1
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
2
|
Manjunath GK, Sharma S, Nashier D, Vasanthaiah S, Jha S, Bage S, Mitra T, Goyal P, Neerathilingam M, Kumar A. Breast cancer genomic analyses reveal genes, mutations, and signaling networks. Funct Integr Genomics 2024; 24:206. [PMID: 39496981 DOI: 10.1007/s10142-024-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal. We classified 1174 BC genes (mutated ≥ 40 samples) into five tiers (BCtier_I-V) and subjected them to pathway and protein‒protein network analyses using EnrichR and STRING 11, respectively. BCtier_I possesses 12 BC genes with mutational frequencies > 5%, with only 5 genes possessing > 10% frequencies, namely, PIK3CA (35.7%), TP53 (34.3%), GATA3 (11.5%), CDH1 (11.4%) and MUC16 (11%), and the next seven BC genes are KMT2C (8.8%), TTN (8%), MAP3K1 (8%), SYNE1 (7.2%), AHNAK2 (7%), USH2A (5.5%), and RYR2 (5.4%). Our pathway analyses revealed that the five top BC pathways were the PI3K-AKT, TP53, NOTCH, HIPPO, and RAS pathways. We found that BC panels share only seven genes. These findings show that BC arises from genetic disruptions evident in BC signaling and protein networks.
Collapse
Affiliation(s)
- Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Srihari Sharma
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Disha Nashier
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Shruthi Vasanthaiah
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Spriha Jha
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Tamoghna Mitra
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Muniasamy Neerathilingam
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India.
| |
Collapse
|
3
|
Liu Y, Zou Y, Ye Y, Chen Y. Advances in the Understanding of the Pathogenesis of Triple-Negative Breast Cancer. Cancer Med 2024; 13:e70410. [PMID: 39558881 PMCID: PMC11574469 DOI: 10.1002/cam4.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by high aggressiveness, high malignancy, and poor prognosis compared to other breast cancer subtypes. OBJECTIVE This review aims to explore recent advances in understanding TNBC and to provide new insights and potential references for clinical treatment. METHODS We examined current literature on TNBC to analyze molecular subtypes, genetic mutations, signaling pathways, mechanisms of drug resistance, and emerging therapies. RESULTS Findings highlight key aspects of TNBC's molecular subtypes, relevant mutations, and pathways, alongside emerging treatments that target drug resistance mechanisms. CONCLUSION These insights into TNBC pathogenesis may help guide future therapeutic strategies and improve clinical outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Yuhan Liu
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yuhan Zou
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yangli Ye
- College of Life Sciences and TechnologyShandong Second Medical UniversityWeifangChina
| | - Yong Chen
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical SciencesShandong Second Medical UniversityWeifangChina
| |
Collapse
|
4
|
Miracle CE, McCallister CL, Denning KL, Russell R, Allen J, Lawrence L, Legenza M, Krutzler-Berry D, Salisbury TB. High BMI Is Associated with Changes in Peritumor Breast Adipose Tissue That Increase the Invasive Activity of Triple-Negative Breast Cancer Cells. Int J Mol Sci 2024; 25:10592. [PMID: 39408921 PMCID: PMC11476838 DOI: 10.3390/ijms251910592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer is the most common cancer in women with multiple risk factors including smoking, genetics, environmental factors, and obesity. Smoking and obesity are the top two risk factors for the development of breast cancer. The effect of obesity on adipose tissue mediates the pathogenesis of breast cancer in the context of obesity. Triple-negative breast cancer (TNBC) is a breast cancer subtype within which the cells lack estrogen, progesterone, and HER2 receptors. TNBC is the deadliest breast cancer subtype. The 5-year survival rates for patients with TNBC are 8-16% lower than the 5-year survival rates for patients with estrogen-receptor-positive breast tumors. In addition, TNBC patients have early relapse rates (3-5 years after diagnosis). Obesity is associated with an increased risk for TNBC, larger TNBC tumors, and increased breast cancer metastasis compared with lean women. Thus, novel therapeutic approaches are warranted to treat TNBC in the context of obesity. In this paper, we show that peritumor breast adipose-derived secretome (ADS) from patients with a high (>30) BMI is a stronger inducer of TNBC cell invasiveness and JAG1 expression than peritumor breast ADS from patients with low (<30) BMI. These findings indicate that patient BMI-associated changes in peritumor AT induce changes in peritumor ADS, which in turn acts on TNBC cells to stimulate JAG1 expression and cancer cell invasiveness.
Collapse
Affiliation(s)
- Cora E. Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Chelsea L. McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Krista L. Denning
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Rebecca Russell
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Jennifer Allen
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Logan Lawrence
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Mary Legenza
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Diane Krutzler-Berry
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Travis B. Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| |
Collapse
|
5
|
Patra A, Arora A, Ghosh SS, Kaur Saini G. Beauvericin Reverses Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer Cells through Regulation of Notch Signaling and Autophagy. ACS Pharmacol Transl Sci 2024; 7:2878-2893. [PMID: 39296261 PMCID: PMC11406685 DOI: 10.1021/acsptsci.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Metastasis stands as a prime contributor to triple-negative breast cancer (TNBC) associated mortality worldwide, presenting heightened severity and significant challenges due to limited treatment options. Addressing TNBC metastasis necessitates innovative approaches and novel therapeutics to specifically target its propensity for dissemination to distant organs. Targeted therapies capable of reversing epithelial-to-mesenchymal transition (EMT) play a crucial role in suppressing metastasis and enhancing the treatment response. Beauvericin, a promising fungal secondary metabolite, exhibits significant potential in diminishing the viability of EMT-induced TNBC cells by triggering intracellular oxidative stress, as evidenced by an enhanced reactive oxygen species level and reduced mitochondrial transmembrane potential. In monolayer cultures, it has exhibited an IC50 of 2.3 μM in both MDA-MB-468 and MDA-MB-231 cells, while in 3D spheroids, the IC50 values are 9.7 and 7.1 μM, respectively. Beauvericin has also reduced the migratory capability of MDA-MB-468 and MDA-MB-231 cells by 1.5- and 1.7-fold, respectively. Both qRT-PCR and Western blot analysis have shown significant upregulation in the expression of epithelial marker (E-cadherin) and downregulation in the expression of mesenchymal markers (N-cadherin, vimentin, Snail, Slug, and β-catenin), following treatment, indicating reversal of EMT. Furthermore, beauvericin has suppressed the Notch signaling pathway by substantially downregulating Notch-1, Notch-3, Hes-1, and cyclinD3 expression and induced autophagy as observed by elevated expression of autophagy markers LC3 and Beclin-1. In conclusion, beauvericin has successfully downregulated TNBC cell survival by inducing oxidative stress and suppressed their migratory potential by reversing EMT through the inhibition of Notch signaling and activation of autophagy.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|
7
|
Alotaibi BS, El-Masry TA, Selim H, El-Bouseary MM, El-Sheekh MM, Makhlof MEM, El-Nagar MMF. New insights into the anticancer effects of Polycladia crinita aqueous extract and its selenium nanoformulation against the solid Ehrlich carcinoma model in mice via VEGF, notch 1, NF-кB, cyclin D1, and caspase 3 signaling pathway. Front Pharmacol 2024; 15:1345516. [PMID: 38469406 PMCID: PMC10926956 DOI: 10.3389/fphar.2024.1345516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: Phaeophyceae species are enticing interest among researchers working in the nanotechnology discipline, because of their diverse biological activities such as anti-inflammatory, antioxidant, anti-microbial, and anti-tumor. In the present study, the anti-cancer properties of Polycladia crinita extract and green synthesized Polycladia crinita selenium nanoparticles (PCSeNPs) against breast cancer cell line (MDA-MB-231) and solid Ehrlich carcinoma (SEC) were investigated. Methods: Gas chromatography-mass spectroscopy examinations of Polycladia crinita were determined and various analytical procedures, such as SEM, TEM, EDX, and XRD, were employed to characterize the biosynthesized PCSeNPs. In vitro, the anticancer activity of free Polycladia crinita and PCSeNPs was evaluated using the viability assay against MDA-MB-231, and also cell cycle analysis by flow cytometry was determined. Furthermore, to study the possible mechanisms behind the in vivo anti-tumor action, mice bearing SEC were randomly allocated into six equal groups (n = 6). Group 1: Tumor control group, group 2: free SeNPs, group 3: 25 mg/kg Polycladia crinita, group 4: 50 mg/kg Polycladia crinita, group 5: 25 mg/kg PCSeNPs, group 6: 50 mg/kg PCSeNPs. Results: Gas chromatography-mass spectroscopy examinations of Polycladia crinita extract exposed the presence of many bioactive compounds, such as 4-Octadecenoic acid-methyl ester, Tetradecanoic acid, and n-Hexadecenoic acid. These compounds together with other compounds found, might work in concert to encourage the development of anti-tumor activities. Polycladia crinita extract and PCSeNPs were shown to inhibit cancer cell viability and early cell cycle arrest. Concentrations of 50 mg/kg of PCSeNPs showed suppression of COX-2, NF-кB, VEGF, ki-67, Notch 1, and Bcl-2 protein levels. Otherwise, showed amplification of the caspase 3, BAX, and P53 protein levels. Moreover, gene expression of caspase 3, caspase 9, Notch 1, cyclin D1, NF-кB, IL-6, and VEGF was significantly more effective with PCSeNPs than similar doses of free extract. Conclusion: The PCSeNPs mediated their promising anti-cancerous action by enhancing apoptosis and mitigating inflammation, which manifested in promoting the total survival rate and the tumor volume decrease.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Iwase T, Wang X, Thi Hanh Phi L, Sridhar N, Ueno NT, Lee J. Advances in targets in inflammatory breast cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:125-152. [PMID: 38637096 DOI: 10.1016/bs.ircmb.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Affiliation(s)
- Toshiaki Iwase
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; University of Hawaii Cancer Center, Honolulu, HI, United States.
