1
|
Baj J, Kołodziej M, Kobak J, Januszewski J, Syty K, Portincasa P, Forma A. Significance of Immune and Non-Immune Cell Stroma as a Microenvironment of Hepatocellular Carcinoma-From Inflammation to Hepatocellular Carcinoma Progression. Int J Mol Sci 2024; 25:10233. [PMID: 39408564 PMCID: PMC11475949 DOI: 10.3390/ijms251910233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer as well as the most prevalent cause of death in the adult patient population with cirrhosis. The occurrence of HCC is primarily caused by chronic liver inflammation that might occur because of a viral infection, non-alcoholic fatty liver disease (NAFLD), or various lifestyle-associated factors. The objective of this review was to summarize the current knowledge regarding the microenvironment of HCC, indicating how immune- and non-immune-cell stroma might affect the onset and progression of HCC. Therefore, in the following narrative review, we described the role of tumor-infiltrating neutrophils, bone-marrow-derived cells, tumor-associated mast cells, cancer-associated fibroblasts, tumor-associated macrophages, liver-sinusoidal endothelial cells, lymphocytes, and certain cytokines in liver inflammation and the further progression to HCC. A better understanding of the HCC microenvironment might be crucial to introducing novel treatment strategies or combined therapies that could lead to more effective clinical outcomes.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Magdalena Kołodziej
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Joanna Kobak
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| |
Collapse
|
2
|
Ligan C, Ma XH, Zhao SL, Zhao W. The regulatory role and mechanism of mast cells in tumor microenvironment. Am J Cancer Res 2024; 14:1-15. [PMID: 38323271 PMCID: PMC10839313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
Mast cells (MCs) have emerged as pivotal contributors to both the defensive immune response and immunomodulation. They also exhibit regulatory functions in modulating pathological processes across various allergic diseases. The impact of MC presence within tumor tissues has garnered considerable attention, yielding conflicting findings. While some studies propose that MCs within tumor tissues promote tumor initiation and progression, others advocate an opposing perspective. Notably, evidence emphasizes the dual role of MCs in cancer, both as promoters and suppressors, is crucial for optimizing cancer treatment strategies. These conflicting viewpoints have generated substantial controversy, underscoring the need for a comprehensive understanding of MC's role in tumor immune responses.
Collapse
Affiliation(s)
- Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Xin-Hua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Shu-Li Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
3
|
Guo X, Sun M, Yang P, Meng X, Liu R. Role of mast cells activation in the tumor immune microenvironment and immunotherapy of cancers. Eur J Pharmacol 2023; 960:176103. [PMID: 37852570 DOI: 10.1016/j.ejphar.2023.176103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
The mast cell is an important cellular component that plays a crucial role in the crosstalk between innate and adaptive immune responses within the tumor microenvironment (TME). Recently, numerous studies have indicated that mast cells related to tumors play a dual role in regulating cancers, with conflicting results seemingly determined by the degranulation medium. As such, mast cells are an ignored but very promising potential target for cancer immunotherapy based on their immunomodulatory function. In this review, we present a comprehensive overview of the roles and mechanisms of mast cells in diverse cancer types. Firstly, we evaluated the infiltration density and location of mast cells on tumor progression. Secondly, mast cells are activated by the TME and subsequently release a range of inflammatory mediators, cytokines, chemokines, and lipid products that modulate their pro-or anti-tumor functions. Thirdly, activated mast cells engage in intercellular communication with other immune or stromal cells to modulate the immune status or promote tumor development. Finally, we deliberated on the clinical significance of targeting mast cells as a therapeutic approach to restrict tumor initiation and progression. Overall, our review aims to provide insights for future research on the role of mast cells in tumors and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Xiangnan University, Chenzhou, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Laface C, Ranieri G, Maselli FM, Ambrogio F, Foti C, Ammendola M, Laterza M, Cazzato G, Memeo R, Mastrandrea G, Lioce M, Fedele P. Immunotherapy and the Combination with Targeted Therapies for Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:654. [PMID: 36765612 PMCID: PMC9913568 DOI: 10.3390/cancers15030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
