1
|
Azmi NH, Silim AH, Sawri Rajan R, Nasaruddin RA. Recurrent Optic Neuritis as a Misleading Presentation of Leber Hereditary Optic Neuropathy: The Need for High Clinical Suspicion in Young Men. Cureus 2025; 17:e81863. [PMID: 40342472 PMCID: PMC12059604 DOI: 10.7759/cureus.81863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
A 29-year-old Chinese gentleman presented with acute-onset right eye (RE) central scotoma and blurring of vision. Upon presentation, RE visual acuity (VA) was 6/30. The RE optic disc (OD) was mildly swollen, but other findings were unremarkable. A computed tomography (CT) imaging study showed no evidence of a space-occupying lesion. The erythrocyte sedimentation rate (ESR) and other laboratory blood results were normal. The patient was empirically treated with a course of steroids for optic neuritis (ON), but no marked improvement was noticed. He presented again two months later with worsening visual problems in both eyes (BE). The right and left VA reduced to 6/36 and 6/18, respectively. BE OD appeared swollen and hyperemic. BE central scotoma was confirmed with the Humphrey Visual Field (HVF) test. A magnetic resonance imaging (MRI) study was conducted and only revealed a mild heterogenous hyperintensity of the right optic nerve. There is no other evidence of central nervous lesion suggestive of demyelinating disease. A blood investigation for Leber hereditary optic neuropathy (LHON) genetic testing was done, and a confirmatory result of mitochondrial DNA (mtDNA) G11778A pathogenic mutation was detected.
Collapse
Affiliation(s)
- Nurul Husna Azmi
- Ophthalmology, Hospital Selayang, Selayang, MYS
- Ophthalmology, Hospital Universiti Kebangsaan Malaysia, Kuala Lumpur, MYS
| | | | | | | |
Collapse
|
2
|
Ihadadene K, Fallatah AHA, Zhu Y, Tolone A, Paquet‐Durand F. Inhibition of cGMP-Signalling Rescues Retinal Ganglion Cells From Axotomy-Induced Degeneration. J Neurochem 2025; 169:e70072. [PMID: 40270249 PMCID: PMC12019586 DOI: 10.1111/jnc.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
The axons of retinal ganglion cells (RGCs) form the optic nerve, which relays visual information to the brain. RGC degeneration is the root cause of a variety of blinding diseases linked to optic nerve damage, including glaucoma, the second leading cause of blindness worldwide. The underlying cellular mechanisms of RGC degeneration are largely unclear; yet, they have been connected to excessive production of the signalling molecule nitric oxide (NO) by nitric oxide synthase (NOS). NO activates soluble guanylate cyclase (sGC), which subsequently produces the second messenger cyclic guanosine monophosphate (cGMP). This, in turn, activates protein kinase G (PKG), which can phosphorylate downstream protein targets. To study the role of NO/cGMP/PKG signalling in RGC degeneration, we used organotypic retinal explant cultures in which the optic nerve had been severed. We assessed the activity of NOS, RGC death and survival at different times after optic nerve transection. While NOS activity was high right after optic nerve transection, significant RGC loss occurred with a 24-48-h delay. We then treated retinal explants with inhibitors selectively targeting either NOS, sGC, PKG, or Kv1.3 and Kv1.6 voltage-gated potassium channels. While all four treatments reduced RGC death, the PKG inhibitor CN238 and the Kv-channel blocker Margatoxin (MrgX) showed the most pronounced rescue effects. Our results confirm an involvement of NO/cGMP/PKG signalling in RGC degeneration, highlight the potential of PKG and Kv1-channel targeting drugs for treatment development, and further suggest organotypic retinal explant cultures as a useful model for investigations into optic nerve damage.
Collapse
Affiliation(s)
- Katia Ihadadene
- Graduate School INTHERAPIBurgundy UniversityDijonFrance
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
| | - Azdah Hamed A Fallatah
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Graduate School for Molecular MedicineUniversity of TübingenTübingenGermany
- Graduate School for Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Yu Zhu
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Graduate School for Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Arianna Tolone
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
| | | |
Collapse
|
3
|
Takai Y, Yamagami A, Iwasa M, Inoue K, Yasumoto R, Ishikawa H, Wakakura M. Remarkable visual improvement in Leber hereditary optic neuropathy. Jpn J Ophthalmol 2025:10.1007/s10384-025-01185-4. [PMID: 40095332 DOI: 10.1007/s10384-025-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/29/2024] [Indexed: 03/19/2025]
Abstract
PURPOSE Leber hereditary optic neuropathy (LHON) typically has a poor visual outcome. In this study, we examined 8 cases of LHON that demonstrated remarkable visual improvement. STUDY DESIGN Retrospective observational study, clinical case series METHODS: We analyzed the clinical histories and outcomes of 8 patients (16 eyes) whose best corrected visual acuity (BCVA) improved to 0.7 or higher in at least 1 eye. RESULTS The median age of onset of the 7 male patients and 1 female patient was 17 years (range 8-58). Genetic testing revealed m.11778G>A mutations in 6 and m.14484T>C mutations in 2 of the patients. Of the 16 eyes, 15 improved to a BCVA of 0.7 or higher, whilst 1 eye achieved a final BCVA of 0.5. The lowest BCVA was below 0.1 in 12/16 eyes. BCVA improved to 0.1 or better within 1 year in 6/12 eyes and to 0.7 or better within 2 years in 12/15 eyes. In 10 eyes monitored by use of Humphrey Field Analysis (HFA; Fastpac, 30-2 program), the mean deviation improved from - 13.2 dB (- 23.6 to - 4.54) at its lowest to - 5.0 dB (- 15.6 to - 0.9) at the final measurement. Final HFA showed residual defects in the temporal region in 7/16 eyes. In the chronic phase, 10/12 eyes displayed either normal optic disc findings or partial temporal pallor. CONCLUSION In LHON cases with remarkable visual improvement, the recovery began earlier, and the visual field defects were relatively mild and tended to persist in the temporal region after improvement. Understanding these cases of notable improvement may inform future treatment strategies.
Collapse
Affiliation(s)
- Yasuyuki Takai
- Department of Ophthalmology, Inouye Eye Hospital, 4-3 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Akiko Yamagami
- Department of Ophthalmology, Inouye Eye Hospital, 4-3 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Mayumi Iwasa
- Department of Ophthalmology, Inouye Eye Hospital, 4-3 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Department of Ophthalmology, Michikusa Eye Clinic Nakamurabashi, Tokyo, Japan
| | - Kenji Inoue
- Department of Ophthalmology, Inouye Eye Hospital, 4-3 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Ryoma Yasumoto
- Department of Clinical Laboratory, Kitasato University Hospital, Kanagawa, Japan
| | - Hitoshi Ishikawa
- Department of Orthoptics and Visual Science, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Masato Wakakura
- Department of Ophthalmology, Inouye Eye Hospital, 4-3 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
4
|
Zhang X, Zhang X, Ren J, Li J, Wei X, Yu Y, Yi Z, Wei W. Precise modelling of mitochondrial diseases using optimized mitoBEs. Nature 2025; 639:735-745. [PMID: 39843744 DOI: 10.1038/s41586-024-08469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
The development of animal models is crucial for studying and treating mitochondrial diseases. Here we optimized adenine and cytosine deaminases to reduce off-target effects on the transcriptome and the mitochondrial genome, improving the accuracy and efficiency of our newly developed mitochondrial base editors (mitoBEs)1. Using these upgraded mitoBEs (version 2 (v2)), we targeted 70 mouse mitochondrial DNA mutations analogous to human pathogenic variants2, establishing a foundation for mitochondrial disease mouse models. Circular RNA-encoded mitoBEs v2 achieved up to 82% editing efficiency in mice without detectable off-target effects in the nuclear genome. The edited mitochondrial DNA persisted across various tissues and was maternally inherited, resulting in F1 generation mice with mutation loads as high as 100% and some mice exhibiting editing only at the target site. By optimizing the transcription activator-like effector (TALE) binding site, we developed a single-base-editing mouse model for the mt-Nd5 A12784G mutation. Phenotypic evaluations led to the creation of mouse models for the mt-Atp6 T8591C and mt-Nd5 A12784G mutations, exhibiting phenotypes corresponding to the reduced heart rate seen in Leigh syndrome and the vision loss characteristic of Leber's hereditary optic neuropathy, respectively. Moreover, the mt-Atp6 T8591C mutation proved to be more deleterious than mt-Nd5 A12784G, affecting embryonic development and rapidly diminishing through successive generations. These upgraded mitoBEs offer a highly efficient and precise strategy for constructing mitochondrial disease models, laying a foundation for further research in this field.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Changping Laboratory, Beijing, The People's Republic of China
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China
| | - Xue Zhang
- Changping Laboratory, Beijing, The People's Republic of China
| | - Jiwu Ren
- Changping Laboratory, Beijing, The People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, The People's Republic of China
| | - Jiayi Li
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, The People's Republic of China
| | - Xiaoxu Wei
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, The People's Republic of China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China
| | - Zongyi Yi
- Changping Laboratory, Beijing, The People's Republic of China.
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China.
| | - Wensheng Wei
- Changping Laboratory, Beijing, The People's Republic of China.
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, The People's Republic of China.
| |
Collapse
|
5
|
D’Esposito F, Zeppieri M, Cordeiro MF, Capobianco M, Avitabile A, Gagliano G, Musa M, Barboni P, Gagliano C. Insights on the Genetic and Phenotypic Complexities of Optic Neuropathies. Genes (Basel) 2024; 15:1559. [PMID: 39766826 PMCID: PMC11675667 DOI: 10.3390/genes15121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Optic neuropathies are a category of illnesses that ultimately cause damage to the optic nerve, leading to vision impairment and possible blindness. Disorders such as dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), and glaucoma demonstrate intricate genetic foundations and varied phenotypic manifestations. This narrative review study seeks to consolidate existing knowledge on the genetic and molecular mechanisms underlying ocular neuropathies, examine genotype-phenotype correlations, and assess novel therapeutic options to improve diagnostic and treatment methodologies. Methods: A systematic literature review was performed in October 2024, utilizing PubMed, Medline, the Cochrane Library, and ClinicalTrials.gov. Search terms encompassed "optic neuropathy", "genetic variants", "LHON", "DOA", "glaucoma", and "molecular therapies". Studies were chosen according to established inclusion criteria, concentrating on the genetic and molecular dimensions of optic neuropathies and their therapeutic ramifications. Results: The results indicate that DOA and LHON are mostly associated with the mitochondrial dysfunction resulting from pathogenic variants in nuclear genes, mainly OPA1, and mitochondrial DNA (mtDNA) genes, respectively. Glaucoma, especially its intricate variants, is linked to variants in genes like MYOC, OPTN, and TBK1. Molecular mechanisms, such as oxidative stress and inflammatory modulation, are pivotal in disease progression. Innovative therapeutics, including gene therapy, RNA-based treatments, and antioxidants such as idebenone, exhibit promise for alleviating optic nerve damage and safeguarding vision. Conclusions: Genetic and molecular investigations have markedly enhanced our comprehension of ocular neuropathies. The amalgamation of genetic and phenotypic data is essential for customized medical strategies. Additional research is required to enhance therapeutic strategies and fill the gaps in our understanding of the underlying pathophysiology. This interdisciplinary approach shows potential for enhancing patient outcomes in ocular neuropathies.
