1
|
Khanmohammadi R, Inanlu M, Manesh VR. Region-specific cognitive effects of HD-tDCS in older adults: M1, DLPFC, and cerebellum. Behav Brain Res 2025; 486:115571. [PMID: 40174444 DOI: 10.1016/j.bbr.2025.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/04/2025]
Abstract
While regions like the primary motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), and cerebellum are linked to cognitive functions, it is unclear which offers the greatest cognitive benefit. This study aimed to assess the effects of high-definition transcranial direct current stimulation (HD-tDCS) on these regions, focusing on inhibitory control, cognitive flexibility, and working memory. This parallel, randomized, double-blinded, and controlled trial involved 80 older adults, randomly assigned to one of four groups: anodal stimulation of M1, left DLPFC, cerebellum, or sham. Inhibitory control was assessed using reaction time (RT) and rate-correct score (RCS) from a Go/No-Go task. Trail Making Test A (TMT-A) and B (TMT-B) measured processing speed and cognitive flexibility, while the backward digit span test evaluated working memory. All assessments were conducted pre- and post-stimulation. Notably, cerebellum stimulation significantly improved working memory (p = 0.010), whereas M1, DLPFC, and sham did not. Significant interaction effects emerged for TMT-A and TMT-B, with both M1 and DLPFC stimulation enhancing performance (TMT-A: p = 0.005, p = 0.025; TMT-B: p < 0.001, p = 0.045, respectively), while cerebellum and sham had no significant impact. Additionally, RT and RCS showed no significant effects. Anodal stimulation of M1 and DLPFC improved cognitive flexibility and processing speed, whereas cerebellum stimulation selectively enhanced working memory. However, inhibitory control did not improve, highlighting the need for further tailored interventions. These findings underscore distinct region-specific effects of tDCS on cognitive performance in older adults.
Collapse
Affiliation(s)
- Roya Khanmohammadi
- Department of Physical Therapy, School of Rehabilitation Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrnaz Inanlu
- Department of Physical Therapy, School of Rehabilitation Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Rafiee Manesh
- Department of Physical Therapy, School of Rehabilitation Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Aksu S, Indahlastari A, O'Shea A, Marsiske M, Cohen R, Alexander GE, DeKosky ST, Hishaw GA, Dai Y, Wu SS, Woods AJ. Effect of transcranial direct current stimulation with cognitive training on executive functions in healthy older adults: a secondary analysis from the ACT trial. GeroScience 2025; 47:1361-1380. [PMID: 39614040 PMCID: PMC11872955 DOI: 10.1007/s11357-024-01455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Cognitive aging has become a public health concern as the mean age of the population is ever-increasing. It is a naturalistic and common process of degenerative and compensatory changes that may result in neurocognitive disorders. While heterogeneous, cognitive aging mostly affects executive functions that may be associated with functional losses during activities of daily living. Cognition-oriented treatments like cognitive training and transcranial direct current stimulation (tDCS) have garnered considerable attention in the past few decades while the exact picture regarding their efficacy in healthy older adults has not been determined yet. The present paper aimed to evaluate the effects of a 3-month intervention of tDCS over the dorsolateral prefrontal cortex (DLPFC) with multimodal cognitive training on the Stroop test and Trail Making Tests A and B performance. One hundred and ninety-three healthy older adults from 2 sites were administered repeated sessions of active/sham tDCS with cognitive training. Baseline, post-intervention, and 1-year performance results between groups were compared using multiple linear regressions. Active tDCS resulted in better Stroop test performance at post-intervention (p = 0.033) but not at 1-year follow-up while no differences between groups were observed in Trail Making Tests A & B performance. The present results may correspond to a modest improvement in conflict monitoring, potentially due to modulation of prefrontal regions, without changing shifting performance. Further investigation is warranted to draw an interference regarding the subdomain-specific impact of repeated tDCS with multimodal cognitive training on executive functions.
Collapse
Affiliation(s)
- Serkan Aksu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA.
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| |
Collapse
|
3
|
Schneider BS, McInnis M, Di Rita V, Hampstead BM. Personalized high-definition transcranial direct current stimulation improves cognition following carbon monoxide poisoning induced amnesia: A case report. J Int Neuropsychol Soc 2024; 30:1015-1021. [PMID: 39623553 DOI: 10.1017/s1355617724000304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
OBJECTIVE High-definition transcranial direct current stimulation (HD-tDCS) has the potential to improve cognitive functioning following neurological injury and in neurodegenerative conditions. In this case report, we present the first use of HD-tDCS in a person with severe anterograde amnesia following carbon monoxide poisoning. METHOD The participant underwent two rounds of HD-tDCS that were separated by 3 months (Round 1 = 30 sessions; Round 2 = 31 sessions). We used finite element modeling of the participant's structural MRI to develop an individualized montage that targeted multiple brain regions involved in memory encoding, as identified by Neurosynth. RESULTS Overall, the participant's objective cognitive functioning improved significantly following Round 1, declined during the 2 months without HD-tDCS, and again improved following Round 2. Subjective informant reports from family and medical personnel followed this same pattern of improvement following each round with a decline in between rounds. We also provide preliminary evidence of altered brain activity during a learning/memory task using functional near-infrared spectroscopy, which may help establish the physiological effects of HD-tDCS in future work. CONCLUSION Overall, these findings reinforce the potential value of HD-tDCS as a user-friendly method of enhancing cognition following anoxic/hypoxic brain injury.
Collapse
Affiliation(s)
- Brett S Schneider
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Melvin McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Victor Di Rita
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin M Hampstead
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Maceira-Elvira P, Popa T, Schmid AC, Cadic-Melchior A, Müller H, Schaer R, Cohen LG, Hummel FC. Native learning ability and not age determines the effects of brain stimulation. NPJ SCIENCE OF LEARNING 2024; 9:69. [PMID: 39604463 PMCID: PMC11603171 DOI: 10.1038/s41539-024-00278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Healthy aging often entails a decline in cognitive and motor functions, affecting independence and quality of life in older adults. Brain stimulation shows potential to enhance these functions, but studies show variable effects. Previous studies have tried to identify responders and non-responders through correlations between behavioral change and baseline parameters, but results lack generalization to independent cohorts. We propose a method to predict an individual's likelihood of benefiting from stimulation, based on baseline performance of a sequential motor task. Our results show that individuals with less efficient learning mechanisms benefit from stimulation, while those with optimal learning strategies experience none or even detrimental effects. This differential effect, first identified in a public dataset and replicated here in an independent cohort, was linked to one's ability to integrate task-relevant information and not age. This study constitutes a further step towards personalized clinical-translational interventions based on brain stimulation.
Collapse
Affiliation(s)
- Pablo Maceira-Elvira
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Wyss Center for Bio- and Neuroengineering, Geneva, Switzerland
| | - Traian Popa
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Anne-Christine Schmid
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Andéol Cadic-Melchior
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Henning Müller
- University of Applied Sciences Western Switzerland (HES-SO), Valais-Wallis, Switzerland
| | - Roger Schaer
- University of Applied Sciences Western Switzerland (HES-SO), Valais-Wallis, Switzerland
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Friedhelm C Hummel
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
5
|
Albizu A, Indahlastari A, Suen P, Huang Z, Waner JL, Stolte SE, Fang R, Brunoni AR, Woods AJ. Machine learning-optimized non-invasive brain stimulation and treatment response classification for major depression. Bioelectron Med 2024; 10:25. [PMID: 39473014 PMCID: PMC11524011 DOI: 10.1186/s42234-024-00157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND/OBJECTIVES Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation intervention that shows promise as a potential treatment for depression. However, the clinical efficacy of tDCS varies, possibly due to individual differences in head anatomy affecting tDCS dosage. While functional changes in brain activity are more commonly reported in major depressive disorder (MDD), some studies suggest that subtle macroscopic structural differences, such as cortical thickness or brain volume reductions, may occur in MDD and could influence tDCS electric field (E-field) distributions. Therefore, accounting for individual anatomical differences may provide a pathway to optimize functional gains in MDD by formulating personalized tDCS dosage. METHODS To address the dosing variability of tDCS, we examined a subsample of sixteen active-tDCS participants' data from the larger ELECT clinical trial (NCT01894815). With this dataset, individualized neuroimaging-derived computational models of tDCS current were generated for (1) classifying treatment response, (2) elucidating essential stimulation features associated with treatment response, and (3) computing a personalized dose of tDCS to maximize the likelihood of treatment response in MDD. RESULTS In the ELECT trial, tDCS was superior to placebo (3.2 points [95% CI, 0.7 to 5.5; P = 0.01]). Our algorithm achieved over 90% overall accuracy in classifying treatment responders from the active-tDCS group (AUC = 0.90, F1 = 0.92, MCC = 0.79). Computed precision doses also achieved an average response likelihood of 99.981% and decreased dosing variability by 91.9%. CONCLUSION These findings support our previously developed precision-dosing method for a new application in psychiatry by optimizing the statistical likelihood of tDCS treatment response in MDD.
Collapse
Affiliation(s)
- Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, PO Box 100165, Gainesville, FL, 32610-0165, USA
| | - Paulo Suen
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Ziqian Huang
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Jori L Waner
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, PO Box 100165, Gainesville, FL, 32610-0165, USA
| | - Skylar E Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Ruogu Fang
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Andre R Brunoni
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA.