One of the most important abilities of a tumor is to establish a state of immunosuppression inside the tumor microenvironment. This is made possible through numerous mechanisms of tumor immune escape that have been identified in experimental studies during the last decades. In addition, the hepatic microenvironment is commonly oriented towards a state of immune tolerance because the liver receives blood from the hepatic arteries and portal veins containing a variety of endogenous antigens. Therefore, the hepatic microenvironment establishes an autoimmune tolerance, preventing an autoimmune reaction in the liver. On this basis, hepatic tumor cells may escape the immune system, avoiding being recognized and destroyed by immune cells. Moreover, since the etiology of Hepatocellular Carcinoma (HCC) is often related to cirrhosis, and hepatitis B or C, this tumor develops in the context of chronic inflammation. Thus, the HCC microenvironment is characterized by important immune cell infiltration. Given these data and the poor prognosis of advanced HCC, different immunotherapeutic strategies have been developed and evaluated for these patients. In this review, we describe all the clinical applications of immunotherapy for advanced HCC, from the drugs that have already been approved to the ongoing clinical trials.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | | | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Michele Ammendola
- Department of Health Science, General Surgery, Medicine School of Germaneto, Magna Graecia University, 88100 Catanzaro, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, “F. Miulli” General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| | | | - Marco Lioce
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
5
|
Sciumè M, De Magistris C, Galli N, Ferretti E, Milesi G, De Roberto P, Fabris S, Grifoni FI. Target Therapies for Systemic Mastocytosis: An Update. Pharmaceuticals (Basel) 2022; 15:ph15060738. [PMID: 35745657 PMCID: PMC9229771 DOI: 10.3390/ph15060738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic mastocytosis (SM) results from a clonal proliferation of abnormal mast cells (MCs) in extra-cutaneous organs. It could be divided into indolent SM, smoldering SM, SM with an associated hematologic (non-MC lineage) neoplasm, aggressive SM, and mast cell leukemia. SM is generally associated with the presence of a gain-of-function somatic mutation in KIT at codon 816. Clinical features could be related to MC mediator release or to uncontrolled infiltration of MCs in different organs. Whereas indolent forms have a near-normal life expectancy, advanced diseases have a poor prognosis with short survival times. Indolent forms should be considered for symptom-directed therapy, while cytoreductive therapy represents the first-line treatment for advanced diseases. Since the emergence of tyrosine kinase inhibitors (TKIs), KIT inhibition has been an attractive approach. Initial reports showed that only the rare KITD816V negative cases were responsive to first-line TKI imatinib. The development of new TKIs with activity against the KITD816V mutation, such as midostaurin or avapritinib, has changed the management of this disease. This review aims to focus on the available clinical data of therapies for SM and provide insights into possible future therapeutic targets.
Collapse
Affiliation(s)
- Mariarita Sciumè
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
- Correspondence: ; Tel.: +39-02-5503-3466
| | - Claudio De Magistris
- Department of Oncology and Oncohaematology, Università degli Studi di Milano, 20122 Milan, Italy; (C.D.M.); (N.G.)
| | - Nicole Galli
- Department of Oncology and Oncohaematology, Università degli Studi di Milano, 20122 Milan, Italy; (C.D.M.); (N.G.)