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lan Thi Hanh Phi
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nithya Sridhar
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Abdel-Mohsen MA, Badawy AM, Abu-Youssef MA, Yehia MA, Abou Shamaa LD, Mohamed SA. Influence of copper(I) nicotinate complex on the Notch1 signaling pathway in triple negative breast cancer cell lines. Sci Rep 2024; 14:2522. [PMID: 38291201 PMCID: PMC10827744 DOI: 10.1038/s41598-024-52952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer which is characterized by its aggressiveness, poor and short overall survival. In this concept, there is a growing demand for metal-based compounds in TNBC therapy as copper complex that have a less toxic effect on normal cells and could stimulate apoptotic cell death. Additionally, Notch1 signaling pathway has received great attention as one of the most important potential targets for developing a novel therapeutic strategy. The present study is an attempt to assess the promising chemotherapeutic activities of copper(I) nicotinate (CNC) through its impact on the expression of downstream genes of Notch1 signaling pathway and the cell fate of TNBC. The co-treatment of TNBC cells with doxorubicin (Doxo) and CNC was also investigated. To approach the objective of the present study, TNBC cell lines; HCC1806 and MDAMB231, were utilized. MTT assay was used to determine the IC50 values of CNC and Doxo. After treatment, microtubule-associated protein light chain3 (LC3) were determined by flow cytometry. Additionally, qRT-PCR technique was used to detect the changes in genes levels that are involved Notch1 signaling pathway. Moreover, autophagosomes were monitored and imaged by Transmission electron microscopy. Treatment of TNBC cells with CNC modulated Notch1 signaling pathway in different manners with respect to the type of cells and the applied dose of CNC. The observed effects of CNC may reflect the possible anti-cancer activities of CNC in both types of TNBC. However, cell type and CNC dose should be considered.
Collapse
Affiliation(s)
- Mohamed A Abdel-Mohsen
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Asmaa M Badawy
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Morsy A Abu-Youssef
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona A Yehia
- Histochemistry and Cell Biology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Lobna D Abou Shamaa
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Shymaa Abdullah Mohamed
- Molecular Biology Unit, Medical Technology Center and Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
11
|
Hossain F, Ucar DA, Monticone G, Ran Y, Majumder S, Larter K, Luu H, Wyczechowska D, Heidari S, Xu K, Shanthalingam S, Matossian M, Xi Y, Burow M, Collins-Burow B, Del Valle L, Hicks C, Zabaleta J, Golde T, Osborne B, Miele L. Sulindac sulfide as a non-immune suppressive γ-secretase modulator to target triple-negative breast cancer. Front Immunol 2023; 14:1244159. [PMID: 37901240 PMCID: PMC10612326 DOI: 10.3389/fimmu.2023.1244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Giulia Monticone
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Yong Ran
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Kristina Larter
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Hanh Luu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Dorota Wyczechowska
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Soroor Heidari
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Yaguang Xi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Matthew Burow
- School of Medicine, Tulane University, New Orleans, LA, United States
| | | | - Luis Del Valle
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
- Department of Pathology, Louisiana State University Health Sciences Center - New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Todd Golde
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Barbara Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| |
Collapse
|
12
|
Si H, Esquivel M, Mendoza Mendoza E, Roarty K. The covert symphony: cellular and molecular accomplices in breast cancer metastasis. Front Cell Dev Biol 2023; 11:1221784. [PMID: 37440925 PMCID: PMC10333702 DOI: 10.3389/fcell.2023.1221784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer has emerged as the most commonly diagnosed cancer and primary cause of cancer-related deaths among women worldwide. Although significant progress has been made in targeting the primary tumor, the effectiveness of systemic treatments to prevent metastasis remains limited. Metastatic disease continues to be the predominant factor leading to fatality in the majority of breast cancer patients. The existence of a prolonged latency period between initial treatment and eventual recurrence in certain patients indicates that tumors can both adapt to and interact with the systemic environment of the host, facilitating and sustaining the progression of the disease. In order to identify potential therapeutic interventions for metastasis, it will be crucial to gain a comprehensive framework surrounding the mechanisms driving the growth, survival, and spread of tumor cells, as well as their interaction with supporting cells of the microenvironment. This review aims to consolidate recent discoveries concerning critical aspects of breast cancer metastasis, encompassing the intricate network of cells, molecules, and physical factors that contribute to metastasis, as well as the molecular mechanisms governing cancer dormancy.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Madelyn Esquivel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Erika Mendoza Mendoza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
13
|
Recent Advances in the Aging Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:cancers14204990. [PMID: 36291773 PMCID: PMC9599409 DOI: 10.3390/cancers14204990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The incidence of breast cancer has increased rapidly in recent years. Aging is one of the risk factors for advanced breast cancer. More and more studies have been conducted on the influence of the aging microenvironment on breast cancer. In this review, we summarize the effects of physical changes in the aging microenvironment, senescence-associated secretory phenotypes, and senescent stromal cells on the initiation and progression of breast cancer and the underlying mechanisms. In addition, we also discuss potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. We hope this review can provide some directions for future research on the aging microenvironment in breast cancer. Abstract Aging is one of the risk factors for advanced breast cancer. With the increasing trend toward population aging, it is important to study the effects of aging on breast cancer in depth. Cellular senescence and changes in the aging microenvironment in vivo are the basis for body aging and death. In this review, we focus on the influence of the aging microenvironment on breast cancer. Increased breast extracellular matrix stiffness in the aging breast extracellular matrix can promote the invasion of breast cancer cells. The role of senescence-associated secretory phenotypes (SASPs) such as interleukin-6 (IL-6), IL-8, and matrix metalloproteases (MMPs), in breast cancer cell proliferation, invasion, and metastasis is worthy of exploration. Furthermore, the impact of senescent fibroblasts, adipocytes, and endothelial cells on the mammary matrix is discussed in detail. We also list potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. In conclusion, this review offers an overview of the influence of the aging microenvironment on breast cancer initiation and progression, with the aim of providing some directions for future research on the aging microenvironment in breast cancer.
Collapse
|
14
|
Jiang N, Hu Y, Wang M, Zhao Z, Li M. The Notch Signaling Pathway Contributes to Angiogenesis and Tumor Immunity in Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022; 14:291-309. [PMID: 36193236 PMCID: PMC9526507 DOI: 10.2147/bctt.s376873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Breast cancer in women is the first leading tumor in terms of incidence worldwide. Some subtypes of BC lack distinct molecular targets and exhibit therapeutic resistance; these patients have a poor prognosis. Thus, the search for new molecular targets is an ongoing challenge for BC therapy. The Notch signaling pathway is found in both vertebrates and invertebrates, and it is a highly conserved in the evolution of the species, controlling cellular fates such as death, proliferation, and differentiation. Numerous studies have shown that improper activation of Notch signaling may lead to excessive cell proliferation and cancer, with tumor-promoting and tumor-suppressive effects in various carcinomas. Thus, inhibitors of Notch signaling are actively being investigated for the treatment of various tumors. The role of Notch signaling in BC has been widely studied in recent years. There is a growing body of evidence suggesting that Notch signaling has a pro-oncogenic role in BC, and the tumor-promoting effect is largely a result of the diverse nature of tumor immunity. Immunological abnormality is also a factor involved in the pathogenesis of BC, suggesting that Notch signaling could be a target for BC immunotherapies. Furthermore, angiogenesis is essential for BC growth and metastasis, and the Notch signaling pathway has been implicated in angiogenesis, so studying the role of Notch signaling in BC angiogenesis will provide new prospects for the treatment of BC. We summarize the potential roles of the current Notch signaling pathway and its inhibitors in BC angiogenesis and the immune response in this review and describe the pharmacological targets of Notch signaling in BC, which may serve as a theoretical foundation for future research into exploring this pathway for novel BC therapies.
Collapse
Affiliation(s)
- Nina Jiang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ye Hu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Meiling Wang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zuowei Zhao
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Correspondence: Zuowei Zhao, Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Man Li, Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| |
Collapse
|
15
|
Non-classical Notch signaling by MDA-MB-231 breast cancer cell-derived small extracellular vesicles promotes malignancy in poorly invasive MCF-7 cells. Cancer Gene Ther 2022; 29:1056-1069. [PMID: 35022518 DOI: 10.1038/s41417-021-00411-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/23/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Aberrant Notch signaling is implicated in breast cancer progression, and recent studies have demonstrated links between the Notch pathway components Notch1 and Notch1 intracellular domain (N1ICD) with poor clinical outcomes. Growing evidence suggests that Notch signaling can be regulated by small extracellular vesicles (SEVs). Here, we used breast cancer cell models to examine whether SEVs are involved in functional Notch signaling. We found that Notch components are packaged into MDA-MB-231- and MCF-7-derived SEVs, although higher levels of N1ICD were detected in SEVs from the more aggressive MDA-MB-231 cell line than from poorly invasive MCF-7 cells. SEV-Notch components were functional, as SEVs cargo from MDA-MB-231 cells induced the expression of Notch target genes in MCF-7 cells and triggered a more invasive and proliferative phenotype concomitant with the acquisition of mesenchymal features. Neutralization of the N1ICD cargo in MDA-MB-231-derived SEVs significantly reduced their potential to enhance the aggressiveness of MCF-7 cells in vitro and in a xenograft model. Overall, our results indicate that a SEV-mediated non-classical pathway of Notch signal transduction in breast cancer models bypasses the need for classical ligand-receptor interactions, which may have important implications in cancer.