Collapse
MESH Headings
- Humans
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Atrophy, Hereditary, Leber/pathology
- Phenotype
- Glaucoma/genetics
- Glaucoma/therapy
- Glaucoma/pathology
- Optic Nerve Diseases/genetics
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Autosomal Dominant/pathology
- DNA, Mitochondrial/genetics
- Genetic Association Studies
Collapse
Affiliation(s)
- Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Maria Francesca Cordeiro
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Matteo Capobianco
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Alessandro Avitabile
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Giuseppe Gagliano
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Piero Barboni
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Studio Oculistico d’Azeglio, 40123 Bologna, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| |
Collapse
|
6
|
Takai Y, Yamagami A, Iwasa M, Inoue K, Yasumoto R, Ishikawa H, Wakakura M. Leber's Hereditary Optic Neuropathy with Retinal Hemorrhage. Neuroophthalmology 2024; 49:127-131. [PMID: 40051721 PMCID: PMC11881881 DOI: 10.1080/01658107.2024.2389957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 03/09/2025] Open
Abstract
Leber's hereditary optic neuropathy (LHON) causes subacute visual loss, and, in the acute phase, the optic disc shows hyperemia, peripapillary telangiectasia, and swelling of the retinal nerve fiber layer (RNFL). Rarely, retinal hemorrhage may be present. In this study, we investigated LHON cases with retinal hemorrhage in the acute phase. Among 82 cases (164 eyes) of LHON who visited the Inoue Eye Hospital, retinal hemorrhage was observed in 5 cases (5 eyes). The age at onset was 36 (27-46) years, with 4 male cases. Mitochondrial DNA analysis revealed the presence of the m.11778G > A variant in four patients and the m.14484T > C variant in one patient. There was no medical history and no excessive smoking or alcohol consumption in any of the cases. In all cases, retinal hemorrhages were observed in the RNFL, accompanying the characteristic optic disc findings of LHON. Fluorescein angiography performed in three cases showed no leakage from the optic disc or blood vessels. While rare, the presence of retinal hemorrhage along the RNFL during the acute phase of LHON should be recognized, as it may warrant consideration of alternative diagnoses.
Collapse
Affiliation(s)
- Yasuyuki Takai
- Department of Ophthalmology, Inouye Eye Hospital, Tokyo, Japan
| | - Akiko Yamagami
- Department of Ophthalmology, Inouye Eye Hospital, Tokyo, Japan
- Department of Ophthalmology, Michikusa Eye Clinic Nakamurabashi, Tokyo, Japan
| | - Mayumi Iwasa
- Department of Ophthalmology, Inouye Eye Hospital, Tokyo, Japan
| | - Kenji Inoue
- Department of Ophthalmology, Inouye Eye Hospital, Tokyo, Japan
| | - Ryoma Yasumoto
- Department of Clinical Laboratory, Kitazato University Hospital, Kanagawa, Japan
| | - Hitoshi Ishikawa
- Department, Orthoptics and Visual Science, School of Allied Health Sciences, Kitazato University, Kanagawa, Japan
| | - Masato Wakakura
- Department of Ophthalmology, Inouye Eye Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Calcagni A, Neveu MM, Jurkute N, Robson AG. Electrodiagnostic tests of the visual pathway and applications in neuro-ophthalmology. Eye (Lond) 2024; 38:2392-2405. [PMID: 38862643 PMCID: PMC11306601 DOI: 10.1038/s41433-024-03154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
This article describes the main visual electrodiagnostic tests relevant to neuro-ophthalmology practice, including the visual evoked potential (VEP), and the full-field, pattern and multifocal electroretinograms (ffERG; PERG; mfERG). The principles of electrophysiological interpretation are illustrated with reference to acquired and inherited optic neuropathies, and retinal disorders that may masquerade as optic neuropathy, including ffERG and PERG findings in cone and macular dystrophies, paraneoplastic and vascular retinopathies. Complementary VEP and PERG recordings are illustrated in demyelinating, ischaemic, nutritional (B12), and toxic (mercury, cobalt, and ethambutol-related) optic neuropathies and inherited disorders affecting mitochondrial function such as Leber hereditary optic neuropathy and dominant optic atrophy. The value of comprehensive electrophysiological phenotyping in syndromic diseases is highlighted in cases of SSBP1-related disease and ROSAH (Retinal dystrophy, Optic nerve oedema, Splenomegaly, Anhidrosis and Headache). The review highlights the value of different electrophysiological techniques, for the purposes of differential diagnosis and objective functional phenotyping.
Collapse
Affiliation(s)
- Antonio Calcagni
- Department of Electrophysiology, Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Magella M Neveu
- Department of Electrophysiology, Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Neringa Jurkute
- Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- Department of Neuro-ophthalmology, Moorfields Eye Hospital, London, UK
- Department of Neuro-ophthalmology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Anthony G Robson
- Department of Electrophysiology, Moorfields Eye Hospital, London, UK.
- Institute of Ophthalmology, University College London, London, UK.
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
8
|
Takai Y, Yamagami A, Ishikawa H. [Leber's hereditary optic neuropathy]. Rinsho Shinkeigaku 2024; 64:326-332. [PMID: 38644210 DOI: 10.5692/clinicalneurol.cn-001924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Leber's hereditary optic atrophy (LHON) is a genetic optic neuropathy that is more prevalent in young males but can occur from childhood to old age. The primary cause is mitochondrial genetic mutations, which are associated with dysfunction of mitochondrial electron transport chain complex I. It manifests as acute to subacute visual impairment, often starting unilaterally but progressing to involve both eyes within weeks to months. Visual loss is severe, with many patients having corrected visual acuity below 0.1. The differential diagnosis of optic neuritis is essential, and assessments such as pupillary light reflex, fluorescein fundus angiography, and magnetic resonance imaging can be useful for differentiation. LHON should be considered as one of the differential diagnoses for optic neuritis, and collaboration between neurologists and ophthalmologists is crucial for accurate diagnosis and appropriate treatment.
Collapse
Affiliation(s)
| | | | - Hitoshi Ishikawa
- Department of Orthoptics and Visual Science, School of Allied Health Sciences, Kitazato University
| |
Collapse
|
9
|
Petito GT, Shear PK, Lynch JD, McKee HR. Leber's hereditary optic neuropathy and epilepsy in a female monozygotic twin. Epileptic Disord 2024; 26:148-150. [PMID: 37767983 DOI: 10.1002/epd2.20161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Affiliation(s)
| | - Paula K Shear
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, USA
| | - James D Lynch
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Heather R McKee
- Division of Epilepsy, Department of Neurology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Chiang ACY, Ježek J, Mu P, Di Y, Klucnika A, Jabůrek M, Ježek P, Ma H. Two mitochondrial DNA polymorphisms modulate cardiolipin binding and lead to synthetic lethality. Nat Commun 2024; 15:611. [PMID: 38242869 PMCID: PMC10799063 DOI: 10.1038/s41467-024-44964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Genetic screens have been used extensively to probe interactions between nuclear genes and their impact on phenotypes. Probing interactions between mitochondrial genes and their phenotypic outcome, however, has not been possible due to a lack of tools to map the responsible polymorphisms. Here, using a toolkit we previously established in Drosophila, we isolate over 300 recombinant mitochondrial genomes and map a naturally occurring polymorphism at the cytochrome c oxidase III residue 109 (CoIII109) that fully rescues the lethality and other defects associated with a point mutation in cytochrome c oxidase I (CoIT300I). Through lipidomics profiling, biochemical assays and phenotypic analyses, we show that the CoIII109 polymorphism modulates cardiolipin binding to prevent complex IV instability caused by the CoIT300I mutation. This study demonstrates the feasibility of genetic interaction screens in animal mitochondrial DNA. It unwraps the complex intra-genomic interplays underlying disorders linked to mitochondrial DNA and how they influence disease expression.
Collapse
Affiliation(s)
- Ason C Y Chiang
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jan Ježek
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- University College London Queen Square Institute of Neurology, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Peiqiang Mu
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Tianhe District, 510642, Guangzhou, Guangdong, P. R. China
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anna Klucnika
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Laverock Therapeutics, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Martin Jabůrek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Hansong Ma
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
11
|
Takano F, Ueda K, Chihara N, Arai M, Sakamoto M, Kurimoto T, Yamada-Nakanishi Y, Nakamura M. Leber Hereditary Optic Neuropathy "Plus" with the m.14487 T>C Mutation as the Causality of Hemidystonia: A Case Report. Case Rep Ophthalmol 2024; 15:852-858. [PMID: 39980532 PMCID: PMC11842009 DOI: 10.1159/000542202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Leber hereditary optic neuropathy (LHON) complicated with extraocular symptoms is called LHON plus. We describe a case of LHON plus with a rare mutation, which also caused dystonia. Case Presentation An 18-year-old male patient developed symptoms of dystonia at the age of 15 years. Two years later, he noticed decreased visual acuity and central scotoma in the left eye. One month later, the same symptoms occurred in the right eye. Although the optic discs in both eyes revealed mildly redness and edematous change, no abnormal findings were detected on fluorescence fundus angiography and orbital magnetic resonance imaging. Mitochondrial deoxyribonucleic acid (mtDNA) sequencing detected the m.14487 T>C mutation. From clinical course and fundus findings, the case was diagnosed LHON. The optic nerve gradually atrophied and central scotoma remained. Conclusion The m.14487 T>C mutation is one of the causative mutations in patients with dystonia or Leigh encephalopathy and a minor mutation in patients with LHON. However, in the present case, ocular symptoms were more severe than systematic symptoms and the disease course was consistent with LHON. For the above reasons, this case can be diagnosed as LHON plus. Whole mtDNA sequencing is important in diagnosing LHON if none of the three major mutations are detected.