| | - Eleonora Ferretti
- Direzione Scientifica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giulia Milesi
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Pasquale De Roberto
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Federica Irene Grifoni
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| |
Collapse
|
6
|
Pham L, Kennedy L, Baiocchi L, Meadows V, Ekser B, Kundu D, Zhou T, Sato K, Glaser S, Ceci L, Alpini G, Francis H. Mast cells in liver disease progression: An update on current studies and implications. Hepatology 2022; 75:213-218. [PMID: 34435373 PMCID: PMC9276201 DOI: 10.1002/hep.32121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Science and Mathematics, Texas A&M University–Central Texas, Killeen, Texas, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | | | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Ammendola M, Currò G, Laface C, Zuccalà V, Memeo R, Luposella F, Laforgia M, Zizzo N, Zito A, Loisi D, Patruno R, Milella L, Ugenti I, Porcelli M, Navarra G, Gadaleta CD, Ranieri G. Mast Cells Positive for c-Kit Receptor and Tryptase Correlate with Angiogenesis in Cancerous and Adjacent Normal Pancreatic Tissue. Cells 2021; 10:444. [PMID: 33669751 PMCID: PMC7923170 DOI: 10.3390/cells10020444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mast cells (MCs) contain proangiogenic factors, in particular tryptase, associated with increased angiogenesis in several tumours. With special reference to pancreatic cancer, few data have been published on the role of MCs in angiogenesis in both pancreatic ductal adenocarcinoma tissue (PDAT) and adjacent normal tissue (ANT). In this study, density of mast cells positive for c-Kit receptor (MCDP-c-KitR), density of mast cells positive for tryptase (MCDPT), area of mast cells positive for tryptase (MCAPT), and angiogenesis in terms of microvascular density (MVD) and endothelial area (EA) were evaluated in a total of 45 PDAT patients with stage T2-3N0-1M0. RESULTS For each analysed tissue parameter, the mean ± standard deviation was evaluated in both PDAT and ANT and differences were evaluated by Student's t-test (p ranged from 0.001 to 0.005). Each analysed tissue parameter was then correlated to each other one by Pearson t-test analysis (p ranged from 0.01 to 0.03). No other correlation among MCDP-c-KitR, MCDPT, MCAPT, MVD, EA and the main clinical-pathological characteristics was found. CONCLUSIONS Our results suggest that tissue parameters increased from ANT to PDAT and that mast cells are strongly associated with angiogenesis in PDAT. On this basis, the inhibition of MCs through tyrosine kinase inhibitors, such as masitinib, or inhibition of tryptase by gabexate mesylate may become potential novel antiangiogenetic approaches in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Health Science, Digestive Surgery Unit, Medical School, University “Magna Graecia”, Viale Europa, Germaneto, 88100 Catanzaro, Italy; (M.A.); (G.C.); (L.M.); (I.U.)
| | - Giuseppe Currò
- Department of Health Science, Digestive Surgery Unit, Medical School, University “Magna Graecia”, Viale Europa, Germaneto, 88100 Catanzaro, Italy; (M.A.); (G.C.); (L.M.); (I.U.)
| | - Carmelo Laface
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (C.L.); (M.P.); (C.D.G.)
- Department of Biomedical Sciences and Clinical Oncology, Section of Oncology, University of Bari ′Aldo Moro′, 70124 Bari, Italy
| | - Valeria Zuccalà
- Pathology Unit, “Pugliese-Ciaccio” Hospital, Viale Pio X°, 88100 Catanzaro, Italy;
| | - Riccardo Memeo
- Department of Emergency and Organ Transplantation, University Aldo Moro of Bari, 70124 Bari, Italy;
| | - Francesco Luposella
- Direction Départementale de la Cohésion Sociale et de la Protection des Populations des VOSGES (DDCSPP88), 88080 Vittel, France;
| | - Mariarita Laforgia
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Nicola Zizzo
- Chair of Pathology, Veterinary Medical School, University “Aldo Moro” of Bari, Via Casamassima, 70010 Bari, Italy; (N.Z.); (R.P.)
| | - Alfredo Zito
- Pathology Unit, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.Z.); (D.L.)
| | - Donato Loisi
- Pathology Unit, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.Z.); (D.L.)