Collapse
|
16
|
Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in cancer therapy: the Pandora's Box of cancer stem cells. Stem Cell Res Ther 2022; 13:181. [PMID: 35505363 PMCID: PMC9066908 DOI: 10.1186/s13287-022-02856-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
Drug resistance is the main culprit of failure in cancer therapy that may lead to cancer relapse. This resistance mostly originates from rare, but impactful presence of cancer stem cells (CSCs). Ability to self-renewal and differentiation into heterogeneous cancer cells, and harboring morphologically and phenotypically distinct cells are prominent features of CSCs. Also, CSCs substantially contribute to metastatic dissemination. They possess several mechanisms that help them to survive even after exposure to chemotherapy drugs. Although chemotherapy is able to destroy the bulk of tumor cells, CSCs are left almost intact, and make tumor entity resistant to treatment. Eradication of a tumor mass needs complete removal of tumor cells as well as CSCs. Therefore, it is important to elucidate key features underlying drug resistance raised by CSCs in order to apply effective treatment strategies. However, the challenging point that threatens safety and specificity of chemotherapy is the common characteristics between CSCs and normal peers such as signaling pathways and markers. In the present study, we tried to present a comprehensive appraisal on CSCs, mechanisms of their drug resistance, and recent therapeutic methods targeting this type of noxious cells.
Collapse
Affiliation(s)
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Razeghian-Jahromi
- Cardiovascular Research Center, Shiraz University of Medical Sciences, 3rd Floor, Mohammad Rasoolallah Research Tower, Namazi Hospital, Shiraz, Iran.
| |
Collapse
|
17
|
Identification of Potential RBPJ-Specific Inhibitors for Blocking Notch Signaling in Breast Cancer Using a Drug Repurposing Strategy. Pharmaceuticals (Basel) 2022; 15:ph15050556. [PMID: 35631382 PMCID: PMC9146688 DOI: 10.3390/ph15050556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Notch signaling is a key parameter in regulating cell fate during tissue homeostasis, and an aberrant Notch pathway can result in mammary gland carcinoma and has been associated with poor breast cancer diagnosis. Although inhibiting Notch signaling would be advantageous in the treatment of breast cancer, the currently available Notch inhibitors have a variety of side effects and their clinical trials have been discontinued. Thus, in search of a more effective and safer Notch inhibitor, inhibiting recombinant signal binding protein for immunoglobin kappaJ region (RBPJ) specifically makes sense, as RBPJ forms a transcriptional complex that activates Notch signaling. From our established database of more than 10,527 compounds, a drug repurposing strategy-combined docking study and molecular dynamic simulation were used to identify novel RBPJ-specific inhibitors. The compounds with the best performance were examined using an in vitro cellular assay and an in vivo anticancer investigation. Finally, an FDA-approved antibiotic, fidaxomicin, was identified as a potential RBPJ inhibitor, and its ability to block RBPJ-dependent transcription and thereby inhibit breast cancer growth was experimentally verified. Our study demonstrated that fidaxomicin suppressed Notch signaling and may be repurposed for the treatment of breast cancer.
Collapse
|
18
|
Hong Y, Limback D, Elsarraj HS, Harper H, Haines H, Hansford H, Ricci M, Kaufman C, Wedlock E, Xu M, Zhang J, May L, Cusick T, Inciardi M, Redick M, Gatewood J, Winblad O, Aripoli A, Huppe A, Balanoff C, Wagner JL, Amin AL, Larson KE, Ricci L, Tawfik O, Razek H, Meierotto RO, Madan R, Godwin AK, Thompson J, Hilsenbeck SG, Futreal A, Thompson A, Hwang ES, Fan F, Behbod F. Mouse-INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy. J Pathol 2022; 256:186-201. [PMID: 34714554 PMCID: PMC8738143 DOI: 10.1002/path.5820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022]
Abstract
Due to widespread adoption of screening mammography, there has been a significant increase in new diagnoses of ductal carcinoma in situ (DCIS). However, DCIS prognosis remains unclear. To address this gap, we developed an in vivo model, Mouse-INtraDuctal (MIND), in which patient-derived DCIS epithelial cells are injected intraductally and allowed to progress naturally in mice. Similar to human DCIS, the cancer cells formed in situ lesions inside the mouse mammary ducts and mimicked all histologic subtypes including micropapillary, papillary, cribriform, solid, and comedo. Among 37 patient samples injected into 202 xenografts, at median duration of 9 months, 20 samples (54%) injected into 95 xenografts showed in vivo invasive progression, while 17 (46%) samples injected into 107 xenografts remained non-invasive. Among the 20 samples that showed invasive progression, nine samples injected into 54 xenografts exhibited a mixed pattern in which some xenografts showed invasive progression while others remained non-invasive. Among the clinically relevant biomarkers, only elevated progesterone receptor expression in patient DCIS and the extent of in vivo growth in xenografts predicted an invasive outcome. The Tempus XT assay was used on 16 patient DCIS formalin-fixed, paraffin-embedded sections including eight DCISs that showed invasive progression, five DCISs that remained non-invasive, and three DCISs that showed a mixed pattern in the xenografts. Analysis of the frequency of cancer-related pathogenic mutations among the groups showed no significant differences (KW: p > 0.05). There were also no differences in the frequency of high, moderate, or low severity mutations (KW; p > 0.05). These results suggest that genetic changes in the DCIS are not the primary driver for the development of invasive disease. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Movement
- Cell Proliferation
- Disease Progression
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Epithelial Cells/transplantation
- Female
- Heterografts
- Humans
- Mice, Inbred NOD
- Mice, SCID
- Mutation
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Receptors, Progesterone/metabolism
- Time Factors
- Mice
Collapse
Affiliation(s)
- Yan Hong
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Darlene Limback
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Hanan S Elsarraj
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Haleigh Harper
- University of Kansas School of MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Haley Haines
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Hayley Hansford
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Michael Ricci
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Carolyn Kaufman
- University of Kansas School of MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Emily Wedlock
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Mingchu Xu
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Jianhua Zhang
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Lisa May
- Department of RadiologyThe University of Kansas School of Medicine‐WichitaWichitaKSUSA
| | - Therese Cusick
- Department of SurgeryThe University of Kansas School of Medicine‐WichitaWichitaKSUSA
| | - Marc Inciardi
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Mark Redick
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Jason Gatewood
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Onalisa Winblad
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Allison Aripoli
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Ashley Huppe
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Christa Balanoff
- Department of General Surgery, Breast Surgical Oncology DivisionThe University of Kansas Medical CenterKansas CityKSUSA
| | - Jamie L Wagner
- Department of General Surgery, Breast Surgical Oncology DivisionThe University of Kansas Medical CenterKansas CityKSUSA
| | - Amanda L Amin
- Department of General Surgery, Breast Surgical Oncology DivisionThe University of Kansas Medical CenterKansas CityKSUSA
| | - Kelsey E Larson
- Department of General Surgery, Breast Surgical Oncology DivisionThe University of Kansas Medical CenterKansas CityKSUSA
| | - Lawrence Ricci
- Department of RadiologyTruman Medical CenterKansas CityMOUSA
| | - Ossama Tawfik
- Department of Pathology, St Luke's Health System of Kansas CityMAWD Pathology GroupKansas CityMOUSA
| | | | - Ruby O Meierotto
- Breast RadiologySaint Luke's Cancer Institute, Saint Luke's Health SystemKansas CityMOUSA
| | - Rashna Madan
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Andrew K Godwin
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Jeffrey Thompson
- Department of BiostatisticsThe University of Kansas Medical CenterKansas CityKSUSA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Biostatistics and Informatics Shared Resources, Duncan Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Andy Futreal
- Department of Genomic Medicine, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Alastair Thompson
- Section of Breast SurgeryBaylor College of Medicine, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer CenterHoustonTXUSA
| | | | - Fang Fan
- Department of PathologyCity of Hope Medical CenterDuarteCAUSA
| | - Fariba Behbod
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | | |
Collapse
|
19
|
Zahra MH, Nawara HM, Hassan G, Afify SM, Seno A, Seno M. Cancer Stem Cells Contribute to Drug Resistance in Multiple Different Ways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:125-139. [PMID: 36587305 DOI: 10.1007/978-3-031-12974-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many tumors are resistant to conventional cancer therapies because a tumor is composed of heterogeneous cell population. Especially, subpopulation of cancer stem cells, which have self-renewal and differentiation properties and responsible for the tumor initiation, is generally considered resistant to chemo-, radio-, and immune therapy. Understanding the mechanism of drug resistance in cancer stem cells should lead to establish more effective therapeutic strategies. Actually, different molecular mechanisms are conceivable for cancer stem cells acquiring drug resistance. These mechanisms include not only cytoplasmic signaling pathways but also the intercellular communications in the tumor microenvironment. Recently, a great deal of successful reports challenged to elucidate the mechanisms of drug resistance and to develop novel treatments targeting cancer stem cells.