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, PO Box 100165, Gainesville, FL, 32610-0165, USA.
| |
Collapse
|
6
|
Lischke A, Pahnke R, Mäder A, Martin AK, Meinzer M. Improving mentalizing deficits in older age with region-specific transcranial direct current stimulation. GeroScience 2024; 46:4111-4121. [PMID: 38878152 PMCID: PMC11336013 DOI: 10.1007/s11357-024-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/13/2024] [Indexed: 08/22/2024] Open
Abstract
Older adults have difficulties to detect the intentions, thoughts, and feelings of others, indicating an age-associated decline of socio-cognitive abilities that are known as "mentalizing". These deficits in mental state recognition are driven by neurofunctional alterations in brain regions that are implicated in mentalizing, such as the right temporo-parietal junction (rTPJ) and the dorso-medial prefrontal cortex (dmPFC). We tested whether focal transcranial current stimulation (tDCS) of the rTPJ and dmPFC has the potential to eliminate mentalizing deficits in older adults. Mentalizing deficits were assessed with a novel mindreading task that required the recognition of mental states in child faces. Older adults (n = 60) performed worse than younger adults (n = 30) on the mindreading task, indicating age-dependent deficits in mental state recognition. These mentalizing deficits were ameliorated in older adults who received sham-controlled andodal tDCS over the rTPJ (n = 30) but remained unchanged in older adults who received sham-controlled andodal tDCS over the dmPFC (n = 30). We, thus, showed for the first time that anodal tDCS over the rTPJ has the potential to remediate age-dependent mentalizing deficits in a region-specific way. This provides a rationale for exploring stimulation-based interventions targeting mentalizing deficits in older age.
Collapse
Affiliation(s)
- Alexander Lischke
- Department of Psychology, Medical School Hamburg, Am Kaierkai 1, 20457, Hamburg, Germany.
- Institute of Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany.
| | - Rike Pahnke
- Institute of Sports Science, University of Rostock, Rostock, Germany
| | - Anna Mäder
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Andrew K Martin
- Department of Psychology, University of Kent, Canterbury, UK
- Kent and Medway Medical School, University of Kent, Canterbury, UK
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Aksu S, Indahlastari A, O'Shea A, Marsiske M, Cohen R, Alexander GE, DeKosky ST, Hishaw GA, Dai Y, Wu SS, Woods AJ. Facilitation of working memory capacity by transcranial direct current stimulation: a secondary analysis from the augmenting cognitive training in older adults (ACT) study. GeroScience 2024; 46:4075-4110. [PMID: 38789832 PMCID: PMC11336148 DOI: 10.1007/s11357-024-01205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a public health concern with an ever-increasing magnitude worldwide. An array of neuroscience-based approaches like transcranial direct current stimulation (tDCS) and cognitive training have garnered attention in the last decades to ameliorate the effects of cognitive aging in older adults. This study evaluated the effects of 3 months of bilateral tDCS over the frontal cortices with multimodal cognitive training on working memory capacity. Two hundred ninety-two older adults without dementia were allocated to active or sham tDCS paired with cognitive training. These participants received repeated sessions of bilateral tDCS over the bilateral frontal cortices, combined with multimodal cognitive training. Working memory capacity was assessed with the digit span forward, backward, and sequencing tests. No baseline differences between active and sham groups were observed. Multiple linear regressions indicated more improvement of the longest digit span backward from baseline to post-intervention (p = 0.021) and a trend towards greater improvement (p = 0.056) of the longest digit span backward from baseline to 1 year in the active tDCS group. No significant between-group changes were observed for digit span forward or digit span sequencing. The present results provide evidence for the potential for tDCS paired with cognitive training to remediate age-related declines in working memory capacity. These findings are sourced from secondary outcomes in a large randomized clinical trial and thus deserve future targeted investigation in older adult populations.
Collapse
Affiliation(s)
- Serkan Aksu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Lv Y, Wu S, Nitsche MA, Yue T, Zschorlich VR, Qi F. A meta-analysis of the effects of transcranial direct current stimulation combined with cognitive training on working memory in healthy older adults. Front Aging Neurosci 2024; 16:1454755. [PMID: 39376507 PMCID: PMC11456488 DOI: 10.3389/fnagi.2024.1454755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
Background Working memory (WM) loss, which can lead to a loss of independence, and declines in the quality of life of older adults, is becoming an increasingly prominent issue affecting the ageing population. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, is emerging as a potential alternative to pharmacological treatments that shows promise for enhancing WM capacity and May enhance the effects of cognitive training (CT) interventions. Objective The purpose of this meta-analysis was to explore how different tDCS protocols in combination with CT enhanced WM in healthy older adults. Methods Randomized controlled trials (RCTs) exploring the effects of tDCS combined with CT on WM in healthy older adults were retrieved from the Web of Science, PubMed, Embase, Scopus and the Cochrane Library databases. The search time period ranged from database inception to January 15, 2024. Methodological quality of the trials was assessed using the risk-of-bias criteria for RCTs from the Cochrane Collaboration Network, and RevMan 5.3 (Cochrane, London, United Kingdom) was used for the meta-analysis of the final literature outcomes. Results Six RCTs with a total of 323 participants were ultimately included. The results of the meta-analysis show that tDCS combined with CT statistically significantly improves WM performance compared to the control sham stimulation group in healthy older adults [standard mean difference (SMD) = 0.35, 95% CI: 0.11-0.59, I 2 = 0%, Z = 2.86, p = 0.004]. The first subgroup analysis indicated that, when the stimulus intensity was 2 mA, a statistically significant improvement in WM performance in healthy older adults was achieved (SMD = 0.39, 95% CI: 0.08-0.70, I 2 = 6%, Z = 2.46, p = 0.01). The second subgroup analysis showed that long-term intervention (≥ 10 sessions) with tDCS combined with CT statistically significantly improved WM compared to the control group in healthy older adults (SMD = 0.72, 95% CI: 0.22-1.21, I 2 = 0%, Z = 2.85, p = 0.004). Conclusion tDCS combined with CT statistically significantly improves WM in healthy older adults. For the stimulus parameters, long-term interventions (≥ 10 sessions) with a stimulation intensity of 2 mA are the most effective.
Collapse
Affiliation(s)
- Yanxin Lv
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| | - Shuo Wu
- Faculty of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Tian Yue
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| | - Volker R. Zschorlich
- Faculty of Philosophy, Institute of Sports Science, University of Rostock, Rostock, Germany
- Faculty of Interdisciplinary Research, Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Department of Sport Science, University of Oldenburg, Oldenburg, Germany
| | - Fengxue Qi
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| |
Collapse
|
9
|
Lo HKY, Fong TKH, Cheung T, Ngan STJ, Lui WYV, Chan WC, Wong CSM, Wong TKT, Cheng CPW. Enhanced Cognition and Modulation of Brain Connectivity in Mild Neurocognitive Disorder: The Promise of Transcranial Pulse Stimulation. Biomedicines 2024; 12:2081. [PMID: 39335594 PMCID: PMC11428234 DOI: 10.3390/biomedicines12092081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Existing pharmacological treatments for mild neurocognitive disorder (NCD) offer limited effectiveness and adverse side effects. Transcranial pulse stimulation (TPS) utilizing ultrashort ultrasound pulses reaches deep brain regions and may circumvent conductivity issues associated with brain stimulation. This study addresses the gap in TPS research for mild NCD during a critical intervention period before irreversible cognitive degradation. Our objective was to explore the effectiveness and tolerability of TPS in older adults with mild NCD. In an open-label study, 17 older adults (including 10 females and 7 males) with mild NCD underwent TPS for two weeks with three sessions per week. Cognitive evaluations and fMRI scans were conducted pre- and post-intervention. The results indicated changes in functional connectivity in key brain regions, correlating with cognitive improvement at B = 0.087 (CI, 0.007-0.167; p = 0.038). However, cortical thickness measurements showed no significant differences. Here we show that TPS can enhance cognitive function within mild NCD. This proof-of-concept study suggests that TPS has potential as a non-invasive therapy used to attenuate cognitive decline, encouraging further investigation in larger randomized trials. The findings could influence clinical practice by introducing TPS as an adjunctive treatment option and potentially impact policy by promoting its inclusion in new treatment strategies for mild NCD.
Collapse
Affiliation(s)
- Heidi Ka-Ying Lo
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | - Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
| | | | | | - Wai-Chi Chan
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Corine Sau-Man Wong
- Division of Community Medicine and Public Health Practice, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
10
|
Chen C, Zhai R, Lan X, Yang S, Tang S, Xiong X, He Y, Lin J, Feng J, Chen D, Shi J. The influence of sleep disorders on perioperative neurocognitive disorders among the elderly: A narrative review. IBRAIN 2024; 10:197-216. [PMID: 38915944 PMCID: PMC11193868 DOI: 10.1002/ibra.12167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
This review comprehensively assesses the epidemiology, interaction, and impact on patient outcomes of perioperative sleep disorders (SD) and perioperative neurocognitive disorders (PND) in the elderly. The incidence of SD and PND during the perioperative period in older adults is alarmingly high, with SD significantly contributing to the occurrence of postoperative delirium. However, the clinical evidence linking SD to PND remains insufficient, despite substantial preclinical data. Therefore, this study focuses on the underlying mechanisms between SD and PND, underscoring that potential mechanisms driving SD-induced PND include uncontrolled central nervous inflammation, blood-brain barrier disruption, circadian rhythm disturbances, glial cell dysfunction, neuronal and synaptic abnormalities, impaired central metabolic waste clearance, gut microbiome dysbiosis, hippocampal oxidative stress, and altered brain network connectivity. Additionally, the review also evaluates the effectiveness of various sleep interventions, both pharmacological and nonpharmacological, in mitigating PND. Strategies such as earplugs, eye masks, restoring circadian rhythms, physical exercise, noninvasive brain stimulation, dexmedetomidine, and melatonin receptor agonists have shown efficacy in reducing PND incidence. The impact of other sleep-improvement drugs (e.g., orexin receptor antagonists) and methods (e.g., cognitive-behavioral therapy for insomnia) on PND is still unclear. However, certain drugs used for treating SD (e.g., antidepressants and first-generation antihistamines) may potentially aggravate PND. By providing valuable insights and references, this review aimed to enhance the understanding and management of PND in older adults based on SD.