Collapse
Affiliation(s)
- Fumio Takano
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kaori Ueda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norio Chihara
- Division of Neurology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mina Arai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Sakamoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Yuko Yamada-Nakanishi
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
12
|
Zhou HP, Sawamura H, Nakamura N, Yamagami A, Yasumoto R, Kasai K, Obata R, Aihara M. Clinically Diagnosed Occult Macular Dystrophy Habouring an m.14502T>C Mitochondrial DNA Mutation Associated with Leber's Hereditary Optic Neuropathy: Case Report and Literature Review. Neuroophthalmology 2023; 47:285-290. [PMID: 38130805 PMCID: PMC10732632 DOI: 10.1080/01658107.2023.2231077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 12/23/2023] Open
Abstract
A 29-year-old female with no family history presented with bilateral progressive blurred vision. Her symptoms appeared at 12-years-old and her visual acuity had since deteriorated from 0.6 to 0.2 bilaterally with decreased critical flicker frequency and bilateral central scotomas. She did not have a relative afferent pupillary defect. Fundoscopy revealed no distinct disc hyperaemia, atrophy, or peripapillary telangiectatic vessels. The retinal nerve fibre layer appeared normal on optical coherence tomography in each eye; however, loss of the interdigitation zone and the disruption of the ellipsoid zone at the fovea were observed in both eyes. Multifocal electroretinography revealed decreased amplitudes at both macula regions. Mitochondrial deoxyribonucleic acid analysis identified an m.14502T>C mutation, one of the primary mutations causing Leber's hereditary optic neuropathy (LHON). Despite the presence of a marked LHON mutation, however, she was clinically diagnosed as having an occult macular dystrophy. There have only been five previous case reports, all of which were sporadic, which detail the clinical characteristics of the m.14502T>C mutation. The m.14502T>C phenotype is somewhat consistent with that of the other major mutations, including young onset, bilateral progressive visual impairment, and a typical LHON fundus. Nevertheless, m.14502T>C alone has an extremely low penetrance and its phenotype may be minimal or subclinical, as seen in our case. Since little is known about the clinical course of the m.14502T>C mutation it may be possible that the LHON phenotype may appear in later stages of life. Moreover, m.14502T>C may function as a modifier gene, which alters the phenotype of other coexisting major LHON mutations, including penetrance and the severity of the disease, through synergistic effects.
Collapse
Affiliation(s)
- Han Peng Zhou
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiromasa Sawamura
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | - Natsuko Nakamura
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | - Akiko Yamagami
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
- Department of Neuro-Ophthalmology, Inoue Eye Hospital, Chiyoda-Ku, Japan
| | - Ryoma Yasumoto
- Department of Clinical Laboratory, Kitasato University Hospital, Sagamihara, Japan
| | - Kyoko Kasai
- Department of Clinical Laboratory, Kitasato University Hospital, Sagamihara, Japan
| | - Ryo Obata
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
13
|
Tagliani S, Malaventura C, Ceccato C, Parmeggiani F, Suppiej A. Leber Mitochondrial Optic Neuropathy in Pediatric Females With Focus on Very Early Onset Cases. J Child Neurol 2023; 38:5-15. [PMID: 36659874 DOI: 10.1177/08830738221149962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this study was to describe the phenotype of Leber hereditary optic neuropathy occurring in pediatric females. This disease generally affects young adult males, but it can occur also in females, and research data in this population is lacking. The very early onset can challenge the diagnosis and delay treatment. We searched PubMed through February 2021 and identified 226 pediatric females with genetically confirmed Leber hereditary optic neuropathy and added a new case of a 3-year-old female. The male-female ratio was 1.8:1; the mean onset age in females was 11 years with the onset at 3 years of age occurring in 3 females only. Acute onset with mild visual impairment was the most common presentation, associated with optic disc edema in 16%. Differential diagnoses are pseudotumor cerebri, optic nerve drusen and optic neuritis. The outcome is poor with partial recovery in 50%, despite some receiving Idebenone therapy.
Collapse
Affiliation(s)
- Sara Tagliani
- Department of Medical Sciences, Pediatric Section, University Hospital of Ferrara, Ferrara, Italy
| | - Cristina Malaventura
- Department of Medical Sciences, Pediatric Section, University Hospital of Ferrara, Ferrara, Italy
| | | | - Francesco Parmeggiani
- Department of Translational Medicine and for Romagna, 9299University of Ferrara, Ferrara, Italy.,ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, 196013Camposampiero Hospital, Padova, Italy
| | - Agnese Suppiej
- Department of Medical Sciences, Pediatric Section, University Hospital of Ferrara, Ferrara, Italy.,87812Robert Hollman Foundation, Padova, Italy.,ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, 196013Camposampiero Hospital, Padova, Italy
| |
Collapse
|
14
|
Abstract
Inherited ocular diseases comprise a heterogeneous group of rare and complex diseases, including inherited retinal diseases (IRDs) and inherited optic neuropathies. Recent success in adeno-associated virus-based gene therapy, voretigene neparvovec (Luxturna®) for RPE65-related IRDs, has heralded rapid evolution in gene therapy platform technologies and strategies, from gene augmentation to RNA editing, as well as gene agnostic approaches such as optogenetics. This review discusses the fundamentals underlying the mode of inheritance, natural history studies and clinical trial outcomes, as well as current and emerging therapies covering gene therapy strategies, cell-based therapies and bionic vision.
Collapse
Affiliation(s)
- Hwei Wuen Chan
- Department of Ophthalmology, National University Hospital, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Correspondence: Dr Hwei Wuen Chan, Assistant Professor, Department of Ophthalmology (Eye), Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, 119228, Singapore. E-mail:
| | - Jaslyn Oh
- Department of Ophthalmology, National University Hospital, Singapore
| | - Bart Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium,Department of Head and Skin, Ghent University, Ghent, Belgium,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium,Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
15
|
Esmaeil A, Ali A, Behbehani R. Leber's hereditary optic neuropathy: Update on current diagnosis and treatment. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1077395. [PMID: 38983564 PMCID: PMC11182214 DOI: 10.3389/fopht.2022.1077395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/20/2022] [Indexed: 07/11/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a fairly prevalent mitochondrial disorder (1:50,000) arising from the dysfunction of the mitochondrial respiratory chain, which eventually leads to apoptosis of retinal ganglion cells. The usual presentation is that of a young male with a sequential reduction in visual acuity. OCT has been used to study the pattern of optic nerve involvement in LHON, showing early thickening of the inferior and superior retinal nerve fibre layer and ganglion cell layer thinning corresponding with the onset of symptoms. Of the three primary mutations for LHON, the m.14484T>C mutation has the best visual prognosis. Recent emerging therapeutic options for LHON include idebenone and the introduction of genetic vector therapy, which is currently in phase III clinical trials. Screening of family members and adequate advice to avoid environmental triggers, such as smoking and alcohol consumption, are also cornerstones in the management of LHON.
Collapse
Affiliation(s)
- Ali Esmaeil
- Neuro-Ophthalmology Service, Department of Ophthalmology, Ibn Sina Hospital, Kuwait City, Kuwait
| | | | | |
Collapse
|
16
|
Pandya BU, Vosoughi AR, Jhaveri A, Micieli JA. A Rare ND5 Mutation Causing Leber's Hereditary Optic Neuropathy. Case Rep Ophthalmol 2023; 14:99-103. [PMID: 36938504 PMCID: PMC10020936 DOI: 10.1159/000529423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/22/2023] [Indexed: 03/21/2023] Open
Abstract
Mutations to the ND5 gene are uncommonly associated with Leber's hereditary optic neuropathy (LHON). Herein, we describe a 57-year-old man with the m. 13528A>G, p. (Thr398Ala) mutation at the ND5 gene who presented with progressive bilateral vision loss over the course of 3 months. He had a significant history of smoking and alcohol consumption. Visual field testing demonstrated bilateral central scotomas. At 2-year follow-up, his visual acuity improved relative to baseline and temporal optic disc pallor was observed in both eyes. There are scarce reports of this mutation in the literature, and this case report further expands the clinical presentation of the m. 13528A>G mutation at the ND5 gene in patients with LHON phenotype.
Collapse
Affiliation(s)
- Bhadra U. Pandya
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amir R. Vosoughi
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Aaditeya Jhaveri
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonathan A. Micieli
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
- Department of Ophthalmology, St. Michael’s Hospital, Unity Health, Toronto, ON, Canada
| |
Collapse
|
17
|
Beckley MA, Shrestha S, Singh KK, Portman MA. The role of mitochondria in the pathogenesis of Kawasaki disease. Front Immunol 2022; 13:1017401. [PMID: 36300112 PMCID: PMC9592088 DOI: 10.3389/fimmu.2022.1017401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Kawasaki disease is a systemic vasculitis, especially of the coronary arteries, affecting children. Despite extensive research, much is still unknown about the principal driver behind the amplified inflammatory response. We propose mitochondria may play a critical role. Mitochondria serve as a central hub, influencing energy generation, cell proliferation, and bioenergetics. Regulation of these biological processes, however, comes at a price. Release of mitochondrial DNA into the cytoplasm acts as damage-associated molecular patterns, initiating the development of inflammation. As a source of reactive oxygen species, they facilitate activation of the NLRP3 inflammasome. Kawasaki disease involves many of these inflammatory pathways. Progressive mitochondrial dysfunction alters the activity of immune cells and may play a role in the pathogenesis of Kawasaki disease. Because they contain their own genome, mitochondria are susceptible to mutation which can propagate their dysfunction and immunostimulatory potential. Population-specific variants in mitochondrial DNA have also been linked to racial disparities in disease risk and treatment response. Our objective is to critically examine the current literature of mitochondria's role in coordinating proinflammatory signaling pathways, focusing on potential mitochondrial dysfunction in Kawasaki disease. No association between impaired mitochondrial function and Kawasaki disease exists, but we suggest a relationship between the two. We hypothesize a framework of mitochondrial determinants that may contribute to ethnic/racial disparities in the progression of Kawasaki disease.