Collapse
Affiliation(s)
- Maram H Zahra
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Hend M Nawara
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Ghmkin Hassan
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Said M Afify
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, Shebeen El-Kom, 32511, Egypt
| | - Akimasa Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
20
|
Zhang M, Meng M, Liu Y, Qi J, Zhao Z, Qiao Y, Hu Y, Lu W, Zhou Z, Xu P, Zhou Q. Triptonide effectively inhibits triple-negative breast cancer metastasis through concurrent degradation of Twist1 and Notch1 oncoproteins. Breast Cancer Res 2021; 23:116. [PMID: 34922602 PMCID: PMC8684143 DOI: 10.1186/s13058-021-01488-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/13/2021] [Indexed: 01/19/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is highly metastatic and lethal. Due to a lack of druggable targets for this disease, there are no effective therapies in the clinic. Methods We used TNBC cells and xenografted mice as models to explore triptonide-mediated inhibition of TNBC metastasis and tumor growth. Colony formation assay was used to quantify the tumorigenesis of TNBC cells. Wound-healing and cell trans-well assays were utilized to measure cell migration and invasion. Tube formation assay was applied to access tumor cell-mediated vasculogenic mimicry. Western blot, quantitative-PCR, immunofluorescence imaging, and immunohistochemical staining were used to measure the expression levels of various tumorigenic genes in TNBC cells. Results Here, we showed that triptonide, a small molecule from the traditional Chinese medicinal herb Tripterygium wilfordii Hook F, potently inhibited TNBC cell migration, invasion, and vasculogenic mimicry, and effectively suppressed TNBC tumor growth and lung metastasis in xenografted mice with no observable toxicity. Molecular mechanistic studies revealed that triptonide strongly triggered the degradation of master epithelial-mesenchymal transition (EMT)-inducing protein Twist1 through the lysosomal system and reduced Notch1 expression and NF-κB phosphorylation, which consequently diminished the expression of pro-metastatic and angiogenic genes N-cadherin, VE-cadherin, and vascular endothelial cell growth factor receptor 2 (VEGFR2). Conclusions Triptonide effectively suppressed TNBC cell tumorigenesis, vasculogenic mimicry, and strongly inhibited the metastasis of TNBC via degradation of Twist1 and Notch1 oncoproteins, downregulation of metastatic and angiogenic gene expression, and reduction of NF-κB signaling pathway. Our findings provide a new strategy for treating highly lethal TNBC and offer a potential new drug candidate for combatting this aggressive disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01488-7.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yanxing Hu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wei Lu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Peng Xu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Siddharth S, Parida S, Muniraj N, Hercules S, Lim D, Nagalingam A, Wang C, Gyorffy B, Daniel JM, Sharma D. Concomitant activation of GLI1 and Notch1 contributes to racial disparity of human triple negative breast cancer progression. eLife 2021; 10:70729. [PMID: 34889737 PMCID: PMC8664295 DOI: 10.7554/elife.70729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/19/2021] [Indexed: 01/16/2023] Open
Abstract
Mortality from triple negative breast cancer (TNBC) is significantly higher in African American (AA) women compared to White American (WA) women emphasizing ethnicity as a major risk factor; however, the molecular determinants that drive aggressive progression of AA-TNBC remain elusive. Here, we demonstrate for the first time that AA-TNBC cells are inherently aggressive, exhibiting elevated growth, migration, and cancer stem-like phenotype compared to WA-TNBC cells. Meta-analysis of RNA-sequencing data of multiple AA- and WA-TNBC cell lines shows enrichment of GLI1 and Notch1 pathways in AA-TNBC cells. Enrichment of GLI1 and Notch1 pathway genes was observed in AA-TNBC. In line with this observation, analysis of TCGA dataset reveals a positive correlation between GLI1 and Notch1 in AA-TNBC and a negative correlation in WA-TNBC. Increased nuclear localization and interaction between GLI1 and Notch1 is observed in AA-TNBC cells. Of importance, inhibition of GLI1 and Notch1 synergistically improves the efficacy of chemotherapy in AA-TNBC cells. Combined treatment of AA-TNBC-derived tumors with GANT61, DAPT, and doxorubicin/carboplatin results in significant tumor regression, and tumor-dissociated cells show mitigated migration, invasion, mammosphere formation, and CD44+/CD24- population. Indeed, secondary tumors derived from triple-therapy-treated AA-TNBC tumors show diminished stem-like phenotype. Finally, we show that TNBC tumors from AA women express significantly higher level of GLI1 and Notch1 expression in comparison to TNBC tumors from WA women. This work sheds light on the racial disparity in TNBC, implicates the GLI1 and Notch1 axis as its functional mediators, and proposes a triple-combination therapy that can prove beneficial for AA-TNBC.
Collapse
Affiliation(s)
- Sumit Siddharth
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Sheetal Parida
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Nethaji Muniraj
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Shawn Hercules
- Department of Biology, MacMaster University, Hamilton, Canada
| | - David Lim
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Arumugam Nagalingam
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Chenguang Wang
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Balazs Gyorffy
- MTA TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary.,Semmelweis University, Department of Bioinformatics and 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Juliet M Daniel
- Department of Biology, MacMaster University, Hamilton, Canada
| | - Dipali Sharma
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| |
Collapse
|
22
|
Phenylboronic acid modified lipid nanocarriers mediated co-delivery of immunocytokine TRAIL and gamma-secretase inhibitor to triple negative breast cancer cells and cancer stem cells. Med Hypotheses 2021; 157:110716. [PMID: 34731681 DOI: 10.1016/j.mehy.2021.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/17/2021] [Indexed: 11/24/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive form of breast cancer with high rates of tumor relapse and metastasis. The existing drugs for treatment of TNBC are unable to target the cells of origin (breast cancer stem cells) of TNBC. TNF-α related apoptosis inducing ligand (TRAIL) has propensity to target TNBC cells including cancer stem cells. However, resistance to TRAIL due to activation of anti-apoptotic mechanisms is a limitation for TRAIL based anticancer therapy for TNBC. In the present study we propose an hypothesis for effective targeting of triple negative breast cancer by overcoming TRAIL resistance.
Collapse
|
23
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
24
|
Abdelhafiz AS, Fouda MA, Elzefzafy NA, Taha II, Mohemmed OM, Alieldin NH, Toony I, Abdel Wahab AA, Farahat IG. Gene expression analysis of invasive breast carcinoma yields differential patterns in luminal subtypes of breast cancer. Ann Diagn Pathol 2021; 55:151814. [PMID: 34517157 DOI: 10.1016/j.anndiagpath.2021.151814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/29/2021] [Indexed: 11/26/2022]
Abstract
Breast cancer is a heterogeneous disease, and new biomarkers are needed for more accurate classification and prediction of prognosis. The goal of this study is to assess the expression of breast cancer classification genes, to identify new molecular signatures in different intrinsic subtypes of breast cancer and to correlate their expression with different clinical variables. The study included 84 female patients newly diagnosed with non-metastatic breast cancer at the outpatient clinic at the National Cancer Institute, Cairo University, Egypt. Detection of 17 breast cancer classification genes was done using RT-PCR in tumor and normal tissues. Estrogen receptor (ER), progesterone receptor (PR), HER2, and Ki67 expression were assessed using IHC assay for intrinsic subtyping. Combined expression of FOXA1 and GATA3 was statistically higher in luminal subtypes in comparison to non-luminal subtypes. In Luminal A subtype; GRB7, EGFR, PTGS2, ID1, and KRT5 were significantly downregulated. FOXA1 and GATA3 were significantly upregulated in luminal B subtype, where EGFR and PTGS2 were significantly downregulated. While ESR1, EGFR, KRT5 and PTGS2 showed significantly low expression in tumor tissue in Her2 enriched subtype, TFF3 was significantly downregulated in triple negative subtype. GATA3 and FOXA1 expression exhibited significant correlation with tumor grade. Furthermore, GATA3, FOXA1, ESR1, and ID1 were also correlated significantly with staging of the tumor. Combined expression of ESR1, FOXA1 and GATA3 represents a molecular signature of luminal subtypes. Long term follow-up is needed to investigate the prognostic effect of breast cancer classification genes found in this study.