Collapse
Affiliation(s)
- Chao Chen
- Department of Anesthesiology/Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Rui‐Xue Zhai
- Department of Anesthesiology/Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xin Lan
- Department of Anesthesiology/Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Sheng‐Feng Yang
- Department of Anesthesiology/Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Si‐Jie Tang
- Department of Anesthesiology/Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xing‐Long Xiong
- Department of Anesthesiology/Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Yu‐Xin He
- Department of Gastroenterology and HepatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jing‐Fang Lin
- Department of Anesthesiology, Fujian Provincial HospitalSheng Li Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Jia‐Rong Feng
- Khoury College of Computer SciencesNortheastern UniversityBostonAmerica
| | - Dong‐Xu Chen
- Department of Anesthesiology, West China Second HospitalSichuan UniversityChengduChina
| | - Jing Shi
- Department of Anesthesiology/Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
11
|
Kraft JN, Indahlastari A, Boutzoukas EM, Hausman HK, Hardcastle C, Albizu A, O'Shea A, Evangelista ND, Van Etten EJ, Bharadwaj PK, Song H, Smith SG, DeKosky ST, Hishaw GA, Wu S, Marsiske M, Cohen R, Alexander GE, Porges E, Woods AJ. The impact of a tDCS and cognitive training intervention on task-based functional connectivity. GeroScience 2024; 46:3325-3339. [PMID: 38265579 PMCID: PMC11009202 DOI: 10.1007/s11357-024-01077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
Declines in several cognitive domains, most notably processing speed, occur in non-pathological aging. Given the exponential growth of the older adult population, declines in cognition serve as a significant public health issue that must be addressed. Promising studies have shown that cognitive training in older adults, particularly using the useful field of view (UFOV) paradigm, can improve cognition with moderate to large effect sizes. Additionally, meta-analyses have found that transcranial direct current stimulation (tDCS), a non-invasive form of brain stimulation, can improve cognition in attention/processing speed and working memory. However, only a handful of studies have looked at concomitant tDCS and cognitive training, usually with short interventions and small sample sizes. The current study assessed the effect of a tDCS (active versus sham) and a 3-month cognitive training intervention on task-based functional connectivity during completion of the UFOV task in a large older adult sample (N = 153). We found significant increased functional connectivity between the left and right pars triangularis (the ROIs closest to the electrodes) following active, but not sham tDCS. Additionally, we see trending behavioral improvements associated with these functional connectivity changes in the active tDCS group, but not sham. Collectively, these findings suggest that tDCS and cognitive training can be an effective modulator of task-based functional connectivity above and beyond a cognitive training intervention alone.
Collapse
Affiliation(s)
- Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Emily J Van Etten
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Pradyumna K Bharadwaj
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Hyun Song
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Samantha G Smith
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- McKnight Brain Institute and Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- McKnight Brain Institute and Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, USA
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1249 Center Drive, Gainesville, FL, 32603, USA.
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Zahr NM. Alcohol Use Disorder and Dementia: A Review. Alcohol Res 2024; 44:03. [PMID: 38812709 PMCID: PMC11135165 DOI: 10.35946/arcr.v44.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
PURPOSE By 2040, 21.6% of Americans will be over age 65, and the population of those older than age 85 is estimated to reach 14.4 million. Although not causative, older age is a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately one-third of those older than age 85 are diagnosed with dementia. As current alcohol consumption among older adults is significantly higher compared to previous generations, a pressing question is whether drinking alcohol increases the risk for Alzheimer's disease or other forms of dementia. SEARCH METHODS Databases explored included PubMed, Web of Science, and ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption on dementia risk, the literature covered included clinical diagnoses, epidemiology, neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and translational studies. Searches conducted between January 12 and August 1, 2023, included the following terms and combinations: "aging," "alcoholism," "alcohol use disorder (AUD)," "brain," "CNS," "dementia," "Wernicke," "Korsakoff," "Alzheimer," "vascular," "frontotemporal," "Lewy body," "clinical," "diagnosis," "epidemiology," "pathology," "autopsy," "postmortem," "histology," "cognitive," "motor," "neuropsychological," "magnetic resonance," "imaging," "PET," "ligand," "degeneration," "atrophy," "translational," "rodent," "rat," "mouse," "model," "amyloid," "neurofibrillary tangles," "α-synuclein," or "presenilin." When relevant, "species" (i.e., "humans" or "other animals") was selected as an additional filter. Review articles were avoided when possible. SEARCH RESULTS The two terms "alcoholism" and "aging" retrieved about 1,350 papers; adding phrases-for example, "postmortem" or "magnetic resonance"-limited the number to fewer than 100 papers. Using the traditional term, "alcoholism" with "dementia" resulted in 876 citations, but using the currently accepted term "alcohol use disorder (AUD)" with "dementia" produced only 87 papers. Similarly, whereas the terms "Alzheimer's" and "alcoholism" yielded 318 results, "Alzheimer's" and "alcohol use disorder (AUD)" returned only 40 citations. As pertinent postmortem pathology papers were published in the 1950s and recent animal models of Alzheimer's disease were created in the early 2000s, articles referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; about 400 are herein referenced. DISCUSSION AND CONCLUSIONS Chronic alcohol misuse accelerates brain aging and contributes to cognitive impairments, including those in the mnemonic domain. The consensus among studies from multiple disciplines, however, is that alcohol misuse can increase the risk for dementia, but not necessarily Alzheimer's disease. Key issues to consider include the reversibility of brain damage following abstinence from chronic alcohol misuse compared to the degenerative and progressive course of Alzheimer's disease, and the characteristic presence of protein inclusions in the brains of people with Alzheimer's disease, which are absent in the brains of those with AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California. Center for Health Sciences, SRI International, Menlo Park, California
| |
Collapse
|
13
|
Fernandes SM, Mendes AJ, Rodrigues PF, Conde A, Rocha M, Leite J. Efficacy and safety of repetitive Transcranial Magnetic Stimulation and transcranial Direct Current Stimulation in memory deficits in patients with Alzheimer's disease: Meta-analysis and systematic review. Int J Clin Health Psychol 2024; 24:100452. [PMID: 38444886 PMCID: PMC10914562 DOI: 10.1016/j.ijchp.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are two of the most used non-pharmacological interventions for Alzheimer's Disease (AD). However, most of the clinical trials have focused on evaluating the effects on global cognition and not on specific cognitive functions. Therefore, considering that memory loss is one of the hallmark symptoms of AD, we aim to assess the efficacy and safety of tDCS and rTMS in memory deficits. For that, multilevel random effect models were performed considering the standardized mean difference (SMD) between active and sham stimulation. A total of 19 studies with 411 participants demonstrated positive effects in memory after tDCS (SMD=0.20, p = 0.04) and rTMS (SMD=0.44, p = 0.001). Subgroup analysis revealed that tDCS had greater efficacy when administered in temporal regions (SMD=0.32, p = 0.04), whereas rTMS was superior when applied in frontal regions (SMD=0.61, p < 0.001). Therefore, depending on the brain region of stimulation, both interventions produced a positive effect on memory symptoms in AD patients. Finally, the safety of both techniques was observed in the AD population after the reporting of almost no serious events.
Collapse
Affiliation(s)
- Sara M. Fernandes
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, 4200-072 Porto, Portugal
| | - Augusto J. Mendes
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | | | - Ana Conde
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, 4200-072 Porto, Portugal
| | - Magda Rocha
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, 4200-072 Porto, Portugal
| | - Jorge Leite
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, 4200-072 Porto, Portugal
- Brain@Loop Lab
| |
Collapse
|
14
|
Sandrini M, Manenti R, Gobbi E, Pagnoni I, Geviti A, Alaimo C, Campana E, Binetti G, Cotelli M. Cognitive reserve predicts episodic memory enhancement induced by transcranial direct current stimulation in healthy older adults. Sci Rep 2024; 14:4879. [PMID: 38418583 PMCID: PMC10902403 DOI: 10.1038/s41598-024-53507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
Episodic memory shows the largest degree of age-related decline. Anodal transcranial Direct Current Stimulation (tDCS) can enhance episodic memory in aging but there is also evidence of response variability even when using identical stimulation parameters. To explore which inter-individual factors (i.e. age, education, encoding performance, cognitive reserve, tDCS group and timing of tDCS application) may directly and/or indirectly modulate verbal memory recall, we used data from our previous tDCS studies that showed enhanced episodic memory recall in 80 healthy older adults. In these studies we used the same paradigm and stimulation parameters but tDCS was applied during different memory stages. Memory recall was tested 48 hours and 30 days after encoding. Univariate regression models showed that tDCS group (Anodal vs. Sham) predicted memory recall, indicating higher scores in the Anodal group than in the Sham group. Encoding performance predicted memory recall in both tDCS groups. Multiple regression models revealed that cognitive reserve, measured with a life experience questionnaire, predicted memory recall only for the Anodal group. Higher cognitive reserve was linked to better memory recall. Accounting for individual differences in cognitive reserve at baseline helps to explain tDCS responsiveness. This knowledge may contribute to optimize its use in older adults.
