1
|
West EJ, Sadoun A, Bendjama K, Erbs P, Smolenschi C, Cassier PA, de Baere T, Sainte-Croix S, Brandely M, Melcher AA, Ismail F, Scott KJ, Bennett A, Banks E, Gasior E, Kent S, Kurzawa M, Hammond C, Patel JV, Collinson FJ, Twelves C, Anthoney DA, Swinson D, Samson A. A Phase I Clinical Trial of Intrahepatic Artery Delivery of TG6002 in Combination with Oral 5-Fluorocytosine in Patients with Liver-Dominant Metastatic Colorectal Cancer. Clin Cancer Res 2025; 31:1243-1256. [PMID: 39785814 PMCID: PMC11959272 DOI: 10.1158/1078-0432.ccr-24-2498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
PURPOSE Effective treatment for patients with metastatic cancer is limited, particularly for those with colorectal cancer with metastatic liver lesions, in which accessibility to numerous tumors is essential for favorable clinical outcomes. Oncolytic viruses (OV) selectively replicate in cancer cells; however, direct targeting of inaccessible lesions is limited when using conventional intravenous or intratumoral administration routes. PATIENTS AND METHODS We conducted a multicenter, dose-escalation, phase I study of vaccinia virus, TG6002, via intrahepatic artery (IHA) delivery in combination with the oral prodrug 5-fluorocytosine to 15 patients with metastatic colorectal cancer. RESULTS Successful IHA delivery of replication-competent TG6002 was achieved, as demonstrated by the virus within tumor biopsies. Functional transcription of the FCU1 transgene indicates viral replication within the tumor, with higher plasma 5-fluorouracil associated with patients receiving the highest dose of TG6002. IHA delivery of TG6002 correlated with a robust systemic peripheral immune response to the virus with activation of peripheral blood mononuclear cells, associated with a proinflammatory cytokine response and release of calreticulin, potentially indicating immunogenic cell death. Gene Ontology analyses of differentially expressed genes reveal a significant immune response at the transcriptional level in response to treatment. Moreover, an increase in the number and frequency of T-cell receptor clones against both cancer antigens and neoantigens, with elevated functional activity, may be associated with improved anticancer activity. Despite these findings, no clinical efficacy was observed. CONCLUSIONS In summary, these data demonstrate the delivery of OV to tumor via IHA administration, associated with viral replication and significant peripheral immune activation. Collectively, the data support the need for future studies using IHA administration of OVs.
Collapse
Affiliation(s)
- Emma J. West
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Fay Ismail
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| | - Karen J. Scott
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| | - Angela Bennett
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Emma Banks
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ewa Gasior
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Sarah Kent
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Marta Kurzawa
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Jai V. Patel
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Fiona J. Collinson
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Chris Twelves
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - D. Alan Anthoney
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Dan Swinson
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
2
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Kozbor D, Winkler M, Malhotra N, Mistarz A, Wang S, Hutson A, Gambotto A, Abrams S, Singh P, Liu S, Odunsi K, Wang J. Consequences of the perivascular niche remodeling for tumoricidal T-cell trafficking into metastasis of ovarian cancer. RESEARCH SQUARE 2024:rs.3.rs-4940287. [PMID: 39372930 PMCID: PMC11451647 DOI: 10.21203/rs.3.rs-4940287/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The treatment-induced activation level within the perivascular tumor microenvironment (TME) that supports T-cell trafficking and optimal T-cell differentiation is unknown. We investigated the mechanisms by which inflammatory responses generated by tumor-specific T cells delivered to ovarian tumor-bearing mice alone or after oncolytic vaccinia virus-driven immunogenic cancer cell death affect antitumor efficacy. Analyses of the perivascular TME by spatially resolved omics technologies revealed reduced immunosuppression and increased tumoricidal T-cell trafficking and function after moderate inflammatory responses driven by a CXCR4 antagonist-armed oncolytic virus. Neither weak nor high inflammation created a permissive TME for T-cell trafficking. Notably, treatment-mediated differences in T-cell effector programs acquired within the perivascular TME contrasted with comparable antigenic priming in the tumor-draining lymph nodes regardless of the activation mode of antigen-presenting cells. These findings provide new insights into combinatorial treatment strategies that enable tumor-specific T cells to overcome multiple barriers for enhanced trafficking and control of tumor growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Song Liu
- Roswell Park Comprehensive Cancer Center
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center
| | | |
Collapse
|
4
|
Rojas JJ, Van Hoecke L, Conesa M, Bueno-Merino C, Del Canizo A, Riederer S, Barcia M, Brosinski K, Lehmann MH, Volz A, Saelens X, Sutter G. A new MVA ancestor-derived oncolytic vaccinia virus induces immunogenic tumor cell death and robust antitumor immune responses. Mol Ther 2024; 32:2406-2422. [PMID: 38734899 PMCID: PMC11286824 DOI: 10.1016/j.ymthe.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Vaccinia viruses (VACVs) are versatile therapeutic agents and different features of various VACV strains allow for a broad range of therapeutic applications. Modified VACV Ankara (MVA) is a particularly altered VACV strain that is highly immunogenic, incapable of replicating in mammalian hosts, and broadly used as a safe vector for vaccination. Alternatively, Western Reserve (WR) or Copenhagen (Cop) are VACV strains that efficiently replicate in cancer cells and, therefore, are used to develop oncolytic viruses. However, the immune evasion capacity of WR or Cop hinders their ability to elicit antitumor immune responses, which is crucial for efficacy in the clinic. Here, we describe a new VACV strain named Immune-Oncolytic VACV Ankara (IOVA), which combines efficient replication in cancer cells with induction of immunogenic tumor cell death (ICD). IOVA was engineered from an MVA ancestor and shows superior cytotoxicity in tumor cells. In addition, the IOVA genome incorporates mutations that lead to massive fusogenesis of tumor cells, which contributes to improved antitumor effects. In syngeneic mouse tumor models, the induction of ICD results in robust antitumor immunity directed against tumor neo-epitopes and eradication of large established tumors. These data present IOVA as an improved immunotherapeutic oncolytic vector.
Collapse
Affiliation(s)
- Juan J Rojas
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain; Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany.