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University “Aldo Moro” of Bari, Via Casamassima, 70010 Bari, Italy; (N.Z.); (R.P.)
| | - Lucia Milella
- Department of Health Science, Digestive Surgery Unit, Medical School, University “Magna Graecia”, Viale Europa, Germaneto, 88100 Catanzaro, Italy; (M.A.); (G.C.); (L.M.); (I.U.)
| | - Ippazio Ugenti
- Department of Health Science, Digestive Surgery Unit, Medical School, University “Magna Graecia”, Viale Europa, Germaneto, 88100 Catanzaro, Italy; (M.A.); (G.C.); (L.M.); (I.U.)
- Department of Emergency and Organ Transplantation, University Aldo Moro of Bari, 70124 Bari, Italy;
| | - Mariangela Porcelli
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (C.L.); (M.P.); (C.D.G.)
| | - Giuseppe Navarra
- Department of Human Pathology of Adult and Evolutive Age, Surgical Oncology Division, University Hospital of Messina, 98100 Messina, Italy;
| | - Cosmo Damiano Gadaleta
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (C.L.); (M.P.); (C.D.G.)
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (C.L.); (M.P.); (C.D.G.)
| |
Collapse
|
8
|
Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, Ranieri G, Memeo R. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int J Mol Sci 2019; 20:2106. [PMID: 31035644 PMCID: PMC6540185 DOI: 10.3390/ijms20092106] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| | - Valentina Ferraro
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, Aldo Moro University, 74124 Bari, Italy.
| | - Michele Ammendola
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| | | | - Maria Luposella
- Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy.
| | - Lorenza Maltese
- Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy.
| | - Giuseppe Currò
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
- Department of Human Pathology of Adult and Evolutive Age G. Barresi, University of Messina, 98122 Messina, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 74124 Bari, Italy.
| | - Riccardo Memeo
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| |
Collapse
|
9
|
Sammarco G, Gadaleta CD, Zuccalà V, Albayrak E, Patruno R, Milella P, Sacco R, Ammendola M, Ranieri G. Tumor-Associated Macrophages and Mast Cells Positive to Tryptase Are Correlated with Angiogenesis in Surgically-Treated Gastric Cancer Patients. Int J Mol Sci 2018; 19:1176. [PMID: 29649166 PMCID: PMC5979483 DOI: 10.3390/ijms19041176] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Mast cells and macrophages can play a role in tumor angiogenesis by stimulating microvascular density (MVD). The density of mast cells positive to tryptase (MCDPT), tumor-associated macrophages (TAMs), and MVD were evaluated in a series of 86 gastric cancer (GC) tissue samples from patients who had undergone potential curative surgery. MCDPT, TAMs, and MVD were assessed in tumor tissue (TT) and in adjacent normal tissue (ANT) by immunohistochemistry and image analysis. Each of the above parameters was correlated with the others and, in particular for TT, with important clinico-pathological features. In TT, a significant correlation between MCDPT, TAMs, and MVD was found by Pearson t-test analysis (p ranged from 0.01 to 0.02). No correlation to the clinico-pathological features was found. A significant difference in terms of mean MCDPT, TAMs, and MVD between TT and ANT was found (p ranged from 0.001 to 0.002). Obtained data suggest MCDPT, TAMs, and MVD increased from ANT to TT. Interestingly, MCDPT and TAMs are linked in the tumor microenvironment and they play a role in GC angiogenesis in a synergistic manner. The assessment of the combination of MCDPT and TAMs could represent a surrogate marker of angiogenesis and could be evaluated as a target of novel anti-angiogenic therapies in GC patients.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Cosmo Damiano Gadaleta
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Valeria Zuccalà
- Pathology Unit, "Pugliese-Ciaccio" Hospital, Viale Pio X, 88100 Catanzaro, Italy.
| | - Emre Albayrak
- Department of Medical Biochemistry, Gulhane Medical Faculty, Health Science University, Ankara 06010, Turkey.