Collapse
Affiliation(s)
- Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt.
| | - Merhan A Fouda
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Nahla A Elzefzafy
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Iman I Taha
- ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Omar M Mohemmed
- ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Nelly H Alieldin
- Department of BioStatistics and Epidemiology, National Cancer Institute, Cairo University, Egypt
| | - Iman Toony
- Department of Medical Oncology, National Cancer Institute, Cairo University, Egypt
| | - Abdelhady Ali Abdel Wahab
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Iman Gouda Farahat
- Department of Pathology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
25
|
Troschel FM, Palenta H, Borrmann K, Heshe K, Hua SH, Yip GW, Kiesel L, Eich HT, Götte M, Greve B. Knockdown of the prognostic cancer stem cell marker Musashi-1 decreases radio-resistance while enhancing apoptosis in hormone receptor-positive breast cancer cells via p21 WAF1/CIP1. J Cancer Res Clin Oncol 2021; 147:3299-3312. [PMID: 34291358 PMCID: PMC8484224 DOI: 10.1007/s00432-021-03743-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 02/02/2023]
Abstract
Purpose While the stem cell marker Musashi-1 (MSI-1) has been identified as a key player in a wide array of malignancies, few findings exist on its prognostic relevance and relevance for cancer cell death and therapy resistance in breast cancer. Methods First, we determined prognostic relevance of MSI-1 in database analyses regarding multiple survival outcomes. To substantiate findings, MSI-1 was artificially downregulated in MCF-7 breast cancer cells and implications for cancer stem cell markers, cell apoptosis and apoptosis regulator p21, proliferation and radiation response were analyzed via flow cytometry and colony formation. Radiation-induced p21 expression changes were investigated using a dataset containing patient samples obtained before and after irradiation and own in vitro experiments. Results MSI-1 is a negative prognostic marker for disease-free and distant metastasis-free survival in breast cancer and tends to negatively influence overall survival. MSI-1 knockdown downregulated stem cell gene expression and proliferation, but increased p21 levels and apoptosis. Similar to the MSI-1 knockdown effect, p21 expression was strongly increased after irradiation and was expressed at even higher levels in MSI-1 knockdown cells after irradiation. Finally, combined use of MSI-1 silencing and irradiation reduced cancer cell survival. Conclusion MSI-1 is a prognostic marker in breast cancer. MSI-1 silencing downregulates proliferation while increasing apoptosis. The anti-proliferation mediator p21 was upregulated independently after both MSI-1 knockdown and irradiation and even more after both treatments combined, suggesting synergistic potential. Radio-sensitization effects after combining radiation and MSI-1 knockdown underline the potential of MSI-1 as a therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03743-y.
Collapse
Affiliation(s)
- Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany.
| | - Heike Palenta
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - Kristin Heshe
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - San Hue Hua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| |
Collapse
|
26
|
Edwards A, Brennan K. Notch Signalling in Breast Development and Cancer. Front Cell Dev Biol 2021; 9:692173. [PMID: 34295896 PMCID: PMC8290365 DOI: 10.3389/fcell.2021.692173] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The Notch signalling pathway is a highly conserved developmental signalling pathway, with vital roles in determining cell fate during embryonic development and tissue homeostasis. Aberrant Notch signalling has been implicated in many disease pathologies, including cancer. In this review, we will outline the mechanism and regulation of the Notch signalling pathway. We will also outline the role Notch signalling plays in normal mammary gland development and how Notch signalling is implicated in breast cancer tumorigenesis and progression. We will cover how Notch signalling controls several different hallmarks of cancer within epithelial cells with sections focussed on its roles in proliferation, apoptosis, invasion, and metastasis. We will provide evidence for Notch signalling in the breast cancer stem cell phenotype, which also has implications for therapy resistance and disease relapse in breast cancer patients. Finally, we will summarise the developments in therapeutic targeting of Notch signalling, and the pros and cons of this approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Abigail Edwards
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Keith Brennan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
27
|
Koh MZ, Ho WY, Yeap SK, Ali NM, Boo L, Alitheen NB. Regulation of Cellular and Cancer Stem Cell-Related Putative Gene Expression of Parental and CD44 +CD24 - Sorted MDA-MB-231 Cells by Cisplatin. Pharmaceuticals (Basel) 2021; 14:ph14050391. [PMID: 33919109 PMCID: PMC8143088 DOI: 10.3390/ph14050391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/04/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that promotes a higher risk of metastasis and cancer reoccurrence. Cisplatin is one of the potential anticancer drugs for treating TNBC. However, the occurrence of cisplatin resistance still remains one of the challenges in fully eradicating TNBC. The presence of cancer stem cells (CSCs) has been proposed as one of the factors contributing to the development of cisplatin resistance. In this study, we aimed to characterize the cellular properties and reveal the corresponding putative target genes involved in cisplatin resistance associated with CSCs using the TNBC cell line (MDA-MB-231). CSC-like cells were isolated from parental cells and the therapeutic effect of cisplatin on CSC-like cells was compared to that of the parental cells via cell characterization bioassays. A PCR array was then conducted to study the expression of cellular mRNA for each subpopulation. As compared to treated parental cells, treated CSCs displayed lower events of late apoptosis/necrosis and G2/M phase cell arrest, with higher mammosphere formation capacity. Furthermore, a distinct set of putative target genes correlated to the Hedgehog pathway and angiogenesis were dysregulated solely in CSC-like cells after cisplatin treatment, which were closely related to the regulation of chemoresistance and self-renewability in breast cancer. In summary, both cellular and gene expression studies suggest the attenuated cytotoxicity of cisplatin in CSC-like cells as compared to parental cells. Understanding the role of dysregulated putative target genes induced by cisplatin in CSCs may aid in the potential development of therapeutic targets for cisplatin-resistant breast cancer.
Collapse
Affiliation(s)
- May Zie Koh
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia;
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia;
- Correspondence: (W.Y.H.); (S.K.Y.)
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Malaysia
- Correspondence: (W.Y.H.); (S.K.Y.)
| | - Norlaily Mohd Ali
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia; (N.M.A.); (L.B.)
| | - Lily Boo
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia; (N.M.A.); (L.B.)
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
28
|
Molani Gol R, Kheirouri S. The Effects of Quercetin on the Apoptosis of Human Breast Cancer Cell Lines MCF-7 and MDA-MB-231: A Systematic Review. Nutr Cancer 2021; 74:405-422. [PMID: 33682528 DOI: 10.1080/01635581.2021.1897631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This systematic review was performed with a focus on the effects of quercetin (QT) on the human breast cancer cell lines MCF-7 and MDA-MB-231. PubMed, Scopus, Science Direct, and Google Scholar databases were searched up to May 2020 using relevant keywords. All articles written in English evaluating the effects of QT on the human breast cancer cell lines MCF-7 and/or MDA-MB-231 were eligible for the review. Totally, 31 articles were included in this review. Out of them, 23 studies investigated the effects of QT on MCF-7 cells and indicated that QT induces apoptosis in the cells. Of 15 studies that examined the effects of QT on MDA-MB-231 cells, 14 reports showed successful apoptosis. It is concluded that QT might be beneficial in the eliminating of breast cancer cells. However, further clinical trials are warranted to further verify these outcomes.
Collapse
Affiliation(s)
- Roghayeh Molani Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
The effects of a mixture of Lactobacillus species on colorectal tumor cells activity through modulation of Hes1 pathway. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Sabol RA, Villela VA, Denys A, Freeman BT, Hartono AB, Wise RM, Harrison MAA, Sandler MB, Hossain F, Miele L, Bunnell BA. Obesity-Altered Adipose Stem Cells Promote Radiation Resistance of Estrogen Receptor Positive Breast Cancer through Paracrine Signaling. Int J Mol Sci 2020; 21:ijms21082722. [PMID: 32326381 PMCID: PMC7216284 DOI: 10.3390/ijms21082722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is associated with poorer responses to chemo- and radiation therapy for breast cancer, which leads to higher mortality rates for obese women who develop breast cancer. Adipose stem cells (ASCs) are an integral stromal component of the tumor microenvironment (TME). In this study, the effects of obesity-altered ASCs (obASCs) on estrogen receptor positive breast cancer cell’s (ER+BCCs) response to radiotherapy (RT) were evaluated. We determined that BCCs had a decreased apoptotic index and increased surviving fraction following RT when co-cultured with obASCs compared to lnASCs or non-co-cultured cells. Further, obASCs reduced oxidative stress and induced IL-6 expression in co-cultured BCCs after radiation. obASCs produce increased levels of leptin relative to ASCs from normal-weight individuals (lnASCs). obASCs upregulate the expression of IL-6 compared to non-co-cultured BCCs, but BCCs co-cultured with leptin knockdown obASCs did not upregulate IL-6. The impact of shLeptin obASCs on radiation resistance of ER+BCCs demonstrate a decreased radioprotective ability compared to shControl obASCs. Key NOTCH signaling players were enhanced in ER+BBCs following co-culture with shCtrl obASCs but not shLep obASCs. This work demonstrates that obesity-altered ASCs, via enhanced secretion of leptin, promote IL-6 and NOTCH signaling pathways in ER+BCCs leading to radiation resistance.
Collapse
Affiliation(s)
- Rachel A. Sabol
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Vidal A. Villela
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Alexandra Denys
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Benjamin T. Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA;
| | - Alifiani B. Hartono
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Rachel M. Wise
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Mark A. A. Harrison
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Maxwell B. Sandler
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Fokhrul Hossain
- Louisiana State University Health Sciences Center (LSUHSC), Department of Genetics, New Orleans, LA 70112, USA; (F.H.); (L.M.)
- Louisiana Cancer Research Center (LCRC), Stanley S. Scott Cancer Center, LSUSHC, New Orleans, LA 70112, USA
| | - Lucio Miele
- Louisiana State University Health Sciences Center (LSUHSC), Department of Genetics, New Orleans, LA 70112, USA; (F.H.); (L.M.)
