the activity of immunotherapy drugs. Thus, the introduction of the inhibitors of the immune checkpoint programmed death-1/programmed death ligand-1 (PD-1/PD-L1), should prompt deeper studies on resistance mechanisms, which can be caused by oncogenic mutations detected in cancer cells. PTEN, a tumor suppressor gene, dephosphorylates the lipid signaling intermediate PIP3 with inhibition of AKT activity, one of the main effectors of the PI3K signaling axis. As a consequence of genetic or epigenetic aberrations, PTEN expression is often altered, with increased activation of PI3K axis. Interestingly, some data confirmed that loss of PTEN expression modified the pattern of cytokine secretion creating an immune-suppressive microenvironment with increase of immune cell populations that can promote tumor progression. Moreover, PTEN loss may be ascribed to reduction of tumor infiltrating lymphocytes (TILs), which can explain the absence of activity of immune checkpoint inhibitors. This review describes the role of PTEN loss as a mechanism responsible for resistance to anti PD-1/PD-L1 treatment. Moreover, combinatorial strategies between PD-1/PD-L1 inhibitors and PI3K/AKT targeting drugs are proposed as a new strategy to overcome resistance to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Daniele Cretella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081HV Amsterdam, The Netherlands.
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy.
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
10
|
Gkountakos A, Sartori G, Falcone I, Piro G, Ciuffreda L, Carbone C, Tortora G, Scarpa A, Bria E, Milella M, Rosell R, Corbo V, Pilotto S. PTEN in Lung Cancer: Dealing with the Problem, Building on New Knowledge and Turning the Game Around. Cancers (Basel) 2019; 11:cancers11081141. [PMID: 31404976 PMCID: PMC6721522 DOI: 10.3390/cancers11081141] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common malignancy and cause of cancer deaths worldwide, owing to the dismal prognosis for most affected patients. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) acts as a powerful tumor suppressor gene and even partial reduction of its levels increases cancer susceptibility. While the most validated anti-oncogenic duty of PTEN is the negative regulation of the PI3K/mTOR/Akt oncogenic signaling pathway, further tumor suppressor functions, such as chromosomal integrity and DNA repair have been reported. PTEN protein loss is a frequent event in lung cancer, but genetic alterations are not equally detected. It has been demonstrated that its expression is regulated at multiple genetic and epigenetic levels and deeper delineation of these mechanisms might provide fertile ground for upgrading lung cancer therapeutics. Today, PTEN expression is usually determined by immunohistochemistry and low protein levels have been associated with decreased survival in lung cancer. Moreover, available data involve PTEN mutations and loss of activity with resistance to targeted treatments and immunotherapy. This review discusses the current knowledge about PTEN status in lung cancer, highlighting the prevalence of its alterations in the disease, the regulatory mechanisms and the implications of PTEN on available treatment options.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Giulia Sartori
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Ludovica Ciuffreda
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Michele Milella
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Rafael Rosell
- Germans Trias i Pujol, Health Sciences Institute and Hospital, Campus Can Ruti, 08916 Badalona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy.
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy.
| | - Sara Pilotto
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy.
| |
Collapse
|