Collapse
Affiliation(s)
- Mikayla A. Beckley
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public Health University of Alabama at Birmingham, Birmingham, AL, United States
| | - Keshav K. Singh
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael A. Portman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, Division of Cardiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Lambiri DW, Levin LA. Modeling Reactive Oxygen Species-Induced Axonal Loss in Leber Hereditary Optic Neuropathy. Biomolecules 2022; 12:1411. [PMID: 36291620 PMCID: PMC9599876 DOI: 10.3390/biom12101411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a rare syndrome that results in vision loss. A necessary but not sufficient condition for its onset is the existence of known mitochondrial DNA mutations that affect complex I biomolecular structure. Cybrids with LHON mutations generate higher rates of reactive oxygen species (ROS). This study models how ROS, particularly H2O2, could signal and execute the axonal degeneration process that underlies LHON. We modeled and explored several hypotheses regarding the influence of H2O2 on the dynamics of propagation of axonal degeneration in LHON. Zonal oxidative stress, corresponding to H2O2 gradients, correlated with the morphology of injury exhibited in the LHON pathology. If the axonal membrane is highly permeable to H2O2 and oxidative stress induces larger production of H2O2, small injuries could trigger cascading failures of neighboring axons. The cellular interdependence created by H2O2 diffusion, and the gradients created by tissue variations in H2O2 production and scavenging, result in injury patterns and surviving axonal loss distributions similar to LHON tissue samples. Specifically, axonal degeneration starts in the temporal optic nerve, where larger groups of small diameter fibers are located and propagates from that region. These findings correlate well with clinical observations of central loss of visual field, visual acuity, and color vision in LHON, and may serve as an in silico platform for modeling the mechanism of action for new therapeutics.
Collapse
Affiliation(s)
- Darius W. Lambiri
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Leonard A. Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
19
|
Leber Hereditary Optic Neuropathy: Molecular Pathophysiology and Updates on Gene Therapy. Biomedicines 2022; 10:biomedicines10081930. [PMID: 36009477 PMCID: PMC9405679 DOI: 10.3390/biomedicines10081930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Molecular pathophysiology of LHON was reviewed and the current status of gene therapy for LHON is updated.
Collapse
|
20
|
Gene Therapy for Mitochondrial Diseases: Current Status and Future Perspective. Pharmaceutics 2022; 14:pharmaceutics14061287. [PMID: 35745859 PMCID: PMC9231068 DOI: 10.3390/pharmaceutics14061287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial diseases (MDs) are a group of severe genetic disorders caused by mutations in the nuclear or mitochondrial genome encoding proteins involved in the oxidative phosphorylation (OXPHOS) system. MDs have a wide range of symptoms, ranging from organ-specific to multisystemic dysfunctions, with different clinical outcomes. The lack of natural history information, the limits of currently available preclinical models, and the wide range of phenotypic presentations seen in MD patients have all hampered the development of effective therapies. The growing number of pre-clinical and clinical trials over the last decade has shown that gene therapy is a viable precision medicine option for treating MD. However, several obstacles must be overcome, including vector design, targeted tissue tropism and efficient delivery, transgene expression, and immunotoxicity. This manuscript offers a comprehensive overview of the state of the art of gene therapy in MD, addressing the main challenges, the most feasible solutions, and the future perspectives of the field.
Collapse
|
21
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
22
|
Subramaniam MD, Chirayath RB, Iyer M, Nair AP, Vellingiri B. Mesenchymal stem cells (MSCs) in Leber's hereditary optic neuropathy (LHON): a potential therapeutic approach for future. Int Ophthalmol 2022; 42:2949-2964. [PMID: 35357640 DOI: 10.1007/s10792-022-02267-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/12/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Optic neuropathy has become a new typical syndromic multi-system disease that leads to optic atrophy. This review discusses potential treatments and advances of Leber's hereditary optic neuropathy (LHON), a sporadic genetic disorder. LHON is caused due to slight mutations in mitochondria leading to mitochondrial dysfunction, causing vision loss. There are no current significant treatments that have been proven to work for LHON. METHODS However, extensive review was carried out on capable studies that have shown potential treatment sensory systems and are being evaluated currently. Some of these studies are in clinical trials, whereas other ones are still being planned. Here, we focus more on treatment based on mesenchymal stem cells-mediated mitochondrial transfer via various techniques. We discuss different mitochondrial transfer modes and possible ways to understand the mitochondria transfer technique's phenotypic characteristics. CONCLUSION It is clearly understood that transfer of healthy mitochondria from MSC to target cell would regulate the range of reactive oxygen species and ATP'S, which are majorly responsible for mutation upon irregulating. Therefore, mitochondrial transfer is suggested and discussed in this review with various aspects. The graphical abstract represents different means of mitochondrial transport like (a) Tunnelling nanotubules, (b) Extracellular vesicles, (c) Cell fusion and (d) Gap junctions. In (a) Tunnelling nanotubules, the signalling pathways TNF- α/TNF αip2 and NFkB/TNF αep2 are responsible for forming tunnels. Also, Miro protein acts as cargo for the transport of mitochondria with myosin's help in the presence of RhoGTPases [35]. In (b) Extracellular vesicles, the RhoA ARF6 contributes to Actin/Cytoskeletal rearrangement leading to the shedding of microvesicles. Coming to (c) Cell fusion when there is a high amount of ATP, the cells tend to fuse when in close proximity leading to the transfer of mitochondria via EFF-1/HAP2 [48]. In (d) Gap Junctions, Connexin43 is responsible for the intracellular channel in the presence of more ATP [86].
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, 600 006, India.
| | - Ruth Bright Chirayath
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, 600 006, India
| | - Mahalaxmi Iyer
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, 600 006, India
| | - Aswathy P Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, 600 006, India
| | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, India
| |
Collapse
|
23
|
Molecular Genetics Overview of Primary Mitochondrial Myopathies. J Clin Med 2022; 11:jcm11030632. [PMID: 35160083 PMCID: PMC8836969 DOI: 10.3390/jcm11030632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial disorders are the most common inherited conditions, characterized by defects in oxidative phosphorylation and caused by mutations in nuclear or mitochondrial genes. Due to its high energy request, skeletal muscle is typically involved. According to the International Workshop of Experts in Mitochondrial Diseases held in Rome in 2016, the term Primary Mitochondrial Myopathy (PMM) should refer to those mitochondrial disorders affecting principally, but not exclusively, the skeletal muscle. The clinical presentation may include general isolated myopathy with muscle weakness, exercise intolerance, chronic ophthalmoplegia/ophthalmoparesis (cPEO) and eyelids ptosis, or multisystem conditions where there is a coexistence with extramuscular signs and symptoms. In recent years, new therapeutic targets have been identified leading to the launch of some promising clinical trials that have mainly focused on treating muscle symptoms and that require populations with defined genotype. Advantages in next-generation sequencing techniques have substantially improved diagnosis. So far, an increasing number of mutations have been identified as responsible for mitochondrial disorders. In this review, we focused on the principal molecular genetic alterations in PMM. Accordingly, we carried out a comprehensive review of the literature and briefly discussed the possible approaches which could guide the clinician to a genetic diagnosis.
Collapse
|
24
|
Mercuţ MF, Tănasie CA, Dan AO, Nicolcescu AM, Ică OM, Mocanu CL, Ştefănescu-Dima AŞ. Retinal morphological and functional response to Idebenone therapy in Leber hereditary optic neuropathy. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:213-219. [PMID: 36074687 PMCID: PMC9593130 DOI: 10.47162/rjme.63.1.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/20/2022] [Indexed: 06/01/2023]
Abstract
Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to optic atrophy due to degeneration of the retinal ganglion cell. A curative treatment is not available at the moment, but a new antioxidant drug, Idebenone, is expected to reduce the progression of the disorder. Two male patients, genetically confirmed with LHON, were clinically, morphologically, and electrophysiologically evaluated, before and three, six, nine and 12 months after starting the treatment. The patient with 3460G>A mutation in mitochondrially-encoded nicotinamide adenine dinucleotide, reduced form (NADH):ubiquinone oxidoreductase core subunit (mtND)1 gene showed an improvement in visual acuity, visual field, and visual evoked potentials with no effect on morphological examinations, while the patient with 11778G>A mutation in mtND4 gene showed no functional, nor morphological recovery after one year of treatment. This study demonstrates that Idebenone, depending on the genetic profile of the disease, may be effective in functional improvement in patients with LHON.
Collapse
|
25
|
Ueda K, Kurimoto T, Takano F, Murai Y, Mori S, Sakamoto M, Nagai T, Yamada-Nakanishi Y, Nakamura M. Protocol to test the efficacy and safety of frequent applications of skin electrical stimulation for Leber hereditary optic neuropathy: a single-arm, open-label, non-randomised prospective study. BMJ Open 2021; 11:e048814. [PMID: 34667002 PMCID: PMC8527142 DOI: 10.1136/bmjopen-2021-048814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Leber hereditary optic neuropathy (LHON) is an acute or subacute inherited optic neuropathy caused by mitochondrial mutations. More than 90% of patients with LHON have one of three point mutations (ie, G3460A, G11778A and T14484C). We previously reported that a 12-week session of skin electrical stimulation (SES) with a 2-week interval significantly improved visual acuity and field tests 1 week after the last stimulation and without adverse effects in 10 cases of LHON carrying the mt DNA G11778A mutation. In the present study, we will examine the magnitude and persistence of the efficacy and presence or absence of adverse events using SES with a more frequent stimulation protocol. METHODS AND ANALYSIS This study will be a single-arm, open-labelled, non-randomised clinical study that analyses 15 cases of LHON with G11778A mutation. All participants will take a portable SES device home and perform SES by themselves every other day for 12 weeks. The logarithm for the minimum angle of resolution (logMAR) best-corrected visual acuity (BCVA) at 1 week after the last SES will be measured as the primary outcome. LogMAR BCVA will be measured at four and 8 weeks after the last SES treatment. The Humphrey visual field sensitivity test using size V stimulation and critical fusion frequency at 1, 4 and 8 weeks after the last SES session will be secondary outcome measurements. Slit-lamp examination, optical coherence tomography and specular microscopy will also be performed to verify the safety of SES. ETHICS AND DISSEMINATION The protocol was approved by the Institutional Review Board at Kobe University, Japan (Approval No.C190030). This study is in progress and deserves Pre-result. All documents communicating with the ethics committee will be reposited by the researcher. Modifications to the protocol will be reviewed by the ethics committee and implemented after approval. Data monitoring will be performed by a researcher who is not involved in the study every 6 months after approval. The research summary results will be registered in the Japan Registry of Clinical Trials (jRCTs) and made available to participants in accordance with the terms described in the documents. In addition, the results of this study will be presented at domestic and international meetings and published in peer-reviewed journals within a year after data is fixed. TRIAL REGISTRATION NUMBER jRCTs052200033.