Collapse
Affiliation(s)
- Marco Sandrini
- School of Psychology, University of Roehampton, London, UK
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elena Gobbi
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Ilaria Pagnoni
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Andrea Geviti
- Statistics Service, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristina Alaimo
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elena Campana
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
15
|
Pezzetta R, Gambarota F, Tarantino V, Devita M, Cattaneo Z, Arcara G, Mapelli D, Masina F. A meta-analysis of non-invasive brain stimulation (NIBS) effects on cerebellar-associated cognitive processes. Neurosci Biobehav Rev 2024; 157:105509. [PMID: 38101590 DOI: 10.1016/j.neubiorev.2023.105509] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques, including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), have provided valuable insights into the role of the cerebellum in cognitive processes. However, replicating findings from studies involving cerebellar stimulation poses challenges. This meta-analysis investigates the impact of NIBS on cognitive processes associated with the cerebellum. We conducted a systematic search and analyzed 66 studies and 91 experiments involving healthy adults who underwent either TMS or transcranial direct current stimulation (tDCS) targeting the cerebellum. The results indicate that anodal tDCS applied to the medial cerebellum enhances cognitive performance. In contrast, high-frequency TMS disrupts cognitive performance when targeting the lateral cerebellar hemispheres or when employed in online protocols. Similarly, low-frequency TMS and continuous theta burst stimulation (cTBS) diminish performance in offline protocols. Moreover, high-frequency TMS impairs accuracy. By identifying consistent effects and moderators of modulation, this meta-analysis contributes to improving the replicability of studies using NIBS on the cerebellum and provides guidance for future research aimed at developing effective NIBS interventions targeting the cerebellum.
Collapse
Affiliation(s)
| | - Filippo Gambarota
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | - Vincenza Tarantino
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Italy
| | - Maria Devita
- Department of General Psychology, University of Padova, Padova, Italy; Geriatrics Unit, Department of Medicine, University of Padova, Padova, Italy.
| | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | | | - Daniela Mapelli
- Department of General Psychology, University of Padova, Padova, Italy
| | | |
Collapse
|
16
|
Indahlastari A, Dunn AL, Pedersen S, Kraft JN, Someya S, Albizu A, Woods AJ. Impact of electrode selection on modeling tDCS in the aging brain. Front Hum Neurosci 2023; 17:1274114. [PMID: 38077189 PMCID: PMC10704166 DOI: 10.3389/fnhum.2023.1274114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Background Person-specific computational models can estimate transcranial direct current stimulation (tDCS) current dose delivered to the brain and predict treatment response. Artificially created electrode models derived from virtual 10-20 EEG measurements are typically included in these models as current injection and removal sites. The present study directly compares current flow models generated via artificially placed electrodes ("artificial" electrode models) against those generated using real electrodes acquired from structural MRI scans ("real" electrode models) of older adults. Methods A total of 16 individualized head models were derived from cognitively healthy older adults (mean age = 71.8 years) who participated in an in-scanner tDCS study with an F3-F4 montage. Visible tDCS electrodes captured within the MRI scans were segmented to create the "real" electrode model. In contrast, the "artificial" electrodes were generated in ROAST. Percentage differences in current density were computed in selected regions of interest (ROIs) as examples of stimulation targets within an F3-F4 montage. Main results We found significant inverse correlations (p < 0.001) between median current density values and brain atrophy in both electrode pipelines with slightly larger correlations found in the artificial pipeline. The percent difference (PD) of the electrode distances between the two models predicted the median current density values computed in the ROIs, gray, and white matter, with significant correlation between electrode distance PDs and current density. The correlation between PD of the contact areas and the computed median current densities in the brain was found to be non-significant. Conclusions This study demonstrates potential discrepancies in generated current density models using real versus artificial electrode placement when applying tDCS to an older adult cohort. Our findings strongly suggest that future tDCS clinical work should consider closely monitoring and rigorously documenting electrode location during stimulation to model tDCS montages as closely as possible to actual placement. Detailed physical electrode location data may provide more precise information and thus produce more robust tDCS modeling results.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Ayden L. Dunn
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Samantha Pedersen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Jessica N. Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Shizu Someya
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Rodrigues NO, Vidal Bravalhieri AA, de Moraes TP, Barros JA, Ansai JH, Christofoletti G. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Cognition, Anxiety, and Mobility in Community-Dwelling Older Individuals: A Controlled Clinical Trial. Brain Sci 2023; 13:1614. [PMID: 38137062 PMCID: PMC10741841 DOI: 10.3390/brainsci13121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has gained popularity as a method of modulating cortical excitability in people with physical and mental disabilities. However, there is a lack of consensus on its effectiveness in older individuals. This study aimed to assess the efficacy of a 2-month tDCS program for improving physical and mental performance in community-dwelling older individuals. In this single-blinded, controlled clinical trial, forty-two participants were allocated to one of three groups: (1) the tDCS group, which received, twice a week, 20 min sessions of 2 mA electric current through electrodes placed on the dorsolateral prefrontal cortex; (2) the tDCS-placebo group, which underwent the same electrode placement as the tDCS group but without actual electric stimulation; and (3) the cognitive-control group, which completed crossword puzzles. Main outcome measures were cognition, mobility, and anxiety. Multivariate analyses of variance were employed. Significance was set at 5% (p < 0.05). Regarding the results, no significant benefits were observed in the tDCS group compared with the tDCS-placebo or cognitive-control groups for cognition (p = 0.557), mobility (p = 0.871), or anxiety (p = 0.356). Cognition exhibited positive oscillations during the assessments (main effect of time: p = 0.001). However, given that all groups showed similar variations in cognitive scores (main effect of group: p = 0.101; group × time effect: p = 0.557), it is more likely that the improvement reflects the learning response of the participants to the cognitive tests rather than the effect of tDCS. In conclusion, a 2-month tDCS program with two sessions per week appears to be ineffective in improving physical and mental performance in community-dwelling older individuals. Further studies are necessary to establish whether or not tDCS is effective in healthy older individuals.
Collapse
Affiliation(s)
- Nathalia Oliveira Rodrigues
- Institute of Health, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79060-900, Brazil; (N.O.R.); (A.A.V.B.); (T.P.d.M.)
| | - Anna Alice Vidal Bravalhieri
- Institute of Health, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79060-900, Brazil; (N.O.R.); (A.A.V.B.); (T.P.d.M.)
| | - Tatiane Pereira de Moraes
- Institute of Health, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79060-900, Brazil; (N.O.R.); (A.A.V.B.); (T.P.d.M.)
| | - Jorge Aparecido Barros
- Department of Physical Therapy, Dom Bosco Catholic University (UCDB), Campo Grande 79117-900, Brazil;
| | - Juliana Hotta Ansai
- Department of Gerontology, Federal University of São Carlos (UFSCAR), São Carlos 13565-905, Brazil;
| | - Gustavo Christofoletti
- Institute of Health, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79060-900, Brazil; (N.O.R.); (A.A.V.B.); (T.P.d.M.)
| |
Collapse
|
18
|
Krebs C, Peter J, Brill E, Klöppel S, Brem AK. The moderating effects of sex, age, and education on the outcome of combined cognitive training and transcranial electrical stimulation in older adults. Front Psychol 2023; 14:1243099. [PMID: 37809311 PMCID: PMC10556861 DOI: 10.3389/fpsyg.2023.1243099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Computerized cognitive training (CCT) has been shown to improve cognition in older adults via targeted exercises for single or multiple cognitive domains. Combining CCT with non-invasive brain stimulation is thought to be even more effective due to synergistic effects in the targeted brain areas and networks. However, little is known about the moderating effects of sex, age, and education on cognitive outcomes. Here, we investigated these factors in a randomized, double-blind study in which we administered CCT either combined with transcranial direct (tDCS), alternating (tACS) current stimulation or sham stimulation. 59 healthy older participants (mean age 71.7 ± 6.1) received either tDCS (2 mA), tACS (5 Hz), or sham stimulation over the left dorsolateral prefrontal cortex during the first 20 min of a CCT (10 sessions, 50 min, twice weekly). Before and after the complete cognitive intervention, a neuropsychological assessment was performed, and the test scores were summarized in a composite score. Our results showed a significant three-way interaction between age, years of education, and stimulation technique (F(6,52) = 5.53, p = 0.007), indicating that the oldest participants with more years of education particularly benefitted from tDCS compared to the sham group, while in the tACS group the youngest participants with less years of education benefit more from the stimulation. These results emphasize the importance of further investigating and taking into account sex, age, and education as moderating factors in the development of individualized stimulation protocols. Clinical Trial Registration ClinicalTrials.gov, identifier NCT03475446.
Collapse
Affiliation(s)
- Christine Krebs
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jessica Peter
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Esther Brill
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
19
|
Khadka N, Poon C, Cancel LM, Tarbell JM, Bikson M. Multi-scale multi-physics model of brain interstitial water flux by transcranial Direct Current Stimulation. J Neural Eng 2023; 20:10.1088/1741-2552/ace4f4. [PMID: 37413982 PMCID: PMC10996349 DOI: 10.1088/1741-2552/ace4f4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Objective. Transcranial direct current stimulation (tDCS) generates sustained electric fields in the brain, that may be amplified when crossing capillary walls (across blood-brain barrier, BBB). Electric fields across the BBB may generate fluid flow by electroosmosis. We consider that tDCS may thus enhance interstitial fluid flow.Approach. We developed a modeling pipeline novel in both (1) spanning the mm (head),μm (capillary network), and then nm (down to BBB tight junction (TJ)) scales; and (2) coupling electric current flow to fluid current flow across these scales. Electroosmotic coupling was parametrized based on prior measures of fluid flow across isolated BBB layers. Electric field amplification across the BBB in a realistic capillary network was converted to volumetric fluid exchange.Main results. The ultrastructure of the BBB results in peak electric fields (per mA of applied current) of 32-63Vm-1across capillary wall and >1150Vm-1in TJs (contrasted with 0.3Vm-1in parenchyma). Based on an electroosmotic coupling of 1.0 × 10-9- 5.6 × 10-10m3s-1m2perVm-1, peak water fluxes across the BBB are 2.44 × 10-10- 6.94 × 10-10m3s-1m2, with a peak 1.5 × 10-4- 5.6 × 10-4m3min-1m3interstitial water exchange (per mA).Significance. Using this pipeline, the fluid exchange rate per each brain voxel can be predicted for any tDCS dose (electrode montage, current) or anatomy. Under experimentally constrained tissue properties, we predicted tDCS produces a fluid exchange rate comparable to endogenous flow, so doubling fluid exchange with further local flow rate hot spots ('jets'). The validation and implication of such tDCS brain 'flushing' is important to establish.