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, 70010 Bari, Italy.
| | - Pietro Milella
- Statistic and Epidemiology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
- Surgery Unit, National Cancer Research Centre Istituto Tumori ''Giovanni Paolo II'', 70124 Bari, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| |
Collapse
|
10
|
Atiakshin D, Buchwalow I, Samoilova V, Tiemann M. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol 2018. [PMID: 29532158 DOI: 10.1007/s00418-018-1659-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mast cells are haematopoietic cells that arise from pluripotent precursors of the bone marrow. They play immunomodulatory roles in both health and disease. When appropriately activated, mast cells undergo degranulation, and preformed granule compounds are rapidly released into the surroundings. In many cases, the effects that mast cells have on various inflammatory settings are closely associated with the enzymatic characteristics of tryptase, the main granule compound of mast cells. Tryptase degranulation is often linked with the development of an immune response, allergy, inflammation, and remodelling of tissue architecture. Tryptase also represents an informative diagnostic marker of certain diseases and a prospective target for pharmacotherapy. In this review, we discuss the current knowledge about mast cell tryptase as one of the mast cell secretome proteases. The main points of the reviewed publications are highlighted with our microscopic images of mast cell tryptases visualized using immunohistochemical staining.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - Igor Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, 22547, Hamburg, Germany.
| | - Vera Samoilova
- Institute for Hematopathology, Fangdieckstr. 75a, 22547, Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547, Hamburg, Germany
| |
Collapse
|
11
|
Marech I, Ammendola M, Leporini C, Patruno R, Luposella M, Zizzo N, Passantino G, Sacco R, Farooqi AA, Zuccalà V, Leo S, Dentamaro R, Porcelli M, Gadaleta P, De Sarro G, Gadaleta CD, Ranieri G. C-Kit receptor and tryptase expressing mast cells correlate with angiogenesis in breast cancer patients. Oncotarget 2018; 9:7918-7927. [PMID: 29487702 PMCID: PMC5814269 DOI: 10.18632/oncotarget.23722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
C-Kit protein is a transmembrane tyrosine kinase (TK) receptor (c-KitR-TK), which is predominantly expressed on mast cells (MCs) playing a role in tumor angiogenesis. It could be also expressed on epithelial breast cancer cells (EBCCs), but no data have been published regarding the correlation between mast cells positive to c-KitR (MCs-c-KitR), EBCCs positive to c-KitR (EBCCs-c-KitR), BC angiogenesis in terms of microvessel density (MVD) and the main clinic-pathological features. This study aims to evaluate the above parameters and their correlations in a series of selected 121 female early BC patients. It has been found a strong correlation between MVD and MCDPT, and MCs-c-KitR, MVD and MCs density positive to tryptase (MCDPT), and MCs-c-KitR and MCDPT by Pearson correlation. These data suggest an involvement of both MCDPT and MCs-c-KitR in BC tumor angiogenesis. Furthermore, BC tissue expressing c-KitR could be a putative predictive factor to c-KitR-TK inhibitors. In this way, selected patients with higher MCs-c-KitR could be candidate to receive c-KitR-TK inhibitors (e.g. masitinib, sunitinib) or tryptase inhibitors (e.g. nafamostat mesilate, gabexate mesilate).