Collapse
Affiliation(s)
- Kaori Ueda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuji Kurimoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fumio Takano
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Murai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Sakamoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Nagai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuko Yamada-Nakanishi
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
26
|
Nuzbrokh Y, Ragi SD, Tsang SH. Gene therapy for inherited retinal diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1278. [PMID: 34532415 PMCID: PMC8421966 DOI: 10.21037/atm-20-4726] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023]
Abstract
Inherited retinal diseases (IRDs) are a genetically variable collection of devastating disorders that lead to significant visual impairment. Advances in genetic characterization over the past two decades have allowed identification of over 260 causative mutations associated with inherited retinal disorders. Thought to be incurable, gene supplementation therapy offers great promise in treating various forms of these blinding conditions. In gene replacement therapy, a disease-causing gene is replaced with a functional copy of the gene. These therapies are designed to slow disease progression and hopefully restore visual function. Gene therapies are typically delivered to target retinal cells by subretinal (SR) or intravitreal (IVT) injection. The historic Food and Drug Administration (FDA) approval of voretigene neparvovec for RPE65-associated Leber's congenital amaurosis (LCA) spurred tremendous optimism surrounding retinal gene therapy for various other monogenic IRDs. Novel disease-causing mutations continue to be discovered annually, and targeted genetic therapy is now under development in clinical and preclinical models for many IRDs. Numerous clinical trials for other IRDs are ongoing or have recently completed. Disorders being targeted for genetic therapy include retinitis pigmentosa (RP), choroideremia (CHM), achromatopsia (ACHM), Leber's hereditary optic neuropathy, usher syndrome (USH), X-linked retinoschisis, and Stargardt disease. Here, we provide an update of completed, ongoing, and planned clinical trials using gene supplementation strategies for retinal degenerative disorders.
Collapse
Affiliation(s)
- Yan Nuzbrokh
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA.,Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, NY, USA
| | - Sara D Ragi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
27
|
Marmoy OR, Viswanathan S. Clinical electrophysiology of the optic nerve and retinal ganglion cells. Eye (Lond) 2021; 35:2386-2405. [PMID: 34117382 PMCID: PMC8377055 DOI: 10.1038/s41433-021-01614-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Clinical electrophysiological assessment of optic nerve and retinal ganglion cell function can be performed using the Pattern Electroretinogram (PERG), Visual Evoked Potential (VEP) and the Photopic Negative Response (PhNR) amongst other more specialised techniques. In this review, we describe these electrophysiological techniques and their application in diseases affecting the optic nerve and retinal ganglion cells with the exception of glaucoma. The disease groups discussed include hereditary, compressive, toxic/nutritional, traumatic, vascular, inflammatory and intracranial causes for optic nerve or retinal ganglion cell dysfunction. The benefits of objective, electrophysiological measurement of the retinal ganglion cells and optic nerve are discussed, as are their applications in clinical diagnosis of disease, determining prognosis, monitoring progression and response to novel therapies.
Collapse
Affiliation(s)
- Oliver R Marmoy
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK.
- UCL-GOS Institute for Child Health, University College London, London, UK.
- Manchester Metropolitan University, Manchester, UK.
| | | |
Collapse
|
28
|
Wang L, Ding H, Chen BT, Fan K, Tian Q, Long M, Liang M, Shi D, Yu C, Qin W. Occult primary white matter impairment in Leber hereditary optic neuropathy. Eur J Neurol 2021; 28:2871-2881. [PMID: 34166558 DOI: 10.1111/ene.14995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Leber hereditary optic neuropathy (LHON) is a disease maternally inherited from mitochondria that predominantly impairs the retinal ganglion cells and their axons. To identify whether occult brain white matter (WM) impairment is involved, a voxel-based analysis (VBA) of diffusion metrics was carried out in LHON patients with normal-appearing brain parenchyma. METHODS Fifty-four symptomatic LHON patients (including 22 acute LHON with vision loss for ≤12 months, and 32 chronic LHON) without any visible brain lesions and 36 healthy controls (HCs) were enrolled in this study. VBA was applied to quantify the WM microstructural changes of LHON patients. Finally, the associations of the severity of WM impairment with disease duration and ophthalmologic deficits were assessed. RESULTS Compared with the HCs, the average retinal nerve fiber layer (RNFL) thickness was significantly reduced in patients with chronic LHON, whereas it was increased in patients with acute LHON (p < 0.05, corrected). VBA identified significantly decreased fractional anisotropy widely in WM in both the acute and chronic LHON patients, including the left anterior thalamic radiation and superior longitudinal fasciculus, and bilateral corticospinal tract, dentate nuclei, inferior longitudinal fasciculus, forceps major, and optic radiation (OR; p < 0.05, corrected). The integrity of most WM structures (except for the OR) was correlated with neither disease duration nor RNFL thickness (p > 0.05, corrected). CONCLUSIONS Occult primary impairment of widespread brain WM is present in LHON patients. The coexisting primary and secondary WM impairment may jointly contribute to the pathological process of LHON.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hao Ding
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, California, USA
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qin Tian
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Miaomiao Long
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Dapeng Shi
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chunshui Yu
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Kohli P, Jayasri KN, Rupa A, Kumar M, Kowsalya A. Electrophysiological and neuroimaging findings in a patient who developed visual loss after attempted suicide by hanging. Doc Ophthalmol 2021; 143:331-337. [PMID: 34231113 DOI: 10.1007/s10633-021-09846-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To report the electrophysiological and neuroimaging findings in a patient who developed visual loss after attempted suicide by hanging. METHODS A 45-year-old male presented with bilateral visual loss and difficulty in walking following a suicide attempt by hanging six months ago. He underwent a complete ophthalmologic examination, posterior segment optical coherence tomography (OCT), various electrophysiological tests and neuroimaging. RESULTS His bilateral best-corrected visual acuity was logMAR 1.08. Intraocular pressures and ocular examination were normal except for bilateral temporal disk pallor. Macular OCT showed bilateral ganglion cell layer-inner plexiform layer complex thinning. Electroretinogram showed reduced b/a wave amplitude ratio in all the dark- and light-adapted International Society for Clinical Electrophysiology of Vision protocols in both the eyes. Pattern-reversal visually evoked potential (VEP) showed delayed latency of the P100 component in both the eyes. Electrooculography showed a normal light peak-to-dark trough ratio in both the eyes. Magnetic resonance imaging (MRI) brain showed chronic infarct and gliosis in both the occipital lobes. MR angiography showed pruning of P4 segments of both the posterior cerebral artery. Perfusion imaging showed reduction of perfusion in both the parieto-occipital lobes. CONCLUSION Hanging survivors can develop visual loss after their recovery. The visual loss may be a result of simultaneous ischemic insult to the occipital lobe cortex, optic nerve and retina.
Collapse
Affiliation(s)
- Piyush Kohli
- Department of Vitreo-Retinal Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India.
| | - K N Jayasri
- Department of Neuro-Ophthalmology, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - A Rupa
- Department of Pediatric Ophthalmology, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Mahesh Kumar
- Department of Neuro-Ophthalmology, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - A Kowsalya
- Department of Neuro-Ophthalmology, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| |
Collapse
|
30
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
31
|
Cunha AM, Vilares-Morgado R, Moleiro AF, Falcão-Reis F, Faria O. Childhood-Onset Leber Hereditary Optic Neuropathy: Particular Features. Int Med Case Rep J 2021; 14:163-169. [PMID: 33737839 PMCID: PMC7966410 DOI: 10.2147/imcrj.s303460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Leber hereditary optic neuropathy (LHON) is an optic neuropathy of mitochondrial inheritance. Childhood-onset disease is relatively rare and there are limited data on this important patient subgroup. Case Presentation We present 3 particular presentations of LHON. Patient 1 was an 8-year-old boy admitted to the emergency department reporting a progressive bilateral visual loss and intermittent headaches. Neuro-ophthalmological examination revealed a bilateral pseudopapilledema. Lumbar puncture identified intracranial hypertension and the brain and orbits magnetic resonance imaging showed T2 hyperintensity in the posterior region of the left optic nerve and the optic chiasm. Patient 2 was a 12-year-old boy admitted to the emergency department reporting painless, progressive central vision loss in the right eye. Fundus examination revealed a hyperemic disc and vascular network papillary and peripapillary vascular microdilations. Three months later, the left eye presented visual loss. Patient 3 was a 6-year-old female child referred to the neuro-ophthalmology specialist due to painless central visual loss in both eyes. Her BCVA was 1/10 and counting fingers in right and left eye, respectively, and fundus examination revealed a pallor optic disc in the temporal sector. Discussion The phenotype of childhood-onset disease may present itself distinct from classical adult-onset LHON. The absence of classical clinical features could lead to initial misdiagnosis. There should exist a high index of suspicion in children presenting unexplained subnormal vision in order to avoid potential diagnostic delays.
Collapse
Affiliation(s)
- Ana Maria Cunha
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | | | - Ana Filipa Moleiro
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Fernando Falcão-Reis
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Olinda Faria
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Botelho GIS, Salomão SR, Tengan CH, Karanjia R, Moura FV, Rocha DM, da Silva PBE, Fernandes AG, Watanabe SES, Sacai PY, Belfort R, Carelli V, Sadun AA, Berezovsky A. Impaired Ganglion Cell Function Objectively Assessed by the Photopic Negative Response in Affected and Asymptomatic Members From Brazilian Families With Leber's Hereditary Optic Neuropathy. Front Neurol 2021; 11:628014. [PMID: 33584522 PMCID: PMC7874135 DOI: 10.3389/fneur.2020.628014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose: The photopic negative response (PhNR) is an electrophysiological method that provides retinal ganglion cell function assessment using full-field stimulation that does not require clear optics or refractive correction. The purpose of this study was to assess ganglion cell function by PhNR in affected and asymptomatic carriers from Brazilian families with LHON. Methods: Individuals either under suspicion or previously diagnosed with LHON and their family members were invited to participate in this cross-sectional study. Screening for the most frequent LHON mtDNA mutations was performed. Visual acuity, color discrimination, visual fields, pattern-reversal visual evoked potentials (PRVEP), full-field electroretinography and PhNR were tested. A control group of healthy subjects was included. Full-field ERG PhNR were recorded using red (640 nm) flashes at 1 cd.s/m2, on blue (470 nm) rod saturating background. PhNR amplitude (μV) was measured using baseline-to-trough (BT). Optical coherence tomography scans of both the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) were measured. PhNR amplitudes among affected, carriers and controls were compared by Kruskal-Wallis test followed by post-hoc Dunn test. The associations between PhNR amplitude and OCT parameters were analyzed by Spearman rank correlation. Results: Participants were 24 LHON affected patients (23 males, mean age=30.5 ± 11.4 yrs) from 19 families with the following genotype: m.11778G>A [N = 15 (62%), 14 males]; m.14484T>C [N = 5 (21%), all males] and m.3460G>A [N = 4 (17%), all males] and 14 carriers [13 females, mean age: 43.2 ± 13.3 yrs; m.11778G>A (N = 11); m.3460G>A (N = 2) and m.14484T>C (N = 1)]. Controls were eight females and seven males (mean age: 32.6 ± 11.5 yrs). PhNR amplitudes were significantly reduced (p = 0.0001) in LHON affected (-5.96 ± 3.37 μV) compared to carriers (-16.53 ± 3.40 μV) and controls (-23.91 ± 4.83; p < 0.0001) and in carriers compared to controls (p = 0.01). A significant negative correlation was found between PhNR amplitude and total macular ganglion cell thickness (r = -0.62, p < 0.05). Severe abnormalities in color discrimination, visual fields and PRVEPs were found in affected and subclinical abnormalities in carriers. Conclusions: In this cohort of Brazilian families with LHON the photopic negative response was severely reduced in affected patients and mildly reduced in asymptomatic carriers suggesting possible subclinical abnormalities in the latter. These findings were similar among pathogenic mutations.