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Miquel Conesa
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Carmen Bueno-Merino
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Ana Del Canizo
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Stephanie Riederer
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Maria Barcia
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Katrin Brosinski
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Michael H Lehmann
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Asisa Volz
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany; Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Xavier Saelens
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Gerd Sutter
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| |
Collapse
|
5
|
Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:823-841. [PMID: 37748878 DOI: 10.1134/s000629792306010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 09/27/2023]
Abstract
Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Marah Mahmoud
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Delic M, Boeswald V, Goepfert K, Pabst P, Moehler M. In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells. Onco Targets Ther 2022; 15:1291-1307. [PMID: 36310770 PMCID: PMC9606445 DOI: 10.2147/ott.s350136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and immunological effects of JS-1 or T-VEC combined with cytostatic drugs in human tumor and immune cells. T-VEC is a genetically modified strain of HSV-1. Genetic modifications (insertion of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene) were made to attenuate the virus and increase selectivity for cancer cells. In addition to the direct oncolytic effect, we investigated the immune stimulatory effects of T-VEC by comparing it with JS-1. JS-1 is identical T-VEC except for the inserted GM-CSF gene. MATERIALS AND METHODS We analyzed the effects of T-VEC and JS-1 with cytostatic drugs in human tumor-immune cell coculture experiments. After coculture, the surface markers CD80, CD83 and CD86 were measured by fluorescence-activated cell sorting and the cytokines, interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-α and GM-CSF, by enzyme-linked immunosorbent assays. Furthermore, we analyzed the potential of the viruses to induce T cell activation, measured on the basis of CD4, CD8 and CD69. Analysis of these markers and cytokines allows for conclusions to be drawn concerning the maturation of dendritic cells (DCs) and the immunostimulatory effects of the treatment. RESULTS We documented increased activation of human cytotoxic T lymphocytes after infection by both HSV-1 strains and treatment with cytostatic drugs without significant differences between T-VEC and JS-1. CONCLUSION We demonstrated an immune response as a result of infection with both viruses, but T-VEC was in vitro not stronger than JS-1. The immunostimulatory effects of the viruses could be partially increased by chemotherapy, providing a rationale for future preclinical studies designed to explore T-VEC in combined regimens.
Collapse
Affiliation(s)
- Maike Delic
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany,Correspondence: Maike Delic, University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany, Tel +49 6131 179803, Fax +49 6131 179657, Email
| | - Veronika Boeswald
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Katrin Goepfert
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Petra Pabst
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Markus Moehler
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| |
Collapse
|
7
|
Kim SI, Chaurasiya S, Sivanandam V, Kang S, Park AK, Lu J, Yang A, Zhang Z, Bagdasarian IA, Woo Y, Morgan JT, Yin Z, Fong Y, Warner SG. Priming stroma with a vitamin D analog to optimize viroimmunotherapy for pancreatic cancer. Mol Ther Oncolytics 2022; 24:864-872. [PMID: 35317522 PMCID: PMC8914466 DOI: 10.1016/j.omto.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/19/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer resistance to immunotherapies is partly due to deficits in tumor-infiltrating immune cells and stromal density. Combination therapies that modify stroma and recruit immune cells are needed. Vitamin D analogs such as calcipotriol (Cal) decrease fibrosis in pancreas stroma, thus allowing increased chemotherapy delivery. OVs infect, replicate in, and kill cancer cells and recruit immune cells to immunodeficient microenvironments. We investigated whether stromal modification with Cal would enhance oncolytic viroimmunotherapy using recombinant orthopoxvirus, CF33. We assessed effect of Cal on CF33 replication using pancreas ductal adenocarcinoma (PDAC) cell lines and in vivo flank orthotopic models. Proliferation assays showed that Cal did not alter viral replication. Less replication was seen in cell lines whose division was slowed by Cal, but this appeared proportional to cell proliferation. Three-dimensional in vitro models demonstrated decreased myofibroblast integrity after Cal treatment. Cal increased vascular lumen size and immune cell infiltration in subcutaneous models of PDAC and increased viral delivery and replication. Cal plus serial OV dosing in the syngeneic Pan02 model caused more significant tumor abrogation than other treatments. Cal-treated tumors had less dense fibrosis, enhanced immune cell infiltration, and decreased T cell exhaustion. Calcipotriol is a possible adjunct for CF33-based oncolytic viroimmunotherapy against PDAC.
Collapse
Affiliation(s)
- Sang-In Kim
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Shyambabu Chaurasiya
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Venkatesh Sivanandam
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Seonah Kang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Anthony K Park
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Annie Yang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Zhifang Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Isabella A Bagdasarian
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Yanghee Woo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA.,Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Joshua T Morgan
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhirong Yin
- Pathology Core, Department of Pathology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA.,Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Susanne G Warner
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA.,Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Troitskaya OS, Novak DD, Richter VA, Koval OA. Immunogenic Cell Death in Cancer Therapy. Acta Naturae 2022; 14:40-53. [PMID: 35441043 PMCID: PMC9013441 DOI: 10.32607/actanaturae.11523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Apoptosis plays a crucial role in chemotherapy-induced cell death. The conventional theory holding that apoptosis needs to be immunologically silent has recently been revised, and the concept of immunogenic cell death (ICD) has been proposed. This review describes the main features of ICD induction. These ICD markers are important for the effectiveness of anticancer therapy, as well as for basic research into cell death regulation. The mechanism of the "vaccination effect" of dying cancer cells undergoing ICD has been fully described, including the activation of specific antitumor response after re-challenge by the same living tumor cells. This review also discusses the whole set of molecular events attributing cell death to immunogenic type: the exposure of calreticulin and the heat shock protein HSP70 to the outer surface of the cell membrane and the release of the nuclear protein HMGB1 and ATP into the extracellular space. ICD inducers of various nature (chemotherapy drugs, cytotoxic proteins, and oncolytic viruses), as well as physical methods, are classified in the current review.
Collapse
Affiliation(s)
- O. S. Troitskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - D. D. Novak
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| | - V. A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O. A. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| |
Collapse
|
9
|
Virotherapy in Germany-Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies. Viruses 2021; 13:v13081420. [PMID: 34452286 PMCID: PMC8402873 DOI: 10.3390/v13081420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review—as part of the special edition on “State-of-the-Art Viral Vector Gene Therapy in Germany”—the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.