Collapse
Affiliation(s)
| | - Cynthia Poon
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| | - Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| |
Collapse
|
20
|
Albizu A, Indahlastari A, Huang Z, Waner J, Stolte SE, Fang R, Woods AJ. Machine-learning defined precision tDCS for improving cognitive function. Brain Stimul 2023; 16:969-974. [PMID: 37279860 PMCID: PMC11080612 DOI: 10.1016/j.brs.2023.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) paired with cognitive training (CT) is widely investigated as a therapeutic tool to enhance cognitive function in older adults with and without neurodegenerative disease. Prior research demonstrates that the level of benefit from tDCS paired with CT varies from person to person, likely due to individual differences in neuroanatomical structure. OBJECTIVE The current study aims to develop a method to objectively optimize and personalize current dosage to maximize the functional gains of non-invasive brain stimulation. METHODS A support vector machine (SVM) model was trained to predict treatment response based on computational models of current density in a sample dataset (n = 14). Feature weights of the deployed SVM were used in a weighted Gaussian Mixture Model (GMM) to maximize the likelihood of converting tDCS non-responders to responders by finding the most optimum electrode montage and applied current intensity (optimized models). RESULTS Current distributions optimized by the proposed SVM-GMM model demonstrated 93% voxel-wise coherence within target brain regions between the originally non-responders and responders. The optimized current distribution in original non-responders was 3.38 standard deviations closer to the current dose of responders compared to the pre-optimized models. Optimized models also achieved an average treatment response likelihood and normalized mutual information of 99.993% and 91.21%, respectively. Following tDCS dose optimization, the SVM model successfully predicted all tDCS non-responders with optimized doses as responders. CONCLUSIONS The results of this study serve as a foundation for a custom dose optimization strategy towards precision medicine in tDCS to improve outcomes in cognitive decline remediation for older adults.
Collapse
Affiliation(s)
- Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Ziqian Huang
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Jori Waner
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Skylar E Stolte
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Ruogu Fang
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA; Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA.
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA.
| |
Collapse
|
21
|
Hausman HK, Alexander GE, Cohen R, Marsiske M, DeKosky ST, Hishaw GA, O'Shea A, Kraft JN, Dai Y, Wu S, Woods AJ. Primary outcome from the augmenting cognitive training in older adults study (ACT): A tDCS and cognitive training randomized clinical trial. Brain Stimul 2023; 16:904-917. [PMID: 37245842 PMCID: PMC10436327 DOI: 10.1016/j.brs.2023.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND There is a need for effective interventions to stave off cognitive decline in older adults. Cognitive training has variably produced gains in untrained tasks and daily functioning. Combining cognitive training with transcranial direct current stimulation (tDCS) may augment cognitive training effects; however, this approach has yet to be tested on a large-scale. OBJECTIVE This paper will present the primary findings of the Augmenting Cognitive Training in Older Adults (ACT) clinical trial. We hypothesize that receiving active stimulation with cognitive training will result in greater improvements on an untrained fluid cognition composite compared to sham following intervention. METHODS 379 older adults were randomized, and 334 were included in intent-to-treat analyses for a 12-week multidomain cognitive training and tDCS intervention. Active or sham tDCS was administered at F3/F4 during cognitive training daily for two weeks then weekly for 10 weeks. To assess the tDCS effect, we fitted regression models for changes in NIH Toolbox Fluid Cognition Composite scores immediately following intervention and one year from baseline controlling for covariates and baseline scores. RESULTS Across the entire sample, there were improvements in NIH Toolbox Fluid Cognition Composite scores immediately post-intervention and one year following baseline; however, there were no significant tDCS group effects at either timepoint. CONCLUSIONS The ACT study models rigorous, safe administration of a combined tDCS and cognitive training intervention in a large sample of older adults. Despite potential evidence of near-transfer effects, we failed to demonstrate an additive benefit of active stimulation. Future analyses will continue to assess the intervention's efficacy by examining additional measures of cognition, functioning, mood, and neural markers.
Collapse
Affiliation(s)
- Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA; Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
22
|
Indahlastari A, Dunn AL, Pedersen S, Kraft JN, Someya S, Albizu A, Woods AJ. The importance of accurately representing electrode position in transcranial direct current stimulation computational models. Brain Stimul 2023; 16:930-932. [PMID: 37209869 PMCID: PMC10644834 DOI: 10.1016/j.brs.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023] Open
Affiliation(s)
- Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| | - Ayden L Dunn
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Samantha Pedersen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shizu Someya
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Hayden A, Hooley JM, Dougherty DD, Camprodon JA, Chou T. Neuroticism modulates the qualitative effects of inferior parietal tDCS on negatively-valenced memories. J Psychiatr Res 2023; 161:467-475. [PMID: 37060719 DOI: 10.1016/j.jpsychires.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
For individuals with increased levels of neuroticism, experiencing criticism or receiving negative feedback has been associated with worse psychological and cognitive outcomes. Transcranial direct current stimulation (tDCS) can change cognitive processes in clinical populations. We bilaterally stimulated the posterior inferior parietal lobule (pIPL), a critical superficial node of the default model network. We investigated how baseline neuroticism modulates the impact of bilateral tDCS to pIPL on qualitative measures of memory after hearing criticism, hypothesizing that cathodal stimulation of the IPL would offer qualitative memory improvements for individuals with higher levels of neuroticism. Ninety individuals from the community were randomly assigned to receive anodal, cathodal, or sham stimulation while they were exposed to critical comments before and after stimulation. Participants then recalled the critical comments, and their linguistic responses were analyzed using Pennebaker's Linguistic Inquiry and Word Count software, a quantitative analysis software for linguistic data. Results showed that for individuals receiving cathodal tDCS, higher neuroticism scores corresponded with greater proportions of non-personal language (i.e., words such as "us," "they," or "other" instead of "I" or "me") when recalling negative feedback. For individuals with higher neuroticism, cathodal tDCS stimulation, rather than anodal or sham, of the pIPL prompted increased emotional distancing and perspective taking strategies when recalling criticism. These results further highlight the state-dependent nature of tDCS effects and the role of the IPL in interpersonal processing - a clinically meaningful outcome that current tDCS studies solely examining quantitative measures of memory (e.g., task-based accuracy or speed) do not reveal.
Collapse
Affiliation(s)
- Ashley Hayden
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA.
| | | | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
24
|
Koo GK, Gaur A, Tumati S, Kusumo RW, Bawa KK, Herrmann N, Gallagher D, Lanctôt KL. Identifying factors influencing cognitive outcomes after anodal transcranial direct current stimulation in older adults with and without cognitive impairment: A systematic review. Neurosci Biobehav Rev 2023; 146:105047. [PMID: 36646259 DOI: 10.1016/j.neubiorev.2023.105047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Anodal transcranial direct current stimulation (tDCS) can improve cognition in healthy older adults, those with Alzheimer's disease (AD) and mild cognitive impairment (MCI), albeit with considerable variability in response. This systematic review identifies interindividual factors that may influence tDCS outcomes in older individuals with or without cognitive impairment. Peer-reviewed articles were included if they assessed whether cognitive outcomes (memory or global cognition) after tDCS were associated with pre-intervention factors in healthy older adults or individuals with AD/MCI. We identified eight factors that may affect cognitive outcomes after tDCS. Improved tDCS outcomes were predicted by lower baseline cognitive function when tDCS was combined with a co-intervention (but not when used alone). Preserved brain structure and better baseline functional connectivity, genetic polymorphisms, and the use of concomitant medications may predict better tDCS outcomes, but further research is warranted. tDCS outcomes were not consistently associated with age, cognitive reserve, sex, and AD risk factors. Accounting for individual differences in baseline cognition, particularly for combined interventions, may thus maximize the therapeutic potential of tDCS.
Collapse
Affiliation(s)
- Grace Ky Koo
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Amish Gaur
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Shankar Tumati
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Raphael W Kusumo
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Kritleen K Bawa
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
25
|
Telerehabilitation-Based Exercises with or without Transcranial Direct Current Stimulation for Pain, Motor and Cognitive Function in Older Adults with mild Cognitive Impairments Post-Stroke: A Multi-Arm Parallel-Group Randomized Controlled Trial Study Protocol. BRAIN HEMORRHAGES 2023. [DOI: 10.1016/j.hest.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
26
|
Bagattini C, Cid-Fernández S, Bulgari M, Miniussi C, Bortoletto M. Opposite pattern of transcranial direct current stimulation effects in middle-aged and older adults: Behavioral and neurophysiological evidence. Front Aging Neurosci 2023; 15:1087749. [PMID: 36761183 PMCID: PMC9905246 DOI: 10.3389/fnagi.2023.1087749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Episodic memory (EM) exhibits an age-related decline, with overall increased impairment after the age of 65. The application of transcranial direct current stimulation (tDCS) to ameliorate cognitive decline in ageing has been extensively investigated, but its efficacy has been reported with mixed results. In this study, we aimed to assess whether age contributes to interindividual variability in tDCS efficacy. Methods Thirty-eight healthy adults between 50 and 81 years old received anodal tDCS over the left prefrontal cortex during images encoding and then performed an EM recognition task while event-related potentials (ERPs) were recorded. Results Our results showed an opposite pattern of effect between middle-aged (50-64 years) and older (65-81 years) adults. Specifically, performance in the recognition task after tDCS was enhanced in older adults and was worsened in middle-aged adults. Moreover, ERPs acquired during the recognition task showed that two EM components related to familiarity and post-retrieval monitoring, i.e., Early Frontal and Late Frontal Old-New effects, respectively, were significantly reduced in middle-aged adults after anodal tDCS. Discussion These results support an age-dependent effect of prefrontal tDCS on EM processes and its underlying electrophysiological substrate, with opposing modulatory trajectories along the aging lifespan.