Collapse
Affiliation(s)
- Gabriel Izan Santos Botelho
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Solange Rios Salomão
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Célia Harumi Tengan
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rustum Karanjia
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, CA, United States.,Department of Ophthalmology, Doheny Eye Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Ottawa Eye Institute, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Felipo Victor Moura
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniel Martins Rocha
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Baptista Eliseo da Silva
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arthur Gustavo Fernandes
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sung Eun Song Watanabe
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Yuri Sacai
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rubens Belfort
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto da Visão-IPEPO, São Paulo, Brazil
| | - Valerio Carelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna School of Medicine, Bologna, Italy
| | - Alfredo Arrigo Sadun
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, CA, United States.,Department of Ophthalmology, Doheny Eye Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Adriana Berezovsky
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Povea-Cabello S, Villanueva-Paz M, Suárez-Rivero JM, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Advances in mt-tRNA Mutation-Caused Mitochondrial Disease Modeling: Patients' Brain in a Dish. Front Genet 2021; 11:610764. [PMID: 33510772 PMCID: PMC7835939 DOI: 10.3389/fgene.2020.610764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of rare genetic disorders that can be caused by mutations in nuclear (nDNA) or mitochondrial DNA (mtDNA). Mutations in mtDNA are associated with several maternally inherited genetic diseases, with mitochondrial dysfunction as a main pathological feature. These diseases, although frequently multisystemic, mainly affect organs that require large amounts of energy such as the brain and the skeletal muscle. In contrast to the difficulty of obtaining neuronal and muscle cell models, the development of induced pluripotent stem cells (iPSCs) has shed light on the study of mitochondrial diseases. However, it is still a challenge to obtain an appropriate cellular model in order to find new therapeutic options for people suffering from these diseases. In this review, we deepen the knowledge in the current models for the most studied mt-tRNA mutation-caused mitochondrial diseases, MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) and MERRF (myoclonic epilepsy with ragged red fibers) syndromes, and their therapeutic management. In particular, we will discuss the development of a novel model for mitochondrial disease research that consists of induced neurons (iNs) generated by direct reprogramming of fibroblasts derived from patients suffering from MERRF syndrome. We hypothesize that iNs will be helpful for mitochondrial disease modeling, since they could mimic patient’s neuron pathophysiology and give us the opportunity to correct the alterations in one of the most affected cellular types in these disorders.
Collapse
Affiliation(s)
- Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marina Villanueva-Paz
- Instituto de Investigación Biomédica de Málaga, Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| |
Collapse
|
34
|
Lock JH, Irani NK, Newman NJ. Neuro-ophthalmic manifestations of mitochondrial disorders and their management. Taiwan J Ophthalmol 2020; 11:39-52. [PMID: 33767954 PMCID: PMC7971441 DOI: 10.4103/tjo.tjo_68_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
The visual system has high metabolic requirements and is therefore particularly vulnerable to mitochondrial dysfunction. The most commonly affected tissues include the extraocular muscles, photoreceptors, retinal pigment epithelium, optic nerve and visual cortex. Hence, the most common manifestations of mitochondrial disorders are progressive external ophthalmoplegia, macular pattern dystrophy, pigmentary retinopathy, optic neuropathy and retrochiasmal visual field loss. With the exception of Leber hereditary optic neuropathy and stroke-like episodes seen in mitochondrial encephalopathy, lactic acidosis and stroke-like episodes, the majority of neuro-ophthalmic manifestations have an insidious onset. As such, some patients may not recognize subtle progressive visual symptoms. When mitochondrial disorders are highly suspected, meticulous examination performed by an ophthalmologist with targeted ancillary testing can help confirm the diagnosis. Similarly, neuro-ophthalmic symptoms and signs may be the first indication of mitochondrial disease and should prompt systemic investigations for potentially life-threatening associations, such as cardiac conduction defects. Finally, the ophthalmologist can offer symptomatic treatments for some of the most disabling manifestations of these disorders.
Collapse
Affiliation(s)
- Jane H Lock
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth's Children's Hospital, Perth, WA, Australia
| | - Neha K Irani
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Neurology, Fiona Stanley Hospital, Perth, WA, Australia.,Department of Neurology, Joondalup Health Campus, Perth, WA, Australia
| | - Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
35
|
Piotrowska-Nowak A, Krawczyński MR, Kosior-Jarecka E, Ambroziak AM, Korwin M, Ołdak M, Tońska K, Bartnik E. Mitochondrial genome variation in male LHON patients with the m.11778G > A mutation. Metab Brain Dis 2020; 35:1317-1327. [PMID: 32740724 PMCID: PMC7584531 DOI: 10.1007/s11011-020-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
Leber hereditary optic neuropathy (LHON) is a mitochondrial disorder with symptoms limited to a single tissue, optic nerve, resulting in vision loss. In the majority of cases it is caused by one of three point mutations in mitochondrial DNA (mtDNA) but their presence is not sufficient for disease development, since ~50% of men and ~10% women who carry them are affected. Thus additional modifying factors must exist. In this study, we use next generation sequencing to investigate the role of whole mtDNA variation in male Polish patients with LHON and m.11778G > A, the most frequent LHON mutation. We present a possible association between mtDNA haplogroup K and variants in its background, a combination of m.3480A > G, m.9055G > A, m.11299 T > C and m.14167C > T, and LHON mutation. These variants may have a negative effect on m.11778G > A increasing its penetrance and the risk of LHON in the Polish population. Surprisingly, we did not observe associations previously reported for m.11778G > A and LHON in European populations, particularly for haplogroup J as a risk factor, implying that mtDNA variation is much more complex. Our results indicate possible contribution of novel combination of mtDNA genetic factors to the LHON phenotype.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warsaw, Poland
| | - Maciej R. Krawczyński
- Department of Medical Genetics, Poznań University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznań, Poland
- Centers for Medical Genetics GENESIS, 4 Grudzieniec Street, 60-601 Poznań, Poland
| | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 1 Chmielna Street, 20-079 Lublin, Poland
| | - Anna M. Ambroziak
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena Korwin
- Department of Ophthalmology, Medical University of Warsaw, 13 Sierakowskiego Street, 03-709 Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego Street, 02-042 Warsaw, Poland
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 5 Chałubińskiego Street, 02-004 Warsaw, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 5a Pawińskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
36
|
Rovcanin B, Jancic J, Pajic J, Rovcanin M, Samardzic J, Djuric V, Nikolic B, Ivancevic N, Novakovic I, Kostic V. Oxidative Stress Profile in Genetically Confirmed Cases of Leber's Hereditary Optic Neuropathy. J Mol Neurosci 2020; 71:1070-1081. [PMID: 33095398 DOI: 10.1007/s12031-020-01729-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
The mechanisms of the complex pathophysiology of Leber's hereditary optic neuropathy (LHON) are still insufficiently clarified. The role of oxidative stress as an etiological factor has been proposed and demonstrated in vitro, but without conclusive data that rely on clinical samples. The aim of the study was to evaluate and characterize the existence of oxidative stress in the plasma of LHON patients and healthy individuals. Whole mitochondrial genome sequencing has been performed in order to identify primary LHON mutations. For the assessment of oxidative stress, the following biomarkers were determined in plasma: total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI), while oxidative damage of cellular proteins was estimated by quantifying advanced oxidation protein products (AOPP). All three primary LHON mutations (m.3460G > A, m.11778G > A and m.14484 T > C) were identified as a genetic cause of the disease, where the most prevalent one was m.11778G > A. LHON patients have a highly significant increase of TOS and a marked decrease of TAS levels, which suggests the existence of substantial oxidative stress. OSI is high in LHON patients, which definitely implies the presence of redox imbalance. Elevated level of AOPP in LHON patients refers to the significant deleterious effects of oxidative stress on cellular proteins. Oxidative stress parameters do not significantly differ between LHON individuals with different primary mutations. Both symptomatic and asymptomatic LHON patients have an augmented level of oxidative stress which suggests that primary mutations exhibit a pro-oxidative phenotype. Gender and smoking habit significantly influence examined biochemical parameters when LHON patients are compared with the control group. Different mitochondrial haplogroups are characterized by altered levels of OSI in LHON group. The absence of physiological correlations between redox parameters reflects the deregulation of homeostatic oxidative/antioxidative balance in LHON patients. This is the greatest series of LHON patients that were evaluated for oxidative stress and the first case-controlled study that evaluated TOS, TAS, OSI, and AOPP and their influence on disease phenotype. It is evident that the presence of oxidative stress represents an important pathophysiological event in LHON and that it could potentially serve as a circulatory biomarker for a therapy efficacy understanding.
Collapse
Affiliation(s)
- Branislav Rovcanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, 11000, Belgrade, Serbia. .,Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, 11000, Belgrade, Serbia.
| | - Jasna Jancic
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, 11000, Belgrade, Serbia.,Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, 11000, Belgrade, Serbia.,Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Pajic
- Radiation Protection Department, Radiation Protection Center, Serbian Institute of Occupational Health Dr Dragomir Karajovic, Belgrade, Serbia
| | - Marija Rovcanin
- The Obstetrics and Gynecology Clinic Narodni Front, Belgrade, Serbia
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Djuric
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Blazo Nikolic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Ivancevic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, Institute for Human Genetics, University of Belgrade, Belgrade, Serbia
| | - Vladimir Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Asanad S, Mohammed I, Sadun AA, Saeedi OJ. OCTA in neurodegenerative optic neuropathies: emerging biomarkers at the eye-brain interface. Ther Adv Ophthalmol 2020; 12:2515841420950508. [PMID: 32923939 PMCID: PMC7457690 DOI: 10.1177/2515841420950508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
OCTA imaging in optic neuropathies.