- Louisiana Cancer Research Center (LCRC), Stanley S. Scott Cancer Center, LSUSHC, New Orleans, LA 70112, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
- Department of Pharmacology, Tulane University, New Orleans, LA 70112, USA
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
- Correspondence: ; Tel.: +1-504-988-7071
| |
Collapse
|
31
|
Plava J, Cihova M, Burikova M, Bohac M, Adamkov M, Drahosova S, Rusnakova D, Pindak D, Karaba M, Simo J, Mego M, Danisovic L, Kucerova L, Miklikova S. Permanent Pro-Tumorigenic Shift in Adipose Tissue-Derived Mesenchymal Stromal Cells Induced by Breast Malignancy. Cells 2020; 9:480. [PMID: 32093026 PMCID: PMC7072834 DOI: 10.3390/cells9020480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023] Open
Abstract
During cancer progression, breast tumor cells interact with adjacent adipose tissue, which has been shown to be engaged in cancer aggressiveness. However, the tumor-directed changes in adipose tissue-resident stromal cells affected by the tumor-stroma communication are still poorly understood. The acquired changes might remain in the tissue even after tumor removal and may contribute to tumor relapse. We investigated functional properties (migratory capacity, expression and secretion profile) of mesenchymal stromal cells isolated from healthy (n = 9) and tumor-distant breast adipose tissue (n = 32). Cancer patient-derived mesenchymal stromal cells (MSCs) (MSC-CA) exhibited a significantly disarranged secretion profile and proliferation potential. Co-culture with MDA-MB-231, T47D and JIMT-1, representing different subtypes of breast cancer, was used to analyze the effect of MSCs on proliferation, invasion and tumorigenicity. The MSC-CA enhanced tumorigenicity and altered xenograft composition in immunodeficient mice. Histological analysis revealed collective cell invasion with a specific invasive front of EMT-positive tumor cells as well as invasion of cancer cells to the nerve-surrounding space. This study identifies that adipose tissue-derived mesenchymal stromal cells are primed and permanently altered by tumor presence in breast tissue and have the potential to increase tumor cell invasive ability through the activation of epithelial-to-mesenchymal transition in tumor cells.
Collapse
Affiliation(s)
- Jana Plava
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (J.P.); (M.C.); (M.B.)
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (J.P.); (M.C.); (M.B.)
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (J.P.); (M.C.); (M.B.)
| | - Martin Bohac
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (M.B.); (M.M.)
- Department of Oncosurgery, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
- Regenmed Ltd., Medena 29, 811 08 Bratislava, Slovakia
| | - Marian Adamkov
- Comenius University Bratislava, Jessenius Faculty of Medicine Martin, Department of Histology and Embryology, 036 01 Martin, Slovakia;
| | | | - Dominika Rusnakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (D.R.); (D.P.); (M.K.); (J.S.)
| | - Daniel Pindak
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (D.R.); (D.P.); (M.K.); (J.S.)
| | - Marian Karaba
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (D.R.); (D.P.); (M.K.); (J.S.)
| | - Jan Simo
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (D.R.); (D.P.); (M.K.); (J.S.)
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (M.B.); (M.M.)
| | - Lubos Danisovic
- Department of Oncosurgery, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
- Hermes LabSystems, s.r.o., 831 06 Bratislava, Slovakia;
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (J.P.); (M.C.); (M.B.)
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (J.P.); (M.C.); (M.B.)
| |
Collapse
|
32
|
Prabhu KS, Raza A, Karedath T, Raza SS, Fathima H, Ahmed EI, Kuttikrishnan S, Therachiyil L, Kulinski M, Dermime S, Junejo K, Steinhoff M, Uddin S. Non-Coding RNAs as Regulators and Markers for Targeting of Breast Cancer and Cancer Stem Cells. Cancers (Basel) 2020; 12:351. [PMID: 32033146 PMCID: PMC7072613 DOI: 10.3390/cancers12020351] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is regarded as a heterogeneous and complicated disease that remains the prime focus in the domain of public health concern. Next-generation sequencing technologies provided a new perspective dimension to non-coding RNAs, which were initially considered to be transcriptional noise or a product generated from erroneous transcription. Even though understanding of biological and molecular functions of noncoding RNA remains enigmatic, researchers have established the pivotal role of these RNAs in governing a plethora of biological phenomena that includes cancer-associated cellular processes such as proliferation, invasion, migration, apoptosis, and stemness. In addition to this, the transmission of microRNAs and long non-coding RNAs was identified as a source of communication to breast cancer cells either locally or systemically. The present review provides in-depth information with an aim at discovering the fundamental potential of non-coding RNAs, by providing knowledge of biogenesis and functional roles of micro RNA and long non-coding RNAs in breast cancer and breast cancer stem cells, as either oncogenic drivers or tumor suppressors. Furthermore, non-coding RNAs and their potential role as diagnostic and therapeutic moieties have also been summarized.
Collapse
Affiliation(s)
- Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | | | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India;
| | - Hamna Fathima
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Eiman I. Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology, Weill Cornell Medicine, Qatar Foundation, Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| |
Collapse
|
33
|
Kuai X, Jia L, Yang T, Huang X, Zhao W, Zhang M, Chen Y, Zhu J, Feng Z, Tang Q. Trop2 Promotes Multidrug Resistance by Regulating Notch1 Signaling Pathway in Gastric Cancer Cells. Med Sci Monit 2020; 26:e919566. [PMID: 31964857 PMCID: PMC6996863 DOI: 10.12659/msm.919566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chemotherapy is widely used in gastric cancer treatment, but multidrug resistance remains a leading cause of chemotherapy failure. Trop2 is highly expressed in gastric tumor tissues and greatly influences cancer progression. However, little is known about the relationship between Trop2 and drug resistance in gastric cancer. MATERIAL AND METHODS In the present study, Trop2 was knocked down in BGC823 cells and overexpressed in HGC27. CCK-8 assay was performed to explore the relationship of Trop2 expression and cell proliferation treated with anticancer drugs. Flow cytometry was performed to assess the relationship between Trop2 and cell apoptosis after chemotherapy. Subcutaneous xenograft models were generated to explore the curative effect of DDP to GC in vivo. MRP1 and Notch1 expressions were assessed by Western blot. RESULTS Trop2 decreased cell proliferation inhibition and apoptosis after chemotherapeutic treatments. DDP showed stronger therapeutic effects on Trop2-knockdown tumor than control in vivo. MRP1 and Notch1 signaling pathway were confirmed to participate in Trop2-induced drug resistance. CONCLUSIONS Our findings suggest that Trop2 promotes the resistance of gastric cancer to chemotherapy by activating the Notch1 pathway.
Collapse
Affiliation(s)
- Xingwang Kuai
- Jiangsu College of Nursing, Huaian, Jiangsu, China (mainland)
| | - Lizhou Jia
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, China (mainland)
| | - Tingting Yang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xiaochen Huang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wei Zhao
- Department of Pathology, The Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Mingjiong Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yuan Chen
- Department of Otolaryngology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jin Zhu
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu, China (mainland)
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qi Tang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
34
|
High Notch1 expression affects chemosensitivity of head and neck squamous cell carcinoma to paclitaxel and cisplatin treatment. Biomed Pharmacother 2019; 118:109306. [DOI: 10.1016/j.biopha.2019.109306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
|
35
|
Notch Signaling Activation as a Hallmark for Triple-Negative Breast Cancer Subtype. JOURNAL OF ONCOLOGY 2019; 2019:8707053. [PMID: 31379945 PMCID: PMC6657611 DOI: 10.1155/2019/8707053] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subgroup of 15%-20% of diagnosed breast cancer patients. It is generally considered to be the most difficult breast cancer subtype to deal with, due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), which usually direct targeted therapies. In this scenario, the current treatments of TNBC-affected patients rely on tumor excision and conventional chemotherapy. As a result, the prognosis is overall poor. Thus, the identification and characterization of targets for novel therapies are urgently required. The Notch signaling pathway has emerged to act in the pathogenesis and tumor progression of TNBCs. Firstly, Notch receptors are associated with the regulation of tumor-initiating cells (TICs) behavior, as well as with the aetiology of TNBCs. Secondly, there is a strong evidence that Notch pathway is a relevant player in mammary cancer stem cells maintenance and expansion. Finally, Notch receptors expression and activation strongly correlate with the aggressive clinicopathological and biological phenotypes of breast cancer (e.g., invasiveness and chemoresistance), which are relevant characteristics of TNBC subtype. The purpose of this up-to-date review is to provide a detailed overview of the specific role of all four Notch receptors (Notch1, Notch2, Notch3, and Notch4) in TNBCs, thus identifying the Notch signaling pathway deregulation/activation as a pathognomonic feature of this breast cancer subtype. Furthermore, this review will also discuss recent information associated with different therapeutic options related to the four Notch receptors, which may be useful to evaluate prognostic or predictive indicators as well as to develop new therapies aimed at improving the clinical outcome of TNBC patients.