Collapse
|
10
|
Hernández ÁP, Juanes-Velasco P, Landeira-Viñuela A, Bareke H, Montalvillo E, Góngora R, Fuentes M. Restoring the Immunity in the Tumor Microenvironment: Insights into Immunogenic Cell Death in Onco-Therapies. Cancers (Basel) 2021; 13:2821. [PMID: 34198850 PMCID: PMC8201010 DOI: 10.3390/cancers13112821] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Immunogenic cell death (ICD) elicited by cancer therapy reshapes the tumor immune microenvironment. A long-term adaptative immune response can be initiated by modulating cell death by therapeutic approaches. Here, the major hallmarks of ICD, endoplasmic reticulum (ER) stress, and damage-associated molecular patterns (DAMPs) are correlated with ICD inducers used in clinical practice to enhance antitumoral activity by suppressing tumor immune evasion. Approaches to monitoring the ICD triggered by antitumoral therapeutics in the tumor microenvironment (TME) and novel perspective in this immune system strategy are also reviewed to give an overview of the relevance of ICD in cancer treatment.
Collapse
Affiliation(s)
- Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Halin Bareke
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
11
|
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112761. [PMID: 34199429 PMCID: PMC8199618 DOI: 10.3390/cancers13112761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer rates have been accelerating significantly in recent years. Despite notable advances having been made in cancer therapy, and numerous studies being currently conducted in clinical trials, research is always looking for new treatment. Novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators, including chromatin modifiers, such as DNA methyltransferase and histone deacetylases, and microRNA. Combinatorial treatments have several advantages: they enhance viral entry, replication, and spread between proximal cells and, moreover, they strengthen the immune response. In this review we summarize the main combination of therapeutic approaches, giving an insight into past, present, and future perspectives. Abstract According to the World Cancer Report, cancer rates have been increased by 50% with 15 million new cases in the year 2020. Hepatocellular carcinoma (HCC) is the only one of the most common tumors to cause a huge increase in mortality with a survival rate between 40% and 70% at 5 years, due to the high relapse and limitations associated with current therapies. Despite great progress in medicine, oncological research is always looking for new therapies: different technologies have been evaluated in clinical trials and others have been already used in clinics. Among them, oncolytic virotherapy represents a therapeutic option with a widespread possibility of approaches and applications. Oncolytic viruses are naturally occurring, or are engineered, viruses characterized by the unique features of preferentially infecting, replicating, and lysing malignant tumor cells, as well as activating the immune response. The combination of oncolytic virotherapy and chemical drugs are arousing great interest in the tumor treatment. In this scenario, novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators or inhibitors of the signalling pathways. Combination treatments are required to improve the immune response and allow viral entry, replication, and diffusion between proximal cells. In this review, we summarize all combination therapies associated with virotherapy, including co-administered inhibitors of chromatin modifiers (combination strategies) and inserted target sites for miRNAs (recombination or arming strategies).
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Correspondence: (C.Z.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (C.Z.); (G.F.)
| |
Collapse
|
12
|
Delaunay T, Nader J, Grard M, Farine I, Hedwig V, Foloppe J, Blondy T, Violland M, Pouliquen D, Grégoire M, Boisgerault N, Erbs P, Fonteneau JF. High Oncolytic Activity of a Double-Deleted Vaccinia Virus Copenhagen Strain against Malignant Pleural Mesothelioma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:573-578. [PMID: 32995481 PMCID: PMC7501423 DOI: 10.1016/j.omto.2020.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/19/2020] [Indexed: 12/01/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a cancer of the pleura that lacks efficient treatment. Oncolytic immunotherapy using oncolytic vaccinia virus (VV) may represent an alternative therapeutic approach for the treatment of this malignancy. Here, we studied the oncolytic activity of VV thymidine kinase (TK)-ribonucleotide reductase (RR)-/green fluorescent protein (GFP) against MPM. This virus is a VV from the Copenhagen strain that is deleted of two genes encoding the TK (J2R) and the RR (I4L) and that express the GFP. First, we show in vitro that VVTK-RR-/GFP efficiently infects and kills the twenty-two human MPM cell lines used in this study. We also show that the virus replicates in all eight tested MPM cell lines, however, with approximately a 10-fold difference in the amplification level from one cell line to another. Then, we studied the therapeutic efficiency of VVTK-RR-/GFP in non-obese diabetic (NOD) severe combined immunodeficient (SCID) mice that bear peritoneal human MPM tumors. One intraperitoneal infection of VVTK-RR-/GFP reduces the tumor burden and significantly increases mice survival compared to untreated animals. Thus, VVTK-RR- may be a promising oncolytic virus (OV) for the oncolytic immunotherapy of MPM.
Collapse
Affiliation(s)
- Tiphaine Delaunay
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Joelle Nader
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Marion Grard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | | | | | | | - Thibaut Blondy
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Mathilde Violland
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Daniel Pouliquen
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Marc Grégoire
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Nicolas Boisgerault
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | | | - Jean-François Fonteneau
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| |
Collapse
|
13
|
Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000124] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Malfitano AM, Di Somma S, Iannuzzi CA, Pentimalli F, Portella G. Virotherapy: From single agents to combinatorial treatments. Biochem Pharmacol 2020; 177:113986. [PMID: 32330494 DOI: 10.1016/j.bcp.2020.113986] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Virotherpay is emerging as a promising strategy against cancer, and three oncolytic viruses (OVs) have gained approval in different countries for the treatment of several cancer types. Beyond the capability to selectively infect, replicate and lyse cancer cells, OVs act through a multitude of events, including modification of the tumour micro/macro-environment as well as a complex modulation of the anti-tumour immune response by activation of danger signals and immunogenic cell death pathways. Most OVs show limited effects, depending on the viral platform and the interactions with the host. OVs used as monotherapy only in a minority of patients elicited a full response. Better outcomes were obtained using OVs in combination with other treatments, such as immune therapy or chemotherapy, suggesting that the full potential of OVs can be unleashed in combination with other treatment modalities. Here, we report the main described combination of OVs with conventional chemotherapeutic agents: platinum salts, mitotic inhibitors, anthracyclines and other antibiotics, anti-metabolites, alkylating agents and topoisomerase inhibitors. Additionally, our work provides an overview of OV combination with targeted therapies: histone deacetylase inhibitors, kinase inhibitors, monoclonal antibodies, inhibitors of DNA repair, inhibitors of the proteasome complex and statins that demonstrated enhanced OV anti-neoplastic activity. Although further studies are required to assess the best combinations to translate the results in the clinic, it is clear that combined therapies, acting with complementary mechanisms of action might be useful to target cancer lesions resistant to currently available treatments.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | - Sarah Di Somma
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | | | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy.