Collapse
Affiliation(s)
- Chiara Bagattini
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy,Section of Neurosurgery, Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy,*Correspondence: Chiara Bagattini,
| | - Susana Cid-Fernández
- Department of Developmental and Educational Psychology, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Martina Bulgari
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
27
|
Pupíková M, Šimko P, Lamoš M, Gajdoš M, Rektorová I. Inter-individual differences in baseline dynamic functional connectivity are linked to cognitive aftereffects of tDCS. Sci Rep 2022; 12:20754. [PMID: 36456622 PMCID: PMC9715685 DOI: 10.1038/s41598-022-25016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has the potential to modulate cognitive training in healthy aging; however, results from various studies have been inconsistent. We hypothesized that inter-individual differences in baseline brain state may contribute to the varied results. We aimed to explore whether baseline resting-state dynamic functional connectivity (rs-dFC) and/or conventional resting-state static functional connectivity (rs-sFC) may be related to the magnitude of cognitive aftereffects of tDCS. To achieve this aim, we used data from our double-blind randomized sham-controlled cross-over tDCS trial in 25 healthy seniors in which bifrontal tDCS combined with cognitive training had induced significant behavioral aftereffects. We performed a backward regression analysis including rs-sFC/rs-dFC measures to explain the variability in the magnitude of tDCS-induced improvements in visual object-matching task (VOMT) accuracy. Rs-dFC analysis revealed four rs-dFC states. The occurrence rate of a rs-dFC state 4, characterized by a high correlation between the left fronto-parietal control network and the language network, was significantly associated with tDCS-induced VOMT accuracy changes. The rs-sFC measure was not significantly associated with the cognitive outcome. We show that flexibility of the brain state representing readiness for top-down control of object identification implicated in the studied task is linked to the tDCS-enhanced task accuracy.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology - CEITEC, Masaryk university, Brno, Czech Republic
| | - Martin Gajdoš
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, ICRC, St Anne's University Hospital and Faculty of Medicine, Brno, Czech Republic.
| |
Collapse
|
28
|
Figeys M, Villarey S, Leung AWS, Raso J, Buchan S, Kammerer H, Rawani D, Kohls-Wiebe M, Kim ES. tDCS over the left prefrontal Cortex improves mental flexibility and inhibition in geriatric inpatients with symptoms of depression or anxiety: A pilot randomized controlled trial. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:997531. [PMID: 36386776 PMCID: PMC9641275 DOI: 10.3389/fresc.2022.997531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Patients with depression and/or anxiety are commonly seen in inpatient geriatric settings. Both disorders are associated with an increased risk of cognitive impairments, notably in executive functioning. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, involves the administration of a low-dose electrical current to induce neuromodulation, which ultimately may act on downstream cognitive processing. OBJECTIVE The purpose of this study was to determine the effects of tDCS on executive functioning in geriatric inpatients with symptoms of depression and/or anxiety. DESIGN Pilot Randomized Controlled Trial. SETTING Specialized geriatric wards in a tertiary rehabilitation hospital. METHODS Thirty older-aged adults were recruited, of which twenty completed ten-to-fifteen sessions of 1.5 mA anodal or sham tDCS over the left dorsolateral prefrontal cortex. Cognitive assessments were administered at baseline and following the tDCS protocol; analyses examined the effects of tDCS on cognitive performance between groups (anodal or sham tDCS). RESULTS tDCS was found to increase inhibitory processing and cognitive flexibility in the anodal tDCS group, with significant changes on the Stroop test and Trail Making Test-Part B. No significant changes were observed on measures of attention or working memory. DISCUSSION These results provide preliminary evidence that tDCS-induced neuromodulation may selectively improve cognitive processing in older adults with symptoms of depression and/or anxiety. CLINICAL TRIALS REGISTRATION www.clinicaltrials.gov, NCT04558177.
Collapse
Affiliation(s)
- Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada,Alberta Health Services, Edmonton, AB, Canada,Correspondence: Mathieu Figeys
| | - Sheryn Villarey
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ada W. S. Leung
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada,Department of Occupational Therapy, University of Alberta, Edmonton, AB, Canada
| | - Jim Raso
- Alberta Health Services, Edmonton, AB, Canada
| | - Steven Buchan
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | | | - David Rawani
- Alberta Health Services, Edmonton, AB, Canada,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Esther S. Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada,Department of Communication Sciences and Disorders, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Camacho‐Conde JA, del Rosario Gonzalez‐Bermudez M, Carretero‐Rey M, Khan ZU. Therapeutic potential of brain stimulation techniques in the treatment of mental, psychiatric, and cognitive disorders. CNS Neurosci Ther 2022; 29:8-23. [PMID: 36229994 PMCID: PMC9804057 DOI: 10.1111/cns.13971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023] Open
Abstract
Treatment for brain diseases has been disappointing because available medications have failed to produce clinical response across all the patients. Many patients either do not respond or show partial and inconsistent effect, and even in patients who respond to the medications have high relapse rates. Brain stimulation has been seen as an alternative and effective remedy. As a result, brain stimulation has become one of the most valuable therapeutic tools for combating against brain diseases. In last decade, studies with the application of brain stimulation techniques not only have grown exponentially but also have expanded to wide range of brain disorders. Brain stimulation involves passing electric currents into the cortical and subcortical area brain cells with the use of noninvasive as well as invasive methods to amend brain functions. Over time, technological advancements have evolved into the development of precise devices; however, at present, most used noninvasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In the current review, we will provide an overview of the potential of noninvasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques focusing on the treatment of mental, psychiatric, and cognitive disorders.
Collapse
Affiliation(s)
- Jose Antonio Camacho‐Conde
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | | | - Marta Carretero‐Rey
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | - Zafar U. Khan
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain,CIBERNEDInstitute of Health Carlos IIIMadridSpain
| |
Collapse
|
30
|
Nandi T, Puonti O, Clarke WT, Nettekoven C, Barron HC, Kolasinski J, Hanayik T, Hinson EL, Berrington A, Bachtiar V, Johnstone A, Winkler AM, Thielscher A, Johansen-Berg H, Stagg CJ. tDCS induced GABA change is associated with the simulated electric field in M1, an effect mediated by grey matter volume in the MRS voxel. Brain Stimul 2022; 15:1153-1162. [PMID: 35988862 PMCID: PMC7613675 DOI: 10.1016/j.brs.2022.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Transcranial direct current stimulation (tDCS) has wide ranging applications in neuro-behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by substantial inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the electric field (E-field) induced in the cortex. Here, we tested whether the variability in the E-field in the stimulated cortex during anodal tDCS, estimated using computational simulations, explains the variability in tDCS induced changes in GABA, a neurophysiological marker of stimulation effect. METHODS Data from five previously conducted MRS studies were combined. The anode was placed over the left primary motor cortex (M1, 3 studies, N = 24) or right temporal cortex (2 studies, N = 32), with the cathode over the contralateral supraorbital ridge. Single voxel spectroscopy was performed in a 2x2x2cm voxel under the anode in all cases. MRS data were acquired before and either during or after 1 mA tDCS using either a sLASER sequence (7T) or a MEGA-PRESS sequence (3T). sLASER MRS data were analysed using LCModel, and MEGA-PRESS using FID-A and Gannet. E-fields were simulated in a finite element model of the head, based on individual structural MR images, using SimNIBS. Separate linear mixed effects models were run for each E-field variable (mean and 95th percentile; magnitude, and components normal and tangential to grey matter surface, within the MRS voxel). The model included effects of time (pre or post tDCS), E-field, grey matter volume in the MRS voxel, and a 3-way interaction between time, E-field and grey matter volume. Additionally, we ran a permutation analysis using PALM to determine whether E-field anywhere in the brain, not just in the MRS voxel, correlated with GABA change. RESULTS In M1, higher mean E-field magnitude was associated with greater anodal tDCS-induced decreases in GABA (t(24) = 3.24, p = 0.003). Further, the association between mean E-field magnitude and GABA change was moderated by the grey matter volume in the MRS voxel (t(24) = -3.55, p = 0.002). These relationships were consistent across all E-field variables except the mean of the normal component. No significant relationship was found between tDCS-induced GABA decrease and E-field in the temporal voxel. No significant clusters were found in the whole brain analysis. CONCLUSIONS Our data suggest that the electric field induced by tDCS within the brain is variable, and is significantly related to anodal tDCS-induced decrease in GABA, a key neurophysiological marker of stimulation. These findings strongly support individualised dosing of tDCS, at least in M1. Further studies examining E-fields in relation to other outcome measures, including behaviour, will help determine the optimal E-fields required for any desired effects.
Collapse
Affiliation(s)
- Tulika Nandi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; NeuroImaging Center (NIC), Johannes Gutenberg University Medical Center, Germany.
