1
|
Huang Y, Luo L, Xu Y, Li J, Wu Z, Zhao C, Wen J, Jiang P, Zhu H, Wang L, Chen Y, Yang T, Hu J. UHRF1-mediated epigenetic reprogramming regulates glycolysis to promote progression of B-cell acute lymphoblastic leukemia. Cell Death Dis 2025; 16:351. [PMID: 40301374 PMCID: PMC12041315 DOI: 10.1038/s41419-025-07532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 05/01/2025]
Abstract
The prognosis for adult B-cell acute lymphoblastic leukemia remains unfavorable, especially in the context of relapsed and refractory disease. Exploring the molecular mechanisms underlying disease progression holds significant promise for improving clinical outcomes. In this investigation, utilizing single-cell transcriptome sequencing technology, we discerned a correlation between Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) and the progression of B-cell acute lymphoblastic leukemia. Our findings reveal a significant upregulation of UHRF1 in cases of relapsed and refractory B-cell acute lymphoblastic leukemia, thereby serving as a prognostic indicator for poor outcomes. Both deletion of UHRF1 or overexpression of its downstream target secreted frizzled-related protein 5 (SFRP5) resulted in the inhibition of leukemia cell proliferation, promoting cellular apoptosis and induction of cell cycle arrest. Our results showed that UHRF1 employs methylation modifications to repress the expression of SFRP5, consequently inducing the WNT5A-P38 MAPK-HK2 signaling axis, resulting in the augmentation of lactate, the critical metabolic product of aerobic glycolysis. Furthermore, we identified UM164 as a targeted inhibitor of UHRF1 that substantially inhibits P38 protein phosphorylation, downregulates HK2 expression, and reduces lactate production. UM164 also demonstrated antileukemic activity both in vitro and in vivo. In summary, our investigation revealed