| |
Collapse
|
15
|
Wang X, Shao X, Gu L, Jiang K, Wang S, Chen J, Fang J, Guo X, Yuan M, Shi J, Ding C, Meng S, Xu Q. Targeting STAT3 enhances NDV-induced immunogenic cell death in prostate cancer cells. J Cell Mol Med 2020; 24:4286-4297. [PMID: 32100392 PMCID: PMC7171322 DOI: 10.1111/jcmm.15089] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Oncolytic Newcastle disease virus (NDV) induces immunogenic cell death (ICD), liberating danger-associated molecular patterns (DAMPs) that provokes defiance in neoplastic malignancy. The present study aims to investigate whether and how oncolytic NDV triggers ICD in prostate cancer cells. We show that NDV/FMW, an oncolytic NDV strain FMW, elicited the expression and release of several ICD markers, that is calreticulin (CRT), heat shock proteins (HSP70/90) and high-mobility group box 1 (HMGB1), in prostate cancer cells. Furthermore, pharmacological repression of apoptosis, necroptosis, autophagy or endoplasmic reticulum (ER) stress exerted diverse effects on the HMGB1 and HSP70/90 evacuation in NDV/FMW-infected prostate cancer cells. Moreover, ICD markers induced in prostate cancer cells upon NDV/FMW infection, were enhanced by either treatment with a STAT3 (signal transducer and activator of transcription 3) inhibitor or shRNA-mediated knockdown of STAT3. In nude mice bearing prostate cancer cell-derived tumours, the tumours injected with the supernatants of NDV/FMW-infected cells grew smaller than mock-treated tumours. These results indicate that oncolytic NDV provokes the expression of ICD makers in prostate cancer cells. Our data also suggest that a combination of inhibition of STAT3 with oncolytic NDV could boost NDV-based anti-tumour effects against prostate cancer.
Collapse
Affiliation(s)
- Xueke Wang
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Radio therapyHwa Mei HospitalUniversity of Chinese Academy of ScienceNingboZhejiangChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Xiaoyan Shao
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Linaer Gu
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Ke Jiang
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalianChina
| | - Sitong Wang
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Jianhua Chen
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Juemin Fang
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Xianling Guo
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Min Yuan
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Ji Shi
- Department of NeurosurgeryCancer Hospital of China Medical UniversityLiaoning Cancer Hospital & InstituteShenyangChina
| | - Chan Ding
- Department of Avian Infectious DiseasesShanghai Veterinary Research InstituteChinese Academy of Agricultural ScienceShanghaiChina
| | - Songshu Meng
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalianChina
| | - Qing Xu
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| |
Collapse
|
16
|
Abstract
Apoptosis was initially seen as a kind of silent cell death with non-induction of the immune response 1. However, in the recent past, it has been seen that death induced by either infections or actions of certain agents can elicit a specific immune response, namely immunogenic cell death (ICD)2. This ICD activates the immune system against antigens associated with deceased cells with the concomitant exposure and releasing of the so-called damage-associated molecular patterns (DAMPs) by dying cells3. Four principal DAMPs related to ICD have been identified (but not limited to): the endoplasmic reticulum (ER) chaperone calreticulin (CRT), heat shock proteins (HSPs), adenosine triphosphate (ATP) and high mobility group box-1 (HMGB-1)4.
Collapse
Affiliation(s)
- Daylen Aguilar-Noriega
- Center for Genetic Engineering and Biotechnology, Ave 31, 158 and 190, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Silvio Perea
- Center for Genetic Engineering and Biotechnology, Ave 31, 158 and 190, Playa, P.O. Box 6162, Havana 10600, Cuba
| |
Collapse
|
17
|
Marques MR, Choo Q, Ashtikar M, Rocha TC, Bremer-Hoffmann S, Wacker MG. Nanomedicines - Tiny particles and big challenges. Adv Drug Deliv Rev 2019; 151-152:23-43. [PMID: 31226397 DOI: 10.1016/j.addr.2019.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
After decades of research, nanotechnology has been used in a broad array of biomedical products including medical devices, drug products, drug substances, and pharmaceutical-grade excipients. But like many great achievements in science, there is a fine balance between the risks and opportunities of this new technology. Some materials and surface structures in the nanosize range can exert unexpected toxicities and merit a more detailed safety assessment. Regulatory agencies such as the United States Food and Drug Administration or the European Medicines Agency have started dealing with the potential risks posed by nanomaterials. Considering that a thorough characterization is one of the key aspects of controlling such risks this review presents the regulatory background of nanosafety assessment and provides some practical advice on how to characterize nanomaterials and drug formulations. Further, the challenges of how to maintain and monitor pharmaceutical quality through a highly complex production processes will be discussed.
Collapse
|
18
|
Chaurasiya S, Chen NG, Lu J, Martin N, Shen Y, Kim SI, Warner SG, Woo Y, Fong Y. A chimeric poxvirus with J2R (thymidine kinase) deletion shows safety and anti-tumor activity in lung cancer models. Cancer Gene Ther 2019; 27:125-135. [PMID: 31209267 PMCID: PMC7170804 DOI: 10.1038/s41417-019-0114-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Oncolytic viruses have shown excellent safety profiles in preclinical and clinical studies; however, in most cases therapeutic benefits have been modest. We have previously reported the generation of a chimeric poxvirus (CF33), with significantly improved oncolytic characteristics, through chimerization among different poxviruses. Here we report the sequence analysis of CF33 and oncolytic potential of a GFP-encoding CF33 virus (CF33-GFP) with a J2R deletion in lung cancer models. Replication of CF33-GFP and the resulting cytotoxicity were higher in cancer cell lines compared to a normal cell line, in vitro. After infection with virus, cancer cells expressed markers for immunogenic cell death in vitro. Furthermore, CF33-GFP was safe and exerted potent anti-tumor effects at a dose as low as 1000 plaque forming units in both virus-injected and un-injected distant tumors in A549 tumor xenograft model in mice. Likewise, in a syngeneic model of lung cancer in mice, the virus showed significant anti-tumor effect and was found to increase tumor infiltration by CD8+ T cells. Collectively, these data warrant further investigation of this novel chimeric poxvirus for its potential use as a cancer bio-therapeutic.