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Caroline Nettekoven
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Taylor Hanayik
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Emily L Hinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Adam Berrington
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, UK
| | - Velicia Bachtiar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, United States
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
31
|
Thams F, Külzow N, Flöel A, Antonenko D. Modulation of network centrality and gray matter microstructure using multi-session brain stimulation and memory training. Hum Brain Mapp 2022; 43:3416-3426. [PMID: 35373873 PMCID: PMC9248322 DOI: 10.1002/hbm.25857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022] Open
Abstract
Neural mechanisms of behavioral improvement induced by repeated transcranial direct current stimulation (tDCS) combined with cognitive training are yet unclear. Previously, we reported behavioral effects of a 3-day visuospatial memory training with concurrent anodal tDCS over the right temporoparietal cortex in older adults. To investigate intervention-induced neural alterations we here used functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) datasets available from 35 participants of this previous study, acquired before and after the intervention. To delineate changes in whole-brain functional network architecture, we employed eigenvector centrality mapping. Gray matter alterations were analyzed using DTI-derived mean diffusivity (MD). Network centrality in the bilateral posterior temporooccipital cortex was reduced after anodal compared to sham stimulation. This focal effect is indicative of decreased functional connectivity of the brain region underneath the anodal electrode and its left-hemispheric homolog with other "relevant" (i.e., highly connected) brain regions, thereby providing evidence for reorganizational processes within the brain's network architecture. Examining local MD changes in these clusters, an interaction between stimulation condition and training success indicated a decrease of MD in the right (stimulated) temporooccipital cluster in individuals who showed superior behavioral training benefits. Using a data-driven whole-brain network approach, we provide evidence for targeted neuromodulatory effects of a combined tDCS-and-training intervention. We show for the first time that gray matter alterations of microstructure (assessed by DTI-derived MD) may be involved in tDCS-enhanced cognitive training. Increased knowledge on how combined interventions modulate neural networks in older adults, will help the development of specific therapeutic interventions against age-associated cognitive decline.
Collapse
Affiliation(s)
- Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nadine Külzow
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Neurological Rehabilitation Clinic, Kliniken Beelitz GmbH, Beelitz, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Pilloni G, Charvet LE, Bikson M, Palekar N, Kim MJ. Potential of Transcranial Direct Current Stimulation in Alzheimer's Disease: Optimizing Trials Toward Clinical Use. J Clin Neurol 2022; 18:391-400. [PMID: 35796264 PMCID: PMC9262447 DOI: 10.3988/jcn.2022.18.4.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a safe and well-tolerated noninvasive method for stimulating the brain that is rapidly developing into a treatment method for various neurological and psychiatric conditions. In particular, there is growing evidence of a therapeutic role for tDCS in ameliorating or delaying the cognitive decline in Alzheimer's disease (AD). We provide a brief overview of the current development and application status of tDCS as a nonpharmacological therapeutic method for AD and mild cognitive impairment (MCI), summarize the levels of evidence, and identify the improvements needed for clinical applications. We also suggest future directions for large-scale controlled clinical trials of tDCS in AD and MCI, and emphasize the necessity of identifying the mechanistic targets to facilitate clinical applications.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Leigh E Charvet
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, NY, USA
| | - Nikhil Palekar
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Min-Jeong Kim
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
33
|
Lavezzi GD, Galan SS, Andersen H, Tomer D, Cacciamani L. The Effects of tDCS on Object Perception: A Systematic Review and Meta-Analysis. Behav Brain Res 2022; 430:113927. [DOI: 10.1016/j.bbr.2022.113927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
|
34
|
Hardcastle C, Hausman HK, Kraft JN, Albizu A, O'Shea A, Boutzoukas EM, Evangelista ND, Langer K, Van Etten EJ, Bharadwaj PK, Song H, Smith SG, Porges E, DeKosky ST, Hishaw GA, Wu SS, Marsiske M, Cohen R, Alexander GE, Woods AJ. Proximal improvement and higher-order resting state network change after multidomain cognitive training intervention in healthy older adults. GeroScience 2022; 44:1011-1027. [PMID: 35258771 PMCID: PMC9135928 DOI: 10.1007/s11357-022-00535-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/18/2022] [Indexed: 01/01/2023] Open
Abstract
Prior randomized control trials have shown that cognitive training interventions resulted in improved proximal task performance, improved functioning of activities of daily living, and reduced dementia risk in healthy older adults. Neural correlates implicated in cognitive training include hub brain regions of higher-order resting state networks including the default mode network, dorsal attention network, frontoparietal control network, and cingulo-opercular network. However, little is known about resting state network change after cognitive training, or the relation between functional brain changes and improvement in proximal task performance. We assessed the 1) change in proximal task performance, 2) change in higher-order resting state network connectivity via functional magnetic resonance imaging, and 3) association between these variables after a multidomain attention/speed-of-processing and working memory randomized control trial in a sample of 58 healthy older adults. Participants in the cognitive training group improved significantly on seven out of eight training tasks immediately after the training intervention with the largest magnitude of improvement in a divided attention/speed-of-processing task, the Double Decision task. Only the frontoparietal control network had significantly strengthened connectivity in the cognitive training group at the post-intervention timepoint. Lastly, higher frontoparietal control network connectivity was associated with improved Double Decision task performance after training in the cognitive training group. These findings show that the frontoparietal control network may strengthen after multidomain cognitive training interventions, and this network may underlie improvements in divided attention/speed-of-processing proximal improvement.
Collapse
Affiliation(s)
- Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA
| | - Kailey Langer
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA
| | - Emily J Van Etten
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Pradyumna K Bharadwaj
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Hyun Song
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Samantha G Smith
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA
| | - Gene E Alexander
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1249 Center Drive, PO Box 100196, Gainesville, FL, 32610-0165, USA.
| |
Collapse
|
35
|
Qiao J, Li X, Wang Y, Wang Y, Li G, Lu P, Wang S. The Infraslow Frequency Oscillatory Transcranial Direct Current Stimulation Over the Left Dorsolateral Prefrontal Cortex Enhances Sustained Attention. Front Aging Neurosci 2022; 14:879006. [PMID: 35431889 PMCID: PMC9009338 DOI: 10.3389/fnagi.2022.879006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background The vigilance fluctuation and decrement of sustained attention have large detrimental consequences to most tasks in daily life, especially among the elderly. Non-invasive brain stimulations (e.g., transcranial direct current stimulation, tDCS) have been widely applied to improve sustained attention, however, with mixed results. Objective An infraslow frequency oscillatory tDCS approach was designed to improve sustained attention. Methods The infraslow frequency oscillatory tDCS (O-tDCS) over the left dorsolateral prefrontal cortex at 0.05 Hz was designed and compared with conventional tDCS (C-tDCS) to test whether this new protocol improves sustained attention more effectively. The sustained attention was evaluated by reaction time and accuracy. Results Compared with the C-tDCS and sham, the O-tDCS significantly enhanced sustained attention by increasing response accuracy, reducing response time, and its variability. These effects were predicted by the evoked oscillation of response time at the stimulation frequency. Conclusion Similar to previous studies, the modulation effect of C-tDCS on sustained attention is weak and unstable. In contrast, the O-tDCS effectively and systematically enhances sustained attention by optimizing vigilance fluctuation. The modulation effect of O-tDCS is probably driven by neural oscillations at the infraslow frequency range.
Collapse
Affiliation(s)
- Jingwen Qiao
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xinyu Li
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Youhao Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Gen Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Ping Lu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shouyan Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Hardcastle C, Hausman HK, Kraft JN, Albizu A, Evangelista ND, Boutzoukas EM, O'Shea A, Langer K, Van Van Etten E, Bharadwaj PK, Song H, Smith SG, Porges E, DeKosky ST, Hishaw GA, Wu SS, Marsiske M, Cohen R, Alexander GE, Woods AJ. Higher-order resting state network association with the useful field of view task in older adults. GeroScience 2022; 44:131-145. [PMID: 34431043 PMCID: PMC8810967 DOI: 10.1007/s11357-021-00441-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022] Open
Abstract
Speed-of-processing abilities decline with age yet are important in performing instrumental activities of daily living. The useful field of view, or Double Decision task, assesses speed-of-processing and divided attention. Performance on this task is related to attention, executive functioning, and visual processing abilities in older adults, and poorer performance predicts more motor vehicle accidents in the elderly. Cognitive training in this task reduces risk of dementia. Structural and functional neural correlates of this task suggest that higher-order resting state networks may be associated with performance on the Double Decision task, although this has never been explored. This study aimed to assess the association of within-network connectivity of the default mode network, dorsal attention network, frontoparietal control network, and cingulo-opercular network with Double Decision task performance, and subcomponents of this task in a sample of 267 healthy older adults. Multiple linear regressions showed that connectivity of the cingulo-opercular network is associated with visual speed-of-processing and divided attention subcomponents of the Double Decision task. Cingulo-opercular network and frontoparietal control network connectivity is associated with Double Decision task performance. Stronger connectivity is related to better performance in all cases. These findings confirm the unique role of the cingulo-opercular network in visual attention and sustained divided attention. Frontoparietal control network connectivity, in addition to cingulo-opercular network connectivity, is related to Double Decision task performance, a task implicated in reduced dementia risk. Future research should explore the role these higher-order networks play in reduced dementia risk after cognitive intervention using the Double Decision task.
Collapse
Affiliation(s)
- Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Kailey Langer
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Emily Van Van Etten
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Pradyumna K Bharadwaj
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Hyun Song
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Samantha G Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Neurology, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Ownby RL, Kim J. Computer-Delivered Cognitive Training and Transcranial Direct Current Stimulation in Patients With HIV-Associated Neurocognitive Disorder: A Randomized Trial. Front Aging Neurosci 2021; 13:766311. [PMID: 34867291 PMCID: PMC8634723 DOI: 10.3389/fnagi.2021.766311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/20/2021] [Indexed: 01/13/2023] Open
Abstract
Objective: HIV infection is associated with impaired cognition, and as individuals grow older, they may also experience age-related changes in mental abilities. Previous studies have shown that computer-based cognitive training (CCT) and transcranial direct current stimulation (tDCS) may be useful in improving cognition in older persons. This study evaluated the acceptability of CCT and tDCS to older adults with HIV-associated neurocognitive disorder, and assessed their impact on reaction time, attention, and psychomotor speed. Methods: In a single-blind randomized study, 46 individuals with HIV-associated mild neurocognitive disorder completed neuropsychological assessments and six 20-min training sessions to which they had been randomly assigned to one of the following conditions: (1) CCT with active tDCS; (2) CCT with sham tDCS, or (3) watching educational videos with sham tDCS. Immediately after training and again 1 month later, participants completed follow-up assessments. Outcomes were evaluated via repeated measures mixed effects models. Results: Participant ratings of the intervention were positive. Effects on reaction time were not significant, but measures of attention and psychomotor speed suggested positive effects of the intervention. Conclusion: Both CCT and tDCS were highly acceptable to older persons with HIV infection. CCT and tDCS may improve cognitive in affected individuals. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT03440840].