Collapse
Affiliation(s)
- Ilaria Marech
- Interventional and Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Michele Ammendola
- Department of Medical and Surgery Science Medical School, Clinical Surgery Unit, Magna Graecia University, 88100 Catanzaro, Italy
| | - Christian Leporini
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit, Pharmacovigilance's Centre Calabria Region, Magna Graecia University, Germaneto, 88100 Catanzaro, Italy
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, Aldo Moro University, 70010 Valenzano, Italy
| | - Maria Luposella
- Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy
| | - Nicola Zizzo
- Chair of Pathology, Veterinary Medical School, Aldo Moro University, 70010 Valenzano, Italy
| | - Giuseppe Passantino
- Chair of Pathology, Veterinary Medical School, Aldo Moro University, 70010 Valenzano, Italy
| | - Rosario Sacco
- Department of Medical and Surgery Science Medical School, Clinical Surgery Unit, Magna Graecia University, 88100 Catanzaro, Italy
| | - Ammad Ahmad Farooqi
- Laboratory for Translational and Personalized Medicine, Rashid Latif Medical College, University of Lahore, 44000 Islamabad, Pakistan
| | - Valeria Zuccalà
- Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy
| | - Silvana Leo
- Medical Oncology Unit, Vito Fazzi Hospital, Piazzetta Muratore, 73100 Lecce, Italy
| | - Rosalba Dentamaro
- Senology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Mariangela Porcelli
- Interventional and Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Pietro Gadaleta
- Interventional and Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Giovambattista De Sarro
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit, Pharmacovigilance's Centre Calabria Region, Magna Graecia University, Germaneto, 88100 Catanzaro, Italy
| | - Cosmo Damiano Gadaleta
- Interventional and Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| |
Collapse
|
12
|
Ammendola M, Gadaleta CD, Frampton AE, Piardi T, Memeo R, Zuccalà V, Luposella M, Patruno R, Zizzo N, Gadaleta P, Pessaux P, Sacco R, Sammarco G, Ranieri G. The density of mast cells c-Kit + and tryptase + correlates with each other and with angiogenesis in pancreatic cancer patients. Oncotarget 2017; 8:70463-70471. [PMID: 29050294 PMCID: PMC5642569 DOI: 10.18632/oncotarget.19716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/24/2017] [Indexed: 12/16/2022] Open
Abstract
Literature data suggest that inflammatory cells such as mast cells (MCs) are involved in angiogenesis. MCs can stimulate angiogenesis by releasing of well identified pro-angiogenic cytokines stored in their cytoplasm. In particular, MCs can release tryptase, a potent in vivo and in vitro pro-angiogenic factor. Nevertheless, few data are available concerning the role of MCs positive to tryptase in primary pancreatic cancer angiogenesis. This study analyzed the correlation between mast cells positive to c-Kit receptor (c-Kit+ MCs), the density of MCs expressing tryptase (MCD-T) and microvascular density (MVD) in primary tumor tissue from patients affected by pancreatic ductal adenocarcinoma (PDAC). A series of 35 PDAC patients with stage T2-3N0-1M0 (by AJCC for Pancreas Cancer Staging 7th Edition) were selected and then undergone to surgery. Tumor tissue samples were evaluated by mean of immunohistochemistry and image analysis methods in terms of number of c-Kit+ MCs, MCD-T and MVD. The above parameters were related each other and with the most important main clinico-pathological features. A significant correlation between c-Kit+ MCs, MCD-T and MVD groups each other was found by Pearson t-test analysis (r ranged from 0.75 to 0.87; p-value ranged from 0.01 to 0.04). No other significant correlation was found. Our in vivo preliminary data, suggest that tumor microenvironmental MCs evaluated in terms of c-Kit+ MCs and MCD-T may play a role in PDAC angiogenesis and they could be further evaluated as a novel tumor biomarker and as a target of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro “Magna Graecia” Medical School, Viale Europa-Germaneto, Catanzaro, Italy
| | - Cosmo Damiano Gadaleta
- Interventional Radiology Unit with Integrated Section of Traslational Medical Oncology, National Cancer Research Centre, “Giovanni Paolo II”, Bari, Italy
| | - Adam Enver Frampton
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Tullio Piardi