Collapse
Affiliation(s)
| | - Nanhai G Chen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Yinan Shen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.,Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanne G Warner
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
19
|
Goepfert K, Dinsart C, Rommelaere J, Foerster F, Moehler M. Rational Combination of Parvovirus H1 With CTLA-4 and PD-1 Checkpoint Inhibitors Dampens the Tumor Induced Immune Silencing. Front Oncol 2019; 9:425. [PMID: 31192129 PMCID: PMC6546938 DOI: 10.3389/fonc.2019.00425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
The recent therapeutic success of immune checkpoint inhibitors in the treatment of advanced melanoma highlights the potential of cancer immunotherapy. Oncolytic virus-based therapies may further improve the outcome of these cancer patients. A human ex vivo melanoma model was used to investigate the oncolytic parvovirus H-1 (H-1PV) in combination with ipilimumab and/or nivolumab. The effect of this combination on activation of human T lymphocytes was demonstrated. Expression of CTLA-4, PD-1, and PD-L1 immune checkpoint proteins was upregulated in H-1PV-infected melanoma cells. Nevertheless, maturation of antigen presenting cells such as dendritic cells was triggered by H-1PV infected melanoma cells. Combining H-1PV with checkpoint inhibitors, ipilimumab enhanced TNFα release during maturation of dendritic cells; nivolumab increased the amount of IFNγ release. H-1PV mediated reduction of regulatory T cell activity was demonstrated by lower TGF-ß levels. The combination of ipilimumab and nivolumab resulted in a further decline of TGF-ß levels. Similar results were obtained regarding the activation of cytotoxic T cells. H-1PV infection alone and in combination with both checkpoint inhibitors caused strong activation of CTLs, which was reflected by an increased number of CD8+GranB+ cells and increased release of granzyme B, IFNγ, and TNFα. Our data support the concept of a treatment benefit from combining oncolytic H-1PV with the checkpoint inhibitors ipilimumab and nivolumab, with nivolumab inducing stronger effects on cytotoxic T cells, and ipilimumab strengthening T lymphocyte activity.
Collapse
Affiliation(s)
- Katrin Goepfert
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christiane Dinsart
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jean Rommelaere
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friedrich Foerster
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Moehler
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
20
|
By Binding CD80 and CD86, the Vaccinia Virus M2 Protein Blocks Their Interactions with both CD28 and CTLA4 and Potentiates CD80 Binding to PD-L1. J Virol 2019; 93:JVI.00207-19. [PMID: 30918073 PMCID: PMC6532080 DOI: 10.1128/jvi.00207-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/17/2019] [Indexed: 11/29/2022] Open
Abstract
The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus. In this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676–8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitro replication, oncolytic activities in vitro and in vivo, and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile. IMPORTANCE The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.
Collapse
|
21
|
Warner SG, Kim SI, Chaurasiya S, O'Leary MP, Lu J, Sivanandam V, Woo Y, Chen NG, Fong Y. A Novel Chimeric Poxvirus Encoding hNIS Is Tumor-Tropic, Imageable, and Synergistic with Radioiodine to Sustain Colon Cancer Regression. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:82-92. [PMID: 31061881 PMCID: PMC6495072 DOI: 10.1016/j.omto.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022]
Abstract
Colon cancer has a high rate of recurrence even with good response to modern therapies. Novel curative adjuncts are needed. Oncolytic viral therapy has shown preclinical promise against colon cancer but lacks robust efficacy in clinical trials and raises regulatory concerns without real-time tracking of viral replication. Novel potent vectors are needed with adjunctive features to enhance clinical efficacy. We have thus used homologous recombination and high-throughput screening to create a novel chimeric poxvirus encoding a human sodium iodide symporter (hNIS) at a redundant tk locus. The resulting virus (CF33-hNIS) consistently expresses hNIS and demonstrates replication efficiency and immunogenic cell death in colon cancer cells in vitro. Tumor-specific CF33-hNIS efficacy against colon cancer results in tumor regression in vivo in colon cancer xenograft models. Early expression of hNIS by infected cells makes viral replication reliably imageable via positron emission tomography (PET) of I-124 uptake. The intensity of I-124 uptake mirrors viral replication and tumor regression. Finally, systemic delivery of radiotherapeutic I-131 isotope following CF33-hNIS infection of colon cancer xenografts enhances and sustains tumor regression compared with virus treatment alone in HCT116 xenografts, demonstrating synergy of oncolytic viral therapy with radioablation in vivo.
Collapse
Affiliation(s)
- Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.,Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sang-In Kim
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Michael P O'Leary
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Venkatesh Sivanandam
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yanghee Woo
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nanhai G Chen
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.,Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.,Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
22
|
Abstract
INTRODUCTION Over the last decade, advances in biological therapies have resulted in remarkable clinical responses for the treatment of some previously incurable cancers. Oncolytic virotherapy is one of these promising novel strategies for cancer therapy. A successful oncolytic virus promotes tumor cell oncolysis and elicits a robust long-term anti-tumor immunity. AREAS COVERED Oncolytic poxviruses (Vaccinia virus and Myxoma virus) demonstrated encouraging results in multiple pre-clinical tumor models and some clinical trials for the treatment of various cancers. This review summarizes the advances made on poxvirus oncolytic virotherapy in the last five years. EXPERT OPINION Many challenges remain in poxvirus oncolytic virotherapy. Two key goals to achieve are enhancing the efficiency of viral delivery to tumor sites and overcoming local tumor immune-evasion. Additional efforts are necessary to explore the best combination of virotherapy with standard available treatments, particularly immunotherapies. By addressing these issues, this new modality will continue to improve as an adjunct biotherapy to treat malignant diseases.