Collapse
Affiliation(s)
- Raymond L. Ownby
- Department of Psychiatry and Behavioral Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | | |
Collapse
|
38
|
Alvarez-Alvarado S, Boutzoukas EM, Kraft JN, O’Shea A, Indahlastari A, Albizu A, Nissim NR, Evangelista ND, Cohen R, Porges EC, Woods AJ. Impact of Transcranial Direct Current Stimulation and Cognitive Training on Frontal Lobe Neurotransmitter Concentrations. Front Aging Neurosci 2021; 13:761348. [PMID: 34744698 PMCID: PMC8568306 DOI: 10.3389/fnagi.2021.761348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: This study examines the impact of transcranial direct current stimulation (tDCS) combined with cognitive training on neurotransmitter concentrations in the prefrontal cortex. Materials and Methods: Twenty-three older adults were randomized to either active-tDCS or sham-tDCS in combination with cognitive training for 2 weeks. Active-tDCS was delivered over F3 (cathode) and F4 (anode) electrode placements for 20 min at 2 mA intensity. For each training session, 40-min of computerized cognitive training were applied with active or sham stimulation delivered during the first 20-min. Glutamine/glutamate (Glx) and gamma-aminobutyric acid (GABA) concentrations via proton magnetic resonance spectroscopy were evaluated at baseline and at the end of 2-week intervention. Results: Glx concentrations increased from pre- to post-intervention (p = 0.010) in the active versus sham group after controlling for age, number of intervention days, MoCA scores, and baseline Glx concentration. No difference in GABA concentration was detected between active and sham groups (p = 0.650) after 2-week intervention. Conclusion: Results provide preliminary evidence suggesting that combining cognitive training and tDCS over the prefrontal cortex elicits sustained increase in excitatory neurotransmitter concentrations. Findings support the combination of tDCS and cognitive training as a potential method for altering neurotransmitter concentrations in the frontal cortices, which may have implications for neuroplasticity in the aging brain.
Collapse
Affiliation(s)
- Stacey Alvarez-Alvarado
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Emanuel M. Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Jessica N. Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Andrew O’Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Nicole R. Nissim
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Nicole D. Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Eric C. Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Lee JH, Lee TL, Kang N. Transcranial direct current stimulation decreased cognition-related reaction time in older adults: A systematic review and meta-analysis. Ageing Res Rev 2021; 70:101377. [PMID: 34089900 DOI: 10.1016/j.arr.2021.101377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/18/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND This systematic review and meta-analysis investigated the effects of transcranial direct current stimulation (tDCS) on the cognitive functions of healthy older adults by focusing on the changes in reaction time during cognitive tasks. METHOD A total of 31 studies qualified for this meta-analysis, and we acquired 36 comparisons from the included studies for data synthesis. The individual effect sizes were calculated by comparing the altered reaction time during the performance of a specific cognitive task between the active tDCS and sham groups. In two moderator variable analyses, we examined the potentially different effects of the tDCS protocols on the cognition-related reaction time based on the tDCS protocol used (i.e., online vs. offline tDCS) and the five cognitive domains: (a) perceptual-motor function, (b) learning and memory, (c) executive function / complex attention, (d) language, and (e) social cognition. Meta-regression analyses were conducted to estimate the relationship between demographic and tDCS parameter characteristics and the changes in reaction time. RESULTS The random-effects model meta-analysis revealed significant small effects of tDCS on cognition-related reaction time. Specifically, providing online tDCS significantly reduced the reaction time, and these patterns were observed during learning and memory and executive function / complex attention tasks. However, applying offline tDCS failed to find any significant reduction of reaction time across various cognitive tasks. The meta-regression analysis revealed that the effects of tDCS on the reaction time during the performance of cognitive tasks increased for the older people. CONCLUSIONS These findings suggest that providing online tDCS may effectively improve the ageing-induced reaction time related to specific cognitive functions of elderly people.
Collapse
|
40
|
Indahlastari A, Albizu A, Kraft JN, O'Shea A, Nissim NR, Dunn AL, Carballo D, Gordon MP, Taank S, Kahn AT, Hernandez C, Zucker WM, Woods AJ. Individualized tDCS modeling predicts functional connectivity changes within the working memory network in older adults. Brain Stimul 2021; 14:1205-1215. [PMID: 34371212 PMCID: PMC8892686 DOI: 10.1016/j.brs.2021.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Working memory decline has been associated with normal aging. The frontal brain structure responsible for this decline is primarily located in the prefrontal cortex (PFC). Our previous neuroimaging study demonstrated a significant change in functional connectivity between the left dorsolateral PFC (DLPFC) and left ventrolateral PFC (VLPFC) when applying 2 mA tDCS in MRI scanner during an N-Back task. These regions were part of the working memory network. The present study is the first study that utilizes individualized finite element models derived from older adults' MRI to predict significant changes of functional connectivity observed from an acute tDCS application. METHODS Individualized head models from 15 healthy older adults (mean age = 71.3 years) were constructed to create current density maps. Each head model was segmented into 11 tissue types: white matter, gray matter, CSF, muscle, blood vessels, fat, eyes, air, skin, cancellous, and cortical bone. Electrodes were segmented from T1-weighted images and added to the models. Computed median and maximum current density values in the left DLPFC and left VLPFC regions of interest (ROIs) were correlated with beta values as functional connectivity metrics measured in different timepoint (baseline, during stimulation) and stimulation condition (active and sham). MAIN RESULTS Positive significant correlations (R2 = 0.523 for max J, R2 = 0.367 for median J, p < 0.05) were found between the beta values and computed current densities in the left DLPFC ROIs for active stimulation, but no significant correlation was found during sham stimulation. We found no significant correlation between connectivity and current densities computed in the left VLPFC for both active and sham stimulation. CONCLUSIONS The amount of current within the left DLPFC ROIs was found positively correlated with changes in functional connectivity between left DLPFC and left VLPFC during active 2 mA stimulation. Future work may include expansion of number of participants to further test the accuracy of tDCS models used to predict tDCS-induced functional connectivity changes within the working memory network.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Ayden L Dunn
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Daniela Carballo
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Michael P Gordon
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Shreya Taank
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Alex T Kahn
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cindy Hernandez
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - William M Zucker
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Rasmussen ID, Boayue NM, Mittner M, Bystad M, Grnli OK, Vangberg TR, Csifcsák G, Aslaksen PM. High-Definition Transcranial Direct Current Stimulation Improves Delayed Memory in Alzheimer's Disease Patients: A Pilot Study Using Computational Modeling to Optimize Electrode Position. J Alzheimers Dis 2021; 83:753-769. [PMID: 34366347 DOI: 10.3233/jad-210378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The optimal stimulation parameters when using transcranial direct current stimulation (tDCS) to improve memory performance in patients with Alzheimer's disease (AD) are lacking. In healthy individuals, inter-individual differences in brain anatomy significantly influence current distribution during tDCS, an effect that might be aggravated by variations in cortical atrophy in AD patients. OBJECTIVE To measure the effect of individualized HD-tDCS in AD patients. METHODS Nineteen AD patients were randomly assigned to receive active or sham high-definition tDCS (HD-tDCS). Computational modeling of the HD-tDCS-induced electric field in each patient's brain was analyzed based on magnetic resonance imaging (MRI) scans. The chosen montage provided the highest net anodal electric field in the left dorsolateral prefrontal cortex (DLPFC). An accelerated HD-tDCS design was conducted (2 mA for 3×20 min) on two separate days. Pre- and post-intervention cognitive tests and T1 and T2-weighted MRI and diffusion tensor imaging data at baseline were analyzed. RESULTS Different montages were optimal for individual patients. The active HD-tDCS group improved significantly in delayed memory and MMSE performance compared to the sham group. Five participants in the active group had higher scores on delayed memory post HD-tDCS, four remained stable and one declined. The active HD-tDCS group had a significant positive correlation between fractional anisotropy in the anterior thalamic radiation and delayed memory score. CONCLUSION HD-tDCS significantly improved delayed memory in AD. Our study can be regarded as a proof-of-concept attempt to increase tDCS efficacy. The present findings should be confirmed in larger samples.
Collapse
Affiliation(s)
- Ingrid Daae Rasmussen
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway.,Department of Geropsychiatry, University Hospital of North Norway, Norway
| | - Nya Mehnwolo Boayue
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | - Matthias Mittner
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | - Martin Bystad
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway.,Department of Geropsychiatry, University Hospital of North Norway, Norway
| | - Ole K Grnli
- Department of Geropsychiatry, University Hospital of North Norway, Norway
| | - Torgil Riise Vangberg
- Department of Clinical Medicine, University hospital of North Norway, Norway.,PET Center, University hospital of North Norway, Tromsø, Norway
| | - Gábor Csifcsák
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | - Per M Aslaksen
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway.,Department of Child and Adolescent Psychiatry, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
42
|
Rodella C, Cespón J, Repetto C, Pellicciari MC. Customized Application of tDCS for Clinical Rehabilitation in Alzheimer's Disease. Front Hum Neurosci 2021; 15:687968. [PMID: 34393740 PMCID: PMC8358653 DOI: 10.3389/fnhum.2021.687968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Claudia Rodella
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy
| | - Jesús Cespón
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Claudia Repetto
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy
| | | |
Collapse
|