Collapse
Affiliation(s)
- Samuel Asanad
- Department of Ophthalmology and Visual Sciences, University of Maryland Eye Associates, University of Maryland Medical Center and University of Maryland School of Medicine, 419 W. Redwood St., Baltimore, MD 21201, USA
| | - Isa Mohammed
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alfredo A Sadun
- Doheny Eye Center, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Osamah J Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Ahn YJ, Park Y, Shin SY, Chae H, Kim M, Park SH. Genotypic and phenotypic characteristics of Korean children with childhood-onset Leber's hereditary optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2020; 258:2283-2290. [PMID: 32506279 DOI: 10.1007/s00417-020-04757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE We sought to identify the phenotypic and genotypic characteristics of Korean children with genetically confirmed Leber's hereditary optic neuropathy (LHON). METHODS The medical records of 64 genetically confirmed LHON patients were reviewed. Seventeen patients aged 13 years or younger with optic atrophy with positive mitochondrial DNA (mtDNA) mutations were considered to demonstrate childhood-onset LHON. The non-childhood-onset group included 47 patients with genetically confirmed LHON who experienced disease onset later than 13 years of age. The type of mtDNA mutation, visual acuity (VA), color vision, fundus photography, retinal nerve fiber layer (RNFL) thickness, and visual field were investigated. RESULTS Sequence analysis of the mitochondrial genome revealed five different kinds of LHON-associated mtDNA mutations among our childhood-onset patients, including m.11778G>A (58.8%), m.3496G>T (11.8%), m.3497C>T (5.9%), m.11696G>A (5.9%), and m.14502T>C (5.9%). The mean final best-corrected VA in the childhood-onset group was better than that in the non-childhood-onset group with the value of logMAR 0.29 (0.09-0.75) vs. 0.55 (0.27-1.29) (expressed as median (interquartile range); p = 0.05). Spontaneous visual recovery was observed in 35.3% of the childhood-onset group but in only 12.8% of the non-childhood-onset group (p = 0.04). Eight patients (47.1%) showed interocular asymmetry of the disease, with two presenting true unilateral involvement of the optic nerve and the other six patients demonstrating unilateral subclinical manifestations with bilateral optic atrophy. CONCLUSION Involvement of secondary mitochondrial mutations was confirmed in patients with childhood-onset LHON. Characteristic clinical features of childhood-onset LHON included a higher proportion of subacute or insidious onset of symptoms, better VA, higher spontaneous recovery, and asymmetrical ocular involvement.
Collapse
Affiliation(s)
- Ye Jin Ahn
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yooyeon Park
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sun Young Shin
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyojin Chae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shin Hae Park
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
39
|
Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. Int J Mol Sci 2020; 21:ijms21072262. [PMID: 32218163 PMCID: PMC7177277 DOI: 10.3390/ijms21072262] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The retinal ganglion cells (RGCs) are the output cells of the retina into the brain. In mammals, these cells are not able to regenerate their axons after optic nerve injury, leaving the patients with optic neuropathies with permanent visual loss. An effective RGCs-directed therapy could provide a beneficial effect to prevent the progression of the disease. Axonal injury leads to the functional loss of RGCs and subsequently induces neuronal death, and axonal regeneration would be essential to restore the neuronal connectivity, and to reestablish the function of the visual system. The manipulation of several intrinsic and extrinsic factors has been proposed in order to stimulate axonal regeneration and functional repairing of axonal connections in the visual pathway. However, there is a missing point in the process since, until now, there is no therapeutic strategy directed to promote axonal regeneration of RGCs as a therapeutic approach for optic neuropathies.
Collapse
|
40
|
Ma H, Hayama T, Van Dyken C, Darby H, Koski A, Lee Y, Gutierrez NM, Yamada S, Li Y, Andrews M, Ahmed R, Liang D, Gonmanee T, Kang E, Nasser M, Kempton B, Brigande J, McGill TJ, Terzic A, Amato P, Mitalipov S. Deleterious mtDNA mutations are common in mature oocytes. Biol Reprod 2020; 102:607-619. [PMID: 31621839 PMCID: PMC7068114 DOI: 10.1093/biolre/ioz202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Heritable mitochondrial DNA (mtDNA) mutations are common, yet only a few recurring pathogenic mtDNA variants account for the majority of known familial cases in humans. Purifying selection in the female germline is thought to be responsible for the elimination of most harmful mtDNA mutations during oogenesis. Here we show that deleterious mtDNA mutations are abundant in ovulated mature mouse oocytes and preimplantation embryos recovered from PolG mutator females but not in their live offspring. This implies that purifying selection acts not in the maternal germline per se, but during post-implantation development. We further show that oocyte mtDNA mutations can be captured and stably maintained in embryonic stem cells and then reintroduced into chimeras, thereby allowing examination of the effects of specific mutations on fetal and postnatal development.
Collapse
Affiliation(s)
- Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Tomonari Hayama
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Yeonmi Lee
- Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil Songpa-gu, Seoul 05505, Republic of Korea
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Michael Andrews
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 3375 S.W. Terwilliger Blvd, Portland, Oregon 97239, USA
| | - Riffat Ahmed
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Thanasup Gonmanee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Eunju Kang
- Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil Songpa-gu, Seoul 05505, Republic of Korea
| | - Mohammed Nasser
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Beth Kempton
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - John Brigande
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Trevor J McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 3375 S.W. Terwilliger Blvd, Portland, Oregon 97239, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| |
Collapse
|
41
|
Bouquet C, Vignal Clermont C, Galy A, Fitoussi S, Blouin L, Munk MR, Valero S, Meunier S, Katz B, Sahel JA, Thomasson N. Immune Response and Intraocular Inflammation in Patients With Leber Hereditary Optic Neuropathy Treated With Intravitreal Injection of Recombinant Adeno-Associated Virus 2 Carrying the ND4 Gene: A Secondary Analysis of a Phase 1/2 Clinical Trial. JAMA Ophthalmol 2020; 137:399-406. [PMID: 30730541 DOI: 10.1001/jamaophthalmol.2018.6902] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Importance Intravitreal gene therapy is regarded as generally safe with limited mild adverse events, but its systemic effects remain to be investigated. Objective To examine the association between immune response and intraocular inflammation after ocular gene therapy with recombinant adeno-associated virus 2 carrying the ND4 gene (rAAV2/2-ND4). Design, Setting, and Participants This secondary analysis of an open-label, dose-escalation phase 1/2 randomized clinical trial of rAAV2/2-ND4 included data from February 13, 2014 (first patient visit), to March 30, 2017 (last patient visit at week 96), the first 2 years after injection. Patients older than 15 years with diagnosed ND4 Leber hereditary optic neuropathy (LHON) and visual acuity of at least counting fingers were enrolled in 1 of 5 cohorts. Four dose cohorts of 3 patients each were treated sequentially. An extension cohort of 3 patients received the dose of 9 × 1010 viral genomes per eye. Interventions Patients received increasing doses of rAAV2/2-ND4 (9 × 109, 3 × 1010, 9 × 1010, and 1.8 × 1011 viral genomes per eye) as a single unilateral intravitreal injection. Patients were monitored for 96 weeks after injection; ocular examinations were performed regularly, and blood samples were collected for immunologic testing. Main Outcomes and Measures A composite ocular inflammation score (OIS) was calculated based on grades of anterior chamber cells and flare, vitreous cells, and haze according to the Standardization of Uveitis Nomenclature. The systemic immune response was quantified by enzyme-linked immunospot (cellular immune response), enzyme-linked immunosorbent assay (IgG titers), and luciferase assay (neutralizing antibody [NAb] titers). Results The present analysis included 15 patients (mean [SD] age, 47.9 [17.2] years; 13 men and 2 women) enrolled in the 5 cohorts of the clinical trial. Thirteen patients experienced intraocular inflammation after rAAV2/2-ND4 administration. Mild anterior chamber inflammation and vitritis were reported at all doses, and all cases were responsive to treatment. A maximum OIS of 9.5 was observed in a patient with history of idiopathic uveitis. Overall, OIS was not associated with the viral dose administered. No NAbs against AAV2 were detected in aqueous humor before treatment. Two patients tested positive for cellular immune response against AAV2 at baseline and after treatment. Humoral immune response was not apparently associated with the dose administered or with the immune status of patients at baseline. No association was found between OISs and serum NAb titers. Conclusions and Relevance In this study, intravitreal administration of rAAV2/2-ND4 in patients with LHON was safe and well tolerated. Further investigations may shed light into the local immune response to rAAV2/2-ND4 as a potential explanation for the observed intraocular inflammation.
Collapse
Affiliation(s)
| | - Catherine Vignal Clermont
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France.,Rothschild Ophthalmology Foundation Hospital, Paris, France
| | | | | | | | - Marion R Munk
- Department of Ophthalmology, Bern Photographic Reading Center, Bern, Switzerland.,Inselspital, University Hospital Bern Oberärztin, Bern, Switzerland
| | | | | | | | - José Alain Sahel
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France.,Rothschild Ophthalmology Foundation Hospital, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | |
Collapse
|
42
|
Nissanka N, Moraes CT. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep 2020; 21:e49612. [PMID: 32073748 DOI: 10.15252/embr.201949612] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes a subset of the genes which are responsible for oxidative phosphorylation. Pathogenic mutations in the human mtDNA are often heteroplasmic, where wild-type mtDNA species co-exist with the pathogenic mtDNA and a bioenergetic defect is only seen when the pathogenic mtDNA percentage surpasses a threshold for biochemical manifestations. mtDNA segregation during germline development can explain some of the extreme variation in heteroplasmy from one generation to the next. Patients with high heteroplasmy for deleterious mtDNA species will likely suffer from bona-fide mitochondrial diseases, which currently have no cure. Shifting mtDNA heteroplasmy toward the wild-type mtDNA species could provide a therapeutic option to patients. Mitochondrially targeted engineered nucleases, such as mitoTALENs and mitoZFNs, have been used in vitro in human cells harboring pathogenic patient-derived mtDNA mutations and more recently in vivo in a mouse model of a pathogenic mtDNA point mutation. These gene therapy tools for shifting mtDNA heteroplasmy can also be used in conjunction with other therapies aimed at eliminating and/or preventing the transfer of pathogenic mtDNA from mother to child.