Collapse
Affiliation(s)
- Lino E Torres-Domínguez
- a Biodesign Center for Immunotherapy, Vaccines and Virotherapy , Arizona State University , Tempe , AZ , USA
| | - Grant McFadden
- a Biodesign Center for Immunotherapy, Vaccines and Virotherapy , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
23
|
Davola ME, Mossman KL. Oncolytic viruses: how "lytic" must they be for therapeutic efficacy? Oncoimmunology 2019; 8:e1581528. [PMID: 31069150 PMCID: PMC6492965 DOI: 10.1080/2162402x.2019.1596006] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses (OVs) preferentially target and kill cancer cells without affecting healthy cells through a multi-modal mechanism of action. While historically the direct killing activity of OVs was considered the primary mode of action, initiation or augmentation of a host antitumor immune response is now considered an essential aspect of oncolytic virotherapy. To improve oncolytic virotherapy, many studies focus on increasing virus replication and spread. In this article, we open for discussion the traditional dogma that correlates replication with the efficacy of OVs, pointing out several examples that oppose this principle.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Karen Louise Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
24
|
Foloppe J, Kempf J, Futin N, Kintz J, Cordier P, Pichon C, Findeli A, Vorburger F, Quemeneur E, Erbs P. The Enhanced Tumor Specificity of TG6002, an Armed Oncolytic Vaccinia Virus Deleted in Two Genes Involved in Nucleotide Metabolism. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:1-14. [PMID: 31011628 PMCID: PMC6461584 DOI: 10.1016/j.omto.2019.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 11/25/2022]
Abstract
Oncolytic vaccinia viruses are currently in clinical development. However, the safety and the tumor selectivity of these oncolytic viruses must be improved. We previously constructed a first-generation oncolytic vaccinia virus by expressing the suicide gene FCU1 inserted in the J2R locus that encodes thymidine kinase. We demonstrated that the combination of this thymidine-kinase-deleted vaccinia virus and the FCU1/5-fluocytosine system is a potent vector for cancer therapy. Here, we developed a second generation of vaccinia virus, named TG6002, expressing FCU1 and with targeted deletions of the J2R gene and the I4L gene, which encodes the large subunit of the ribonucleotide reductase. Compared to the previously used single thymidine-kinase-deleted vaccinia virus, TG6002 is highly attenuated in normal cells, yet it displays tumor-selective replication and tumor cell killing. TG6002 replication is highly dependent on cellular ribonucleotide reductase levels and is less pathogenic than the single-deleted vaccinia virus. Tumor-selective viral replication, prolonged therapeutic levels of 5-fluorouracil in tumors, and significant antitumor effects were observed in multiple human xenograft tumor models after systemic injection of TG6002 and 5-fluorocytosine. TG6002 displays a convincing safety profile and is a promising candidate for treatment of cancer in humans.
Collapse
|
25
|
Coppard C, Hannani D, Humbert M, Gauthier V, Plumas J, Merlin E, Gabert F, Chaperot L. In vitro PUVA treatment triggers calreticulin exposition and HMGB1 release by dying T lymphocytes in GVHD: New insights in extracorporeal photopheresis. J Clin Apher 2019; 34:450-460. [PMID: 30860623 DOI: 10.1002/jca.21698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/23/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracorporeal photopheresis (ECP) is an effective therapy for graft vs host disease (GVHD), based on infusion of UVA-irradiated and 8 methoxy-psoralen (PUVA)-treated leukocytes. Reinfusion of these apoptosing cells affects the functionality of pathogenic T cells through poorly understood immunomodulatory mechanisms. Apoptosis is usually a silent, tolerance-associated process, but can also be immunogenic, depending on death-inducers and environmental context. METHODS To understand ECP mechanisms of action, human alloreactive T cells generated in an in vitro model mimicking GVHD were used, as well as primary cells from GVHD patients. Cells were submitted to PUVA treatment and their phenotype and immunogenicity were analyzed, using cell culture and flow cytometry. RESULTS In vitro PUVA treatment induced the expression of several damage-associated molecular patterns (DAMPs) by dying T cells (calreticulin, high-mobility group box-1, and to a lesser extent heat shock proteins 70 and 90), especially upon T cell activation, leading to their phagocytosis by macrophages and dendritic cells (DCs). Allogeneic DCs preincubated with PUVA treated T cells induced comparable naive T cell proliferation and polarization as control allogeneic DC. CONCLUSION Altogether, in our experimental settings, in vitro PUVA-treatment induces a partially immunogenic phenotype allowing phagocytosis of apoptotic cells by macrophages and DC, however not sufficient to induce dendritic cell maturation and T cell activation. These data refine current models of ECP-mediated immune modulation and emphasize the need to further analyze PUVA-treated cell interactions with immune cells.
Collapse
Affiliation(s)
- Céline Coppard
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, France.,Research and Development, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Dalil Hannani
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, France.,Research and Development, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France.,PDC*line Pharma, Grenoble, France
| | - Marion Humbert
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, France.,Research and Development, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Virginie Gauthier
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, France.,Research and Development, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Joel Plumas
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, France.,Research and Development, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France.,PDC*line Pharma, Grenoble, France
| | - Etienne Merlin
- Centre Hospitalier Universitaire de Clermont-Ferrand, Pôle Femme-Enfant, Clermont-Ferrand, France
| | - Françoise Gabert
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, France.,Research and Development, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, France.,Research and Development, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| |
Collapse
|
26
|
Ricordel M, Foloppe J, Pichon C, Findeli A, Tosch C, Cordier P, Cochin S, Quémeneur E, Camus-Bouclainville C, Bertagnoli S, Erbs P. Oncolytic properties of non-vaccinia poxviruses. Oncotarget 2018; 9:35891-35906. [PMID: 30542506 PMCID: PMC6267605 DOI: 10.18632/oncotarget.26288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Vaccinia virus, a member of the Poxviridae family, has been extensively used as an oncolytic agent and has entered late stage clinical development. In this study, we evaluated the potential oncolytic properties of other members of the Poxviridae family. Numerous tumor cell lines were infected with ten non-vaccinia poxviruses to identify which virus displayed the most potential as an oncolytic agent. Cell viability indicated that tumor cell lines were differentially susceptible to each virus. Raccoonpox virus was the most potent of the tested poxviruses and was highly effective in controlling cell growth in all tumor cell lines. To investigate further the oncolytic capacity of the Raccoonpox virus, we have generated a thymidine kinase (TK)-deleted recombinant Raccoonpox virus expressing the suicide gene FCU1. This TK-deleted Raccoonpox virus was notably attenuated in normal primary cells but replicated efficiently in numerous tumor cell lines. In human colon cancer xenograft model, a single intratumoral inoculation of the recombinant Raccoonpox virus, in combination with 5-fluorocytosine administration, produced relevant tumor growth control. The results demonstrated significant antitumoral activity of this new modified Raccoonpox virus armed with FCU1 and this virus could be considered to be included into the growing armamentarium of oncolytic virotherapy for cancer.