Collapse
|
36
|
Wang Q, Zhong Y, Liu W, Wang Z, Gu L, Li X, Zheng J, Du H, Zhong Z, Xie F. Enhanced chemotherapeutic efficacy of the low-dose doxorubicin in breast cancer via nanoparticle delivery system crosslinked hyaluronic acid. Drug Deliv 2019; 26:12-22. [PMID: 30691317 PMCID: PMC6352940 DOI: 10.1080/10717544.2018.1507057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the development of treatment options in breast cancer, many patients die of recurrence and metastasis. Owing to enhanced permeability and retention in solid tumor tissue, nanoparticle (NP) delivery systems have been emerged as novel strategy in cancer chemotherapy. As extracellular matrix, glycosaminoglycan hyaluronan (HA) could bind its surface receptor adhesion molecule CD44 which is strongly expressed on breast cancer. We have previously reported a doxorubicin (DOX)-loaded HA-Lys-LA X-NPs (X-NP-DOX) NP delivery system for breast cancer treatment. In this study, we further investigated the antitumor effect of X-NP-DOX NP delivery system using low-dose DOX in both in vitro and in vivo systems. We demonstrated that low-dose X-NP-DOX possessed the ability for inhibiting MCF-7 breast cancer cell growth, invasion, and migration, and inducing apoptosis in vitro. In in vivo experiments, injection of low-dose X-NP-DOX into tumor-bearing mouse resulted in significant reduction of tumor size. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining further revealed that low-dose X-NP-DOX induced higher percentage of apoptotic cells compared with free DOX or saline. Furthermore, our study demonstrated that low-dose X-NP-DOX inhibited Notch1 and Ras/MAPK pathways, decreased cancer stem cell population, and reduced tumorigenesis compared to free DOX in both in vitro and in vivo settings. Owing to its enhanced efficacy and higher targetability compared to free DOX, low-dose DOX delivered by NP system may be a promising novel strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Qin Wang
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China.,b Department of Immunology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou , P. R. China
| | - Yinan Zhong
- c Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou P. R. China
| | - Wenting Liu
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China.,d Department of Pathology , The Frist Affiliated Hospital of Soochow University , Suzhou , P.R. China
| | - Zemin Wang
- e Investigative Toxicology and Pathology Laboratory, School of Public Health , Indiana University , Bloomington , IN , USA
| | - Liqin Gu
- f Department of Pathology , Taicang Traditional Medicine Hospital of Jiangsu Province , Taicang , P.R. China
| | - Xuejiao Li
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| | - Jiqing Zheng
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| | - Huan Du
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| | - Zhiyuan Zhong
- c Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou P. R. China
| | - Fang Xie
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| |
Collapse
|
37
|
Das A, Narayanam MK, Paul S, Mukhnerjee P, Ghosh S, Dastidar DG, Chakrabarty S, Ganguli A, Basu B, Pal M, Chatterji U, Banerjee SK, Karmakar P, Kumar D, Chakrabarti G. A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase-mediated activation of Notch signaling. J Biol Chem 2019; 294:6733-6750. [PMID: 30824542 DOI: 10.1074/jbc.ra119.007671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Notch signaling is reported to be deregulated in several malignancies, including breast, and the enzyme γ-secretase plays an important role in the activation and nuclear translocation of Notch intracellular domain (NICD). Hence, pharmacological inhibition of γ-secretase might lead to the subsequent inhibition of Notch signaling in cancer cells. In search of novel γ-secretase inhibitors (GSIs), we screened a series of triazole-based compounds for their potential to bind γ-secretase and observed that 3-(3'4',5'-trimethoxyphenyl)-5-(N-methyl-3'-indolyl)-1,2,4-triazole compound (also known as NMK-T-057) can bind to γ-secretase complex. Very interestingly, NMK-T-057 was found to inhibit proliferation, colony-forming ability, and motility in various breast cancer (BC) cells such as MDA-MB-231, MDA-MB-468, 4T1 (triple-negative cells), and MCF-7 (estrogen receptor (ER)/progesterone receptor (PR)-positive cell line) with negligible cytotoxicity against noncancerous cells (MCF-10A and peripheral blood mononuclear cells). Furthermore, significant induction of apoptosis and inhibition of epithelial-to-mesenchymal transition (EMT) and stemness were also observed in NMK-T-057-treated BC cells. The in silico study revealing the affinity of NMK-T-057 toward γ-secretase was further validated by a fluorescence-based γ-secretase activity assay, which confirmed inhibition of γ-secretase activity in NMK-T-057-treated BC cells. Interestingly, it was observed that NMK-T-057 induced significant autophagic responses in BC cells, which led to apoptosis. Moreover, NMK-T-057 was found to inhibit tumor progression in a 4T1-BALB/c mouse model. Hence, it may be concluded that NMK-T-057 could be a potential drug candidate against BC that can trigger autophagy-mediated cell death by inhibiting γ-secretase-mediated activation of Notch signaling.
Collapse
Affiliation(s)
- Amlan Das
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and .,Department of Chemistry, National Institute of Technology, Ravangla, South Sikkim 737139, India
| | - Maruthi Kumar Narayanam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.,Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, and
| | - Santanu Paul
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| | - Pritha Mukhnerjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Debabrata Ghosh Dastidar
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and.,Division of Pharmaceutics, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Subhendu Chakrabarty
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| | - Arnab Ganguli
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| | - Biswarup Basu
- Department of Experimental Hematology and Neuroendocrinology, Chittaranjan National Cancer Institute, 37 Shyama Prasad Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Urmi Chatterji
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sushanta K Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, Missouri 64128.,Departments of Anatomy and Cell Biology and Pathology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, Western Bengal, India
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India,
| | - Gopal Chakrabarti
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| |
Collapse
|
38
|
Self-renewal signaling pathways in breast cancer stem cells. Int J Biochem Cell Biol 2019; 107:140-153. [DOI: 10.1016/j.biocel.2018.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
39
|
Chen JH, T H Wu A, T W Tzeng D, Huang CC, Tzeng YM, Chao TY. Antrocin, a bioactive component from Antrodia cinnamomea, suppresses breast carcinogenesis and stemness via downregulation of β-catenin/Notch1/Akt signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:70-78. [PMID: 30599914 DOI: 10.1016/j.phymed.2018.09.213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND We identified increased β-catenin and Atk expression was associated with drug resistance and poor prognosis in breast cancer patients using public databases. Antrocin treatment suppressed breast tumorigenesis and stemness properties. HYPOTHESIS/PURPOSE We aimed to provide preclinical evidence for antrocin, an active component of Antrodia cinnamomea, as a potential small-molecule drug for treating drug-resistant breast cancer. METHODS Various in vitro assays including SRB, Boyden chamber, colony formation, drug combination index and tumor sphere generation were used to determine the anti-cancer and stemness effects of antrocin. Mouse xenograft models were used to evaluate antrocin's effect in vivo. RESULTS Antrocin treatment suppressed the viability, migration colony formation and mammosphere generation. Antrocin-mediated anti-cancer effects were associated with the decreased expression of oncogenic and stemness markers such as β-catenin, Akt and Notch1. A sequential regimen of antrocin and paclitaxel synergistically inhibit breast cancer viability in vitro and in vivo. CONCLUSION Our preclinical evidence supports antrocin's ability of inhibiting tumorigenic and stemness properties in breast cancer cells. Further develop of antrocin should be encouraged; the combined use of antrocin and paclitaxel may also be considered for future clinical trials.
Collapse
Affiliation(s)
- Jia-Hong Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defence Medical Center, Taipei, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defence Medical Center, Taipei, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong
| | - Chi-Cheng Huang
- Department of Surgery, Cathay General Hospital SiJhih, New Taipei City, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Yew-Min Tzeng
- Center for General Education, National Taitung University, Taitung 95092, Taiwan; Department of Life Science, National Taitung University, Taitung, Taiwan.
| | - Tsu-Yi Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan.
| |
Collapse
|
40
|
Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165339. [PMID: 30481586 DOI: 10.1016/j.bbadis.2018.11.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Unlike other normal cells, a subpopulation of cells often termed as "stem cells" are long-lived and generate cellular progeny throughout life. Cancer stem cells (CSCs) are rare immortal cells within a tumor that can both self-renew by dividing and giving rise to many cell types that constitute the tumor. CSCs also have been shown to be involved in fundamental processes of cell proliferation and metastatic dissemination. CSCs are generally resistant to chemotherapy and radiotherapy, a subset of remaining CSCs after therapy can survive and promote cancer relapse and resistance to therapies. Understanding the biological characteristics of CSCs, the pathways leading to their sustainability and proliferation, and the CSCs role in drug resistance is crucial for establishing novel tumor diagnostic and therapeutic strategies. In this review, we address the pathways that regulate CSCs, the role of CSCs in the resistance to therapy, and strategies to overcome therapeutic resistance.
Collapse
|
41
|
Hermawan A, Putri H. Current report of natural product development against breast cancer stem cells. Int J Biochem Cell Biol 2018; 104:114-132. [DOI: 10.1016/j.biocel.2018.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
|
42
|
Tian J, Liu X, Liu X, Jing P, Sa N, Wang H, Xu W. Notch1 serves as a prognostic factor and regulates metastasis via regulating EGFR expression in hypopharyngeal squamous cell carcinoma. Onco Targets Ther 2018; 11:7395-7405. [PMID: 30425527 PMCID: PMC6204875 DOI: 10.2147/ott.s175423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective Hypopharyngeal squamous cell carcinoma (HSCC) remains one of the most lethal malignancies in head and neck. Notch1 has been validated to play prominent roles in the occurrence and development of various types of cancer. The aim of this study was to explore the function and underlying mechanism of Notch1 in HSCC. Patients and methods Seventy-one cancer tissue samples and adjacent noncancerous formalin-fixed paraffin embedded tissue specimens were analyzed by immunohistochemistry. As Notch1 is overexpressed in HSCC, we further questioned whether there was a relationship between Notch1 and the clinicopathological characteristics. After confirming the successful knockdown of Notch1 by siRNA, the migration and invasion after gene knockdown were investigated by Transwell chambers. We then tried to identify YBX1 and EGFR expression using real-time PCR (RT-PCR) and Western blot analyses. To further determine whether the downexpression of EGFR was caused by YBX1 and the overexpression of YBX1 was caused by gene amplification, the expression of EGFR was detected by RT-PCR and Western blot assays. Results We found that the expression of Notch1 and EGFR in HSCC tissues was upregulated compared with those in the adjacent noncancerous tissues. Further clinicopathological characteristics analysis revealed that the expression of Notch1 was positively correlated with distant metastasis (P=0.003) and tumor differentiation (P=0.031). The high expression of Notch1 is an independent prognostic factor for a poor overall survival in patients with HSCC (P=0.015, χ 2=10.403). Knocking down of Notch1 significantly inhibits the migration and invasion of FaDu cells in vitro. Mechanistic investigation reveals that Notch1 knockdown is found suppressing the expression of EGFR at transcriptional level. Interestingly, we further found that Notch1 knockdown also decreased the expression of YBX1, which is a transcription factor of EGFR. Moreover, the upregulation of YBX1 reverses the suppression of Notch1 on EGFR. Furthermore, forced overexpression of YBX1 induced the invasion of FaDu cells. Conclusion Taken together, we found a positively cross-linked role of Notch1 signaling in the outcome of HSCC, providing a novel valuable prognostic marker and potential therapeutic target for the treatment of HSCC patients. Notch1 is a core signaling molecule for regulating migration and invasion via interplaying with EGFR in HSCC cells.