Collapse
Affiliation(s)
- Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
43
|
Starikovskaya E, Shalaurova S, Dryomov S, Nazhmidenova A, Volodko N, Bychkov I, Mazunin I, Sukernik R. Mitochondrial DNA Variation of Leber's Hereditary Optic Neuropathy in Western Siberia. Cells 2019; 8:E1574. [PMID: 31817256 PMCID: PMC6953113 DOI: 10.3390/cells8121574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022] Open
Abstract
Our data first represent the variety of Leber's hereditary optic neuropathy (LHON) mutations in Western Siberia. LHON is a disorder caused by pathogenic mutations in mitochondrial DNA (mtDNA), inherited maternally and presents mainly in young adults, predominantly males. Clinically, LHON manifests itself as painless central vision loss, resulting in early onset of disability. The epidemiology of LHON has not been fully investigated yet. In this study, we report 44 genetically unrelated families with LHON manifestation. We performed whole mtDNA genome sequencing and provided genealogical and molecular genetic data on mutations and haplogroup background of LHON patients. Known "primary" pathogenic mtDNA mutations (MITOMAP) were found in 32 families: m.11778G>A represents 53.10% (17/32), m.3460G>A-21.90% (7/32), m.14484T>C-18.75% (6/32), and rare m.10663T>C and m.3635G>A represent 6.25% (2/32). We describe potentially pathogenic m.4659G>A in one subject without known pathogenic mutations, and potentially pathogenic m.6261G>A, m.8412T>C, m.8551T>C, m.9444C>T, m.9921G>A, and m.15077G>A in families with known pathogenic mutations confirmed. We suppose these mutations could contribute to the pathogenesis of optic neuropathy development. Our results indicate that haplogroup affiliation and mutational spectrum of the Western Siberian LHON cohort substantially deviate from those of European populations.
Collapse
Affiliation(s)
- Elena Starikovskaya
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| | - Sofia Shalaurova
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| | - Stanislav Dryomov
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| | - Azhar Nazhmidenova
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| | - Natalia Volodko
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Igor Bychkov
- Novosibirsk Branch of S.N. Fedorov NMRC “MNTK Eye Microsurgery”, Moscow 127486, Russia
| | - Ilia Mazunin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Rem Sukernik
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| |
Collapse
|
44
|
Sheremet NL, Andreeva NA, Shmel'kova MS, Tsigankova PG. [Mitochondrial biogenesis in hereditary optic neuropathies]. Vestn Oftalmol 2019; 135:85-91. [PMID: 31714518 DOI: 10.17116/oftalma201913505185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The article offers a review of mitochondrial biogenesis in hereditary optic neuropathies. It covers the mechanisms of mitochondrial biogenesis, factors affecting it and tools for mitochondrial turnover assessment.
Collapse
Affiliation(s)
- N L Sheremet
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - N A Andreeva
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - M S Shmel'kova
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - P G Tsigankova
- Research Centre for Medical Genetics, 1 Moskvorech'e St., Moscow, Russian Federation, 115522
| |
Collapse
|
45
|
Littlewood R, Mollan SP, Pepper IM, Hickman SJ. The Utility of Fundus Fluorescein Angiography in Neuro-Ophthalmology. Neuroophthalmology 2019; 43:217-234. [PMID: 31528186 DOI: 10.1080/01658107.2019.1604764] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 10/26/2022] Open
Abstract
While its use is still widespread within the medical retina field, fundus fluorescein angiography (FFA) is increasingly falling out of favour in the investigation of neuro-ophthalmological disease, with the introduction of new technologies, particularly optical coherence tomography. FFA does, however, provide useful diagnostic and prognostic information in many neuro-ophthalmological diseases including papilloedema, pseudo-papilloedema, optic neuropathies and central retinal artery occlusion to name a few. We aim to summarise the main FFA findings in each of these conditions and highlight where FFA is of most use in providing complementary information to other modes of investigation.
Collapse
Affiliation(s)
| | - Susan P Mollan
- Department of Ophthalmology, Queen Elizabeth Hospital, Birmingham, UK
| | - Irene M Pepper
- Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, UK
| | - Simon J Hickman
- Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
46
|
Attenuation of Inherited and Acquired Retinal Degeneration Progression with Gene-based Techniques. Mol Diagn Ther 2019; 23:113-120. [PMID: 30569401 DOI: 10.1007/s40291-018-0377-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inherited retinal dystrophies cause progressive vision loss and are major contributors to blindness worldwide. Advances in gene therapy have brought molecular approaches into the realm of clinical trials for these incurable illnesses. Select phase I, II and III trials are complete and provide some promise in terms of functional outcomes and safety, although questions do remain over the durability of their effects and the prevalence of inflammatory reactions. This article reviews gene therapy as it can be applied to inherited retinal dystrophies, provides an update of results from recent clinical trials, and discusses the future prospects of gene therapy and genome surgery.
Collapse
|
47
|
Cardiovascular Manifestations of Mitochondrial Disease. BIOLOGY 2019; 8:biology8020034. [PMID: 31083569 PMCID: PMC6628328 DOI: 10.3390/biology8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Genetic mitochondrial cardiomyopathies are uncommon causes of heart failure that may not be seen by most physicians. However, the prevalence of mitochondrial DNA mutations and somatic mutations affecting mitochondrial function are more common than previously thought. In this review, the pathogenesis of genetic mitochondrial disorders causing cardiovascular disease is reviewed. Treatment options are presently limited to mostly symptomatic support, but preclinical research is starting to reveal novel approaches that may lead to better and more targeted therapies in the future. With better understanding and clinician education, we hope to improve clinician recognition and diagnosis of these rare disorders in order to improve ongoing care of patients with these diseases and advance research towards discovering new therapeutic strategies to help treat these diseases.
Collapse
|
48
|
Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez-Vizarra E, Barbato S, Pizzo M, Ezhova Y, Golia FM, Ciampi L, Tammaro R, Henao-Mejia J, Williams A, Flavell RA, De Leonibus E, Zeviani M, Surace EM, Banfi S, Franco B. miR-181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol Med 2019; 11:e8734. [PMID: 30979712 PMCID: PMC6505685 DOI: 10.15252/emmm.201708734] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of devastating and often fatal disorders due to defective oxidative phosphorylation. Despite the recent advances in mitochondrial medicine, effective therapies are still not available for these conditions. Here, we demonstrate that the microRNAs miR-181a and miR-181b (miR-181a/b) regulate key genes involved in mitochondrial biogenesis and function and that downregulation of these miRNAs enhances mitochondrial turnover in the retina through the coordinated activation of mitochondrial biogenesis and mitophagy. We thus tested the effect of miR-181a/b inactivation in different animal models of MDs, such as microphthalmia with linear skin lesions and Leber's hereditary optic neuropathy. We found that miR-181a/b downregulation strongly protects retinal neurons from cell death and significantly ameliorates the disease phenotype in all tested models. Altogether, our results demonstrate that miR-181a/b regulate mitochondrial homeostasis and that these miRNAs may be effective gene-independent therapeutic targets for MDs characterized by neuronal degeneration.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta CE, Italy
| | - Alessia Romano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Sara Barbato
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Yulia Ezhova
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesca M Golia
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ludovica Ciampi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute of Cellular Biology and Neurobiology "ABT", CNR, Roma, Italy
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Enrico M Surace
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta CE, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
49
|
Coussa RG, Merat P, Levin LA. Propagation and Selectivity of Axonal Loss in Leber Hereditary Optic Neuropathy. Sci Rep 2019; 9:6720. [PMID: 31040363 PMCID: PMC6491426 DOI: 10.1038/s41598-019-43180-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/17/2019] [Indexed: 11/09/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a syndrome of subacute loss of central vision associated with mutations in mitochondrial DNA coding for components of complex I. LHON preferentially involves small axons in the temporal optic nerve, but the reason is unclear. We performed a Monte Carlo simulation of the spread of injury in LHON axons to better understand the predilection for small axons. Optic nerve slices were modeled as grids containing axons with sizes from reported regional distributions. The propagation of injury from a localized concentration of superoxide was simulated as the spread via passive diffusion from one axon to adjacent axons, with basal production and scavenging rate proportional to axonal area and volume, respectively. Axonal degeneration occurred when intra-axonal concentrations reached a toxic threshold. Simulations demonstrated that almost all small and medium axons degenerated by the time steady-state was reached, but about 50% of large axons were preserved. The location of initial injury affected time to steady state, with nasal injuries reaching steady state faster than temporal injuries. The pattern of axonal degeneration in the simulations mirrored both visual fields and optic nerve histology from patients with LHON. These results provide insight into the nature of axonal loss in LHON.
Collapse
Affiliation(s)
- Razek Georges Coussa
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Pooya Merat
- Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada. .,Department of Neurology & Neurosurgery, McGill University, Montreal, Canada. .,Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
50
|
Eder C, Wild C. Technology forecast: advanced therapies in late clinical research, EMA approval or clinical application via hospital exemption. JOURNAL OF MARKET ACCESS & HEALTH POLICY 2019; 7:1600939. [PMID: 31069029 PMCID: PMC6493298 DOI: 10.1080/20016689.2019.1600939] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Background: The umbrella term ATMPs (Advanced Therapy Medicinal Products) comprises cell therapies, gene therapeutics and tissue engineered products. After implementation of the Regulation 1394/2007, only a couple of products have obtained a centralized European marketing authorisation. Objectives: The aim of the presented study is to give an overview on ATMPs available within the European Union either via centralized marketing authorisation or via national Hospital exemption. Additionally, a forecast on innovative ATMPs in the process of EMA approval as well as in phase III and IV clinical trial is provided. Methods: Systematic literature search including 'grey literature' and database reviews as well as manual search following pre-defined search terms. Results: 8 ATMPs are currently available via centralized marketing authorisation. 6 new product launches are expected before 2020. At least 32 additional ATMPs are available in individual European Union member states via Hospital exemption. Another 31 potential ATMP candidates could be identified in industry-driven phase III research projects. Conclusion: Advanced therapeutic medicinal therapies are still in their early days, but constantly evolving. By 2020, innovative therapies targeting retinal dystrophy, ß-thalassemia, scleroderma, sickle-cell anaemia, adrenoleukodystrophy and leukaemia shall be available on the market.
Collapse
Affiliation(s)
- Claudia Eder
- Ludwig Boltzmann Institute for Health Technology Assessment, Vienna, Austria
| | - Claudia Wild
- Ludwig Boltzmann Institute for Health Technology Assessment, Vienna, Austria
| |
Collapse
|