Collapse
Affiliation(s)
- Marine Ricordel
- Transgene SA, Illkirch-Graffenstaden 67405, France.,Current address: Polyplus-transfection SA, Illkirch-Graffenstaden 67400, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van Vloten JP, Workenhe ST, Wootton SK, Mossman KL, Bridle BW. Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. THE JOURNAL OF IMMUNOLOGY 2018; 200:450-458. [PMID: 29311387 DOI: 10.4049/jimmunol.1701021] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Samuel T Workenhe
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
28
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
29
|
Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat Commun 2018; 9:3417. [PMID: 30143632 PMCID: PMC6109072 DOI: 10.1038/s41467-018-05979-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy can induce durable antitumor responses. However, many patients poorly respond to such therapies. Here we describe a generic antitumor therapy that is based on the intratumor delivery of mRNA that codes for the necroptosis executioner mixed lineage kinase domain-like (MLKL) protein. This intervention stalls primary tumor growth and protects against distal and disseminated tumor formation in syngeneic mouse melanoma and colon carcinoma models. Moreover, MLKL-mRNA treatment combined with immune checkpoint blockade further improves the antitumor activity. MLKL-mRNA treatment rapidly induces T cell responses directed against tumor neo-antigens and requires CD4+ and CD8+ T cells to prevent tumor growth. Type I interferon signaling and Batf3-dependent dendritic cells are essential for this mRNA treatment to elicit tumor antigen-specific T cell responses. Moreover, MLKL-mRNA treatment blunts the growth of human lymphoma in mice with a reconstituted human adaptive immune system. MLKL-based treatment can thus be exploited as an effective antitumor immunotherapy. Necroptosis has immunogenic cell death properties. Here, the authors show that the intra-tumor delivery of mRNA that codes for the necroptosis effector MLKL triggers neo-epitope-specific anti-tumor T cell responses and inhibits primary tumor growth and lung metastasis.
Collapse
|
30
|
Ye T, Jiang K, Wei L, Barr MP, Xu Q, Zhang G, Ding C, Meng S, Piao H. Oncolytic Newcastle disease virus induces autophagy-dependent immunogenic cell death in lung cancer cells. Am J Cancer Res 2018; 8:1514-1527. [PMID: 30210920 PMCID: PMC6129498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023] Open
Abstract
In addition to direct oncolysis, oncolytic viruses trigger immunogenic cell death (ICD) and primes antitumor immunity. We have previously shown that oncolytic Newcastle disease virus (NDV), strain FMW (NDV/FMW), induces apoptosis and/or autophagy in cancer cells. In this study, we investigated whether oncolytic NDV can induce ICD in lung cancer cells and whether apoptosis or autophagy plays a role in NDV-triggered ICD. To this end, we examined cell surface expression of calreticulin (CRT) on NDV-infected lung cancer cells and measured ICD determinants, high mobility group box 1 (HMGB1), heat shock protein 70/90 (HSP70/90) and ATP in supernatants following viral infection. Flow cytometric analysis using anti-CRT antibody and PI staining of NDV-infected lung cancer cells showed an increase in the number of viable (propidium iodide-negative) cells, suggesting the induction of CRT exposure upon NDV infection. In addition, confocal and immunoblot analysis using anti-CRT antibody showed that an enhanced accumulation of CRT on the cell surface of NDV-infected cells, indicating the translocation of CRT to the cell membrane upon NDV infection. We further demonstrated that NDV infection induced the release of secreted HMGB1 and HSP70/90 by examining the concentrated supernatants of NDV-infected cells. Furthermore, pre-treatment with either the pan-caspase inhibitor z-VAD-FMK or the necrosis inhibitor Necrostain-1, had no impact on NDV-induced release of ICD determinants in lung cancer cells. Rather, depletion of autophagy-related genes in lung cancer cells significantly inhibited the induction of ICD determinants by NDV. Of translational importance, in a lung cancer xenograft model, treatment of mice with supernatants from NDV-infected cells significantly inhibited tumour growth. Together, these results indicate that oncolytic NDV is a potent ICD-inducer and that autophagy contributes to NDV-mediated induction of ICD in lung cancer cells.
Collapse
Affiliation(s)
- Tian Ye
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang, China
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang, China
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Liwen Wei
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang, China
| | - Martin P Barr
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences St. James’s Hospital & Trinity College DublinDublin, Ireland
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai, China
- Tongji University Cancer CenterShanghai, China
- Department of Oncology, Dermatology Hospital, Tongji UniversityShanghai, China
| | - Guirong Zhang
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural ScienceShanghai, China
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang, China
| |
Collapse
|
31
|
Vaccinia Virus Shuffling: deVV5, a Novel Chimeric Poxvirus with Improved Oncolytic Potency. Cancers (Basel) 2018; 10:cancers10070231. [PMID: 29996551 PMCID: PMC6070928 DOI: 10.3390/cancers10070231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/04/2023] Open
Abstract
Oncolytic virus (OV) therapy has emerged as a promising approach for cancer treatment with the potential to be less toxic and more efficient than classic cancer therapies. Various types of OVs in clinical development, including Vaccinia virus (VACV)-derived OVs, have shown good safety profiles, but limited therapeutic efficacy as monotherapy in some cancer models. Many different methods have been employed to improve the oncolytic potency of OVs. In this study, we used a directed evolution process, pooling different strains of VACV, including Copenhagen, Western Reserve and Wyeth strains and the attenuated modified vaccinia virus Ankara (MVA), to generate a new recombinant poxvirus with increased oncolytic properties. Through selective pressure, a chimeric VACV, deVV5, with increased cancer cell killing capacity and tumor selectivity in vitro was derived. The chimeric viral genome contains sequences of all parental strains. To further improve the tumor selectivity and anti-tumor activity of deVV5, we generated a thymidine kinase (TK)-deleted chimeric virus armed with the suicide gene FCU1. This TK-deleted virus, deVV5-fcu1 replicated efficiently in human tumor cells, and was notably attenuated in normal primary cells. These studies demonstrate the potential of directed evolution as an efficient way to generate recombinant poxviruses with increased oncolytic potency, and with high therapeutic index to improve cancer therapy.