- Department of General, Digestive and Endocrine Surgery, Hopital Robert Debre, Centre Hospitalier Universitaire de Reims, Universite de Reims Champagne-Ardenne, Reims, France
| | - Riccardo Memeo
- Hepato-Biliary and Pancreatic Surgical Unit, General, Digestive and Endocrine Surgery, IRCAD, IHU Mix-Surg, Institute for Minimally Invasive Image-Guided Surgery, University of Strasbourg, 1 place de l'Hôpital, Strasbourg, France
| | - Valeria Zuccalà
- Pathology Unit, “Pugliese-Ciaccio” Hospital, Catanzaro, Italy
| | - Maria Luposella
- Cardiovascular Disease Unit, “San Giovanni di Dio” Hospital, Crotone, Italy
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University “Aldo Moro”, Bari, Italy
| | - Nicola Zizzo
- Chair of Pathology, Veterinary Medical School, University “Aldo Moro”, Bari, Italy
| | - Pietro Gadaleta
- Interventional Radiology Unit with Integrated Section of Traslational Medical Oncology, National Cancer Research Centre, “Giovanni Paolo II”, Bari, Italy
| | - Patrick Pessaux
- Hepato-Biliary and Pancreatic Surgical Unit, General, Digestive and Endocrine Surgery, IRCAD, IHU Mix-Surg, Institute for Minimally Invasive Image-Guided Surgery, University of Strasbourg, 1 place de l'Hôpital, Strasbourg, France
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro “Magna Graecia” Medical School, Viale Europa-Germaneto, Catanzaro, Italy
| | - Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro “Magna Graecia” Medical School, Viale Europa-Germaneto, Catanzaro, Italy
| | - Girolamo Ranieri
- Interventional Radiology Unit with Integrated Section of Traslational Medical Oncology, National Cancer Research Centre, “Giovanni Paolo II”, Bari, Italy
| |
Collapse
|
13
|
Jarido V, Kennedy L, Hargrove L, Demieville J, Thomson J, Stephenson K, Francis H. The emerging role of mast cells in liver disease. Am J Physiol Gastrointest Liver Physiol 2017; 313:G89-G101. [PMID: 28473331 PMCID: PMC5582878 DOI: 10.1152/ajpgi.00333.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 01/31/2023]
Abstract
The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.
Collapse
Affiliation(s)
- Veronica Jarido
- Baylor Scott & White Health and Medicine, Temple, Texas; and
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Texas A & M Health Science Center, Temple, Texas
| | | | | | - Joanne Thomson
- Research, Central Texas Veterans Health Care System, Temple, Texas
| | | | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas;
- Baylor Scott & White Health and Medicine, Temple, Texas; and
- Texas A & M Health Science Center, Temple, Texas
| |
Collapse
|
14
|
Ammendola M, Sacco R, Vescio G, Zuccalà V, Luposella M, Patruno R, Zizzo N, Gadaleta C, Marech I, Ruggieri R, Kocak IF, Ozgurtas T, Gadaleta CD, Sammarco G, Ranieri G. Tryptase mast cell density, protease-activated receptor-2 microvascular density, and classical microvascular density evaluation in gastric cancer patients undergoing surgery: possible translational relevance. Therap Adv Gastroenterol 2017; 10:353-360. [PMID: 28491140 PMCID: PMC5405880 DOI: 10.1177/1756283x16673981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mast cells (MCs) can stimulate angiogenesis, releasing several proangiogenic cytokines stored in their cytoplasm. In particular, MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor via protease-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase (MAPK) phosphorylation. Nevertheless, no data are available concerning the relationship among tryptase MC density (TMCD), endothelial cells (ECs) positive to PAR-2 microvascular density (PAR-2-MVD) and classical MVD (C-MVD) in gastric cancer (GC) angiogenesis. METHODS In this study, we analyzed the correlation of TMCD, PAR-2-MVD, C-MVD with each other and with the main clinicopathological features in GC patients who underwent surgery. A series of 77 GC patients with stage T2-3N2-3M0 (classified by the American Joint Committee on Cancer for Gastric Cancer, 7th edition) were selected and then underwent surgery. RESULTS Tumour tissue samples were evaluated by mean of immunohistochemistry and image analysis methods in terms of numbers of TMCD, PAR-2-MVD and C-MVD. A significant correlation between the TMCD, PAR-2-MVD and C-MVD groups with each other was found by Pearson t-test analysis (r ranged from 0.64 to 0.76; p value ranged from 0.02 to 0.03). There was no other significant correlation between the above parameters and clinicopathological features. CONCLUSIONS Our in vivo preliminary data suggest that TMCD and PAR-2-MVD may play a role in GC angiogenesis and they could be further evaluated as a target of antiangiogenic therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Viale Europa – Germaneto, 88100, Catanzaro, Italy