Collapse
Affiliation(s)
- Jiajun Tian
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, ,
| | - Xianfang Liu
- Shandong Provincial Key Laboratory of Otology, Jinan 250022, Shandong, China, ,
| | - Xiuxiu Liu
- Shandong Provincial Key Laboratory of Otology, Jinan 250022, Shandong, China, ,
| | - Peihang Jing
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, ,
| | - Na Sa
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, ,
| | - Haibo Wang
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, , .,Shandong Provincial Key Laboratory of Otology, Jinan 250022, Shandong, China, ,
| | - Wei Xu
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, , .,Shandong Provincial Key Laboratory of Otology, Jinan 250022, Shandong, China, ,
| |
Collapse
|
43
|
Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. Int J Biochem Cell Biol 2018; 103:115-124. [DOI: 10.1016/j.biocel.2018.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/13/2022]
|
44
|
Kim DH, Yoon HJ, Cha YN, Surh YJ. Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target. Free Radic Res 2018; 52:1336-1347. [DOI: 10.1080/10715762.2018.1473571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Do-Hee Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hyo-Jin Yoon
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Young-Nam Cha
- Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
45
|
Cao L, Yang Y, Ye Z, Lin B, Zeng J, Li C, Liang T, Zhou K, Li J. Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways. Int J Mol Med 2018; 42:1625-1636. [PMID: 29956731 DOI: 10.3892/ijmm.2018.3741] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/20/2018] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is a leading cause of mortality among women with cancer worldwide. Quercetin‑3‑methyl ether, a natural compound occurring in various plants, has been indicated to have potent anticancer activity. Breast cancer cell growth and survival were examined by CCK‑8 and colony formation assay, whilst cell cycle and apoptosis were determined by flow cytometry. Cell invasion and migration were assessed by wound‑healing assay and Transwell assay. Cancer stem cell formation was analyzed by mammosphere formation assay and related signaling pathways were detected by western blotting. In the present study, it was observed that treatment with quercetin‑3‑methyl ether significantly inhibited cell growth, induced apoptosis and cell cycle arrest at the G2‑M phase, and suppressed invasion and migration in human breast cancer cells, including the triple negative MDAMB‑231 cell line, and the estrogen receptor‑positive/progesterone receptor‑positive/human epidermal growth factor receptor 2‑negative MCF‑7 and T47D cell lines. This compound also markedly suppressed the epithelial‑mesenchymal transition process as evidenced by the upregulated expression of E‑cadherin, and the concomitant downregulated expression of vimentin and MMP‑2. Furthermore, it was demonstrated that quercetin‑3‑methyl ether treatment inhibited mammosphere formation and the expression of the stemness‑related genes, SRY‑box 2 and Nanog. Mechanistically, this compound decreased the expression of Notch1, and induced the phosphorylation of phosphoinositide 3‑kinase (PI3K) and Akt. It also attenuated the human insulin growth factor 1‑induced phosphorylation of PI3K, Akt and glycogen synthase kinase β. Additionally, the combination of quercetin‑3‑methyl ether and a secretase inhibitor (DAPT) exhibited additive suppression of the expression of Notch1, PI3K, Akt and mammalian target of rapamycin and a more marked inhibitory effect on cell proliferation and colony formation compared with either drug alone. Treatment with quercetin‑3‑methyl ether alone markedly suppressed the levels of tri‑methyl histone H3 (Lys27), but had no effect on the expression of enhancer of zeste homolog 2. Overall, these findings indicated that quercein‑3‑methyl ether may be a potential therapeutic compound for the treatment of triple negative and hormone‑sensitive breast cancer.
Collapse
Affiliation(s)
- Longbin Cao
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yunxiao Yang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ziyu Ye
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jincheng Zeng
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Caihong Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Tong Liang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Keyuan Zhou
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jixia Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
46
|
Chen L, Long C, Youn J, Lee J. A Phenotypic Cell-Binding Screen Identifies a Novel Compound Targeting Triple-Negative Breast Cancer. ACS COMBINATORIAL SCIENCE 2018; 20:330-334. [PMID: 29718663 DOI: 10.1021/acscombsci.8b00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.
Collapse
Affiliation(s)
- Luxi Chen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Long
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jonghae Youn
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jiyong Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
47
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: a review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:463-479. [PMID: 29476201 DOI: 10.1007/s00210-018-1479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| |
Collapse
|
48
|
Shen J, Li M. MicroRNA-744 Inhibits Cellular Proliferation and Invasion of Colorectal Cancer by Directly Targeting Oncogene Notch1. Oncol Res 2018; 26:1401-1409. [PMID: 29471890 PMCID: PMC7844638 DOI: 10.3727/096504018x15188747585738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulated studies have strongly implicated aberrantly expressed microRNAs (miRNAs) in carcinogenesis and cancer progression of various cancers, including colorectal cancer (CRC). Hence, a comprehensive study of miRNAs and their association with CRC may be a promising therapeutic method for patients with this malignancy. MicroRNA-744 (miR-744) is abnormally expressed in several types of human cancer. Thus far, little is known about the expression, biological roles, and exact mechanisms of miR-744 in CRC. Thus, the present study measured the expression level of miR-744 and investigated its roles and associated molecular mechanisms in CRC. This study demonstrated that miR-744 expression was significantly underexpressed in CRC tissues and cell lines. Low miR-744 expression was positively associated with lymphatic metastasis and TNM stage. Functional experiments revealed that miR-744 overexpression obviously inhibited the proliferation and invasion of CRC cells. Furthermore, Notch1 was identified as a direct target of miR-744 in CRC. Moreover, the inhibition of Notch1 phenocopied the inhibitory effects of miR-744 overexpression on CRC cells. Restored Notch1 expression markedly rescued the tumor-suppressive effects of miR-744 overexpression on CRC cells. Overall, miR-744 exhibits an essential role in CRC progression, and the miR-744/Notch1 axis may provide novel insights into future treatments for patients with CRC.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Minzhe Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
49
|
Li X, Zhong X, Pan X, Ji Y. Tumor-Suppressive MicroRNA-708 Targets Notch1 to Suppress Cell Proliferation and Invasion in Gastric Cancer. Oncol Res 2018; 26:1317-1326. [PMID: 29444743 PMCID: PMC7844794 DOI: 10.3727/096504018x15179680859017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Growing evidence has demonstrated that numerous microRNAs (miRNAs) may participate in the regulation of gastric carcinogenesis and progression. This phenomenon suggests that gastric cancer-related miRNAs can be identified as effective therapeutic targets for this disease. miRNA-708 (miR-708) has recently been reported to be aberrantly expressed in several types of cancer and contribute to carcinogenesis and progression. However, the expression level, biological roles, and underlying mechanisms of miR-708 in gastric cancer are poorly understood. Here we found that miR-708 was downregulated in gastric cancer tissues and cell lines. Downregulated miR-708 expression was significantly associated with lymphatic metastasis, invasive depth, and TNM stage. Further investigation indicated that ectopic expression of miR-708 prohibited cell proliferation and invasion in gastric cancer. Bioinformatics analysis showed that Notch1 was a potential target of miR-708. Notch1 was further confirmed as a direct target gene of miR-708 in gastric cancer by dual-luciferase reporter assay, reverse transcription quantitative polymerase chain reaction, and Western blot analysis. Furthermore, an inverse association was found between miR-708 and Notch1 mRNA levels in gastric cancer tissues. In addition, restored Notch1 expression rescued the inhibitory effects on gastric cancer cell proliferation and invasion induced by miR-708 overexpression. Our findings highlight the tumor-suppressive roles of miR-708 in gastric cancer and suggest that miR-708 may be investigated as a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xuyan Li
- Clinical Laboratory Central, Huizhou Central People's Hospital, Guangdong, P.R. China
| | - Xuanfang Zhong
- Department of Digestion, Huizhou Central People's Hospital, Guangdong, P.R. China
| | - Xiuhua Pan
- Department of Radiotherapy, Huizhou Central People's Hospital, Guangdong, P.R. China
| | - Yan Ji
- Department of Prenatal Diagnosis, Huizhou Central People's Hospital, Guangdong, P.R. China
| |
Collapse
|
50
|
Xu L, Li H, Su L, Lu Q, Liu Z. MicroRNA-455 inhibits cell proliferation and invasion of epithelial ovarian cancer by directly targeting Notch1. Mol Med Rep 2017; 16:9777-9785. [DOI: 10.3892/mmr.2017.7790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
|