Collapse
|
32
|
Chen AT, Samson BLR, Crupi MJF, Bell JC. Oncolytic viruses: cytolytic agents, replicating immunotherapeutics or both? Future Virol 2018. [DOI: 10.2217/fvl-2018-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ashley T Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Briana LR Samson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mathieu JF Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
33
|
Abstract
Immunotherapy is a promising treatment modality that acts by selectively harnessing the host immune defenses against cancer. An effective immune response is often needed to eliminate tumors following treatment which can trigger the immunogenicity of dying tumor cells. Some treatment modalities (such as photodynamic therapy, high hydrostatic pressure or radiotherapy) and agents (some chemotherapeutic agents, oncolytic viruses) have been used to endow tumor cells with immunogenicity and/or increase their immunogenicity. These treatments and agents can boost the antitumor capacity by inducing immune responses against tumor neoantigens. Immunogenic cell death is a manner of cell death that can induce the emission of immunogenic damage-associated molecular patterns (DAMPs). DAMPs are sufficient for immunocompetent hosts to trigger the immune system. This review focuses on the latest developments in the treatment modalities and agents that can induce and/or enhance the immunogenicity of cancer cells.
Collapse
|
34
|
Moehler M, Göpfert K, Lenz HJ. Outlook: Immunotherapy in Gastrointestinal Carcinoma - Innovative Strategies. Oncol Res Treat 2018; 41:313-315. [PMID: 29705792 DOI: 10.1159/000489047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
Immune checkpoint inhibitors are emerging as a therapeutic approach for patients with advanced or metastatic gastrointestinal malignancies following the recent Food and Drug Administration and Asian approvals for colorectal, gastric, and hepatocellular carcinoma. As discussed in earlier articles, phase I-II trials demonstrate quite positive clinical activity, particularly in patients with immunogenic cancer subtypes. This outreach paper discusses some of the next innovative immunotherapy strategies under development. Here, tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are increasingly coming into focus as new targets. Besides the well described use of checkpoint inhibitors, blockade of 'Wnt' or Csf1R signaling pathways as well as combinatorial treatment strategies offer promising examples for overcoming immune silencing within the resistant tumor microenvironment.
Collapse
|
35
|
Cook KW, Durrant LG, Brentville VA. Current Strategies to Enhance Anti-Tumour Immunity. Biomedicines 2018; 6:E37. [PMID: 29570634 PMCID: PMC6027499 DOI: 10.3390/biomedicines6020037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
The interaction of the immune system with cancer is complex, but new approaches are resulting in exciting therapeutic benefits. In order to enhance the immune response to cancer, immune therapies seek to either induce high avidity immune responses to tumour specific antigens or to convert the tumour to a more pro-inflammatory microenvironment. Strategies, including vaccination, oncolytic viruses, and adoptive cell transfer all seek to induce anti-tumour immunity. To overcome the suppressive tumour microenvironment checkpoint inhibitors and modulators of regulatory cell populations have been investigated. This review summarizes the recent advances in immune therapies and discusses the importance of combination therapies in the treatment of cancers.
Collapse
Affiliation(s)
- Katherine W Cook
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
| | - Lindy G Durrant
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
- Academic Department of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
| | - Victoria A Brentville
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
| |
Collapse
|
36
|
Hargadon KM. Strategies to Improve the Efficacy of Dendritic Cell-Based Immunotherapy for Melanoma. Front Immunol 2017; 8:1594. [PMID: 29209327 PMCID: PMC5702020 DOI: 10.3389/fimmu.2017.01594] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is a highly aggressive form of skin cancer that frequently metastasizes to vital organs, where it is often difficult to treat with traditional therapies such as surgery and radiation. In such cases of metastatic disease, immunotherapy has emerged in recent years as an exciting treatment option for melanoma patients. Despite unprecedented successes with immune therapy in the clinic, many patients still experience disease relapse, and others fail to respond at all, thus highlighting the need to better understand factors that influence the efficacy of antitumor immune responses. At the heart of antitumor immunity are dendritic cells (DCs), an innate population of cells that function as critical regulators of immune tolerance and activation. As such, DCs have the potential to serve as important targets and delivery agents of cancer immunotherapies. Even immunotherapies that do not directly target or employ DCs, such as checkpoint blockade therapy and adoptive cell transfer therapy, are likely to rely on DCs that shape the quality of therapy-associated antitumor immunity. Therefore, understanding factors that regulate the function of tumor-associated DCs is critical for optimizing both current and future immunotherapeutic strategies for treating melanoma. To this end, this review focuses on advances in our understanding of DC function in the context of melanoma, with particular emphasis on (1) the role of immunogenic cell death in eliciting tumor-associated DC activation, (2) immunosuppression of DC function by melanoma-associated factors in the tumor microenvironment, (3) metabolic constraints on the activation of tumor-associated DCs, and (4) the role of the microbiome in shaping the immunogenicity of DCs and the overall quality of anti-melanoma immune responses they mediate. Additionally, this review highlights novel DC-based immunotherapies for melanoma that are emerging from recent progress in each of these areas of investigation, and it discusses current issues and questions that will need to be addressed in future studies aimed at optimizing the function of melanoma-associated DCs and the antitumor immune responses they direct against this cancer.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, United States
| |
Collapse
|
37
|
Duffy MR, Fisher KD, Seymour LW. Making Oncolytic Virotherapy a Clinical Reality: The European Contribution. Hum Gene Ther 2017; 28:1033-1046. [PMID: 28793793 DOI: 10.1089/hum.2017.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Oncolytic viruses (OVs) are quickly moving toward the forefront of modern medicines. The reward for the decades of research invested into developing viral platforms that selectively replicate in and lyse tumor cells while sparking anticancer adaptive immunity is presenting in the form of durable therapeutic responses. While this has certainly been a concerted global effort, in this review for the 25th anniversary of the European Society of Gene and Cell Therapy, we focus on the contributions made by European researchers. Research centers across Europe have held central roles in advancing OVs, from the earliest reports of coincidental viral infections leading to antitumor efficacy, to advanced mechanistic studies, and now through Phase I-III trials to imminent regulatory approvals. While challenges still remain, with limitations in preclinical animal models, antiviral immune clearance, and manufacture restrictions enforced by poor viral yields in certain cases, the field has come a very long way in recent years. Thoughtful mechanistic integration of OVs with standard of care strategies and other newly approved therapies should provide potent novel approaches. Combination with immunotherapeutic regimes holds significant promise, and the ability to arm the viral platform with therapeutic proteins for localized expression at the tumor site provides an opportunity for creating highly effective synergistic treatments and brings a new age of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Margaret R Duffy
- Department of Oncology, University of Oxford , Oxford, United Kingdom
| | - Kerry D Fisher
- Department of Oncology, University of Oxford , Oxford, United Kingdom
| | - Len W Seymour
- Department of Oncology, University of Oxford , Oxford, United Kingdom
| |
Collapse
|