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Giuseppina Vescio
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Valeria Zuccalà
- Health Science Department, Pathology Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Maria Luposella
- Cardiovascular Disease Unit, ‘San Giovanni di Dio’ Hospital, Crotone, Italy
| | - Rosa Patruno
- Chair of Pathology, University ‘Aldo Moro’ Veterinary Medical School, Bari, Italy
| | - Nicola Zizzo
- Chair of Pathology, University ‘Aldo Moro’ Veterinary Medical School, Bari, Italy
| | - Claudia Gadaleta
- Chair of Pathology, University ‘Aldo Moro’ Veterinary Medical School, Bari, Italy
| | - Ilaria Marech
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| | - Roberta Ruggieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| | - Ibrahim Furkan Kocak
- Department of Biochemistry, Gulhane Military Medical Academy Etlik, Ankara, Turkey
| | - Taner Ozgurtas
- Department of Biochemistry, Gulhane Military Medical Academy Etlik, Ankara, Turkey
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| | - Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| |
Collapse
|
15
|
Ammendola M, Sacco R, Zuccalà V, Luposella M, Patruno R, Gadaleta P, Zizzo N, Gadaleta CD, De Sarro G, Sammarco G, Oltean M, Ranieri G. Mast Cells Density Positive to Tryptase Correlate with Microvascular Density in both Primary Gastric Cancer Tissue and Loco-Regional Lymph Node Metastases from Patients That Have Undergone Radical Surgery. Int J Mol Sci 2016; 17:1905. [PMID: 27854307 PMCID: PMC5133903 DOI: 10.3390/ijms17111905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/05/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022] Open
Abstract
Mast Cells (MCs) play a role in immune responses and more recently MCs have been involved in tumoral angiogenesis. In particular MCs can release tryptase, a potent in vivo and in vitro pro-angiogenic factor via proteinase-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase (MAPK) phosphorylation. MCs can release tryptase following c-Kit receptor activation. Nevertheless, no data are available concerning the relationship among MCs Density Positive to Tryptase (MCDPT) and Microvascular Density (MVD) in both primary gastric cancer tissue and loco-regional lymph node metastases. A series of 75 GC patients with stage T2-3N2-3M₀ (by AJCC for Gastric Cancer Seventh Edition) undergone to radical surgery were selected for the study. MCDPT and MVD were evaluated by immunohistochemistry and by image analysis system and results were correlated each to other in primary tumor tissue and in metastatic lymph nodes harvested. Furthermore, tissue parameters were correlated with important clinico-pathological features. A significant correlation between MCDPT and MVD was found in primary gastric cancer tissue and lymph node metastases. Pearson t-test analysis (r ranged from 0.74 to 0.79; p-value ranged from 0.001 to 0.003). These preliminary data suggest that MCDPT play a role in angiogenesis in both primary tumor and in lymph node metastases from GC. We suggest that MCs and tryptase could be further evaluated as novel targets for anti-angiogenic therapies.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
- Surgery Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Valeria Zuccalà
- Pathology Unit, "Pugliese-Ciaccio" Hospital, Viale Pio X, 88100 Catanzaro, Italy.
| | - Maria Luposella
- Cardiovascular Disease Unit, "San Giovanni di Dio" Hospital, 88900 Crotone, Italy.
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, 70010 Bari, Italy.
| | - Pietro Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Nicola Zizzo
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, 70010 Bari, Italy.
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Giovambattista De Sarro
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Mihai Oltean
- The Institute for Clinical Sciences, Department of Transplantation, University Hospital, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| |
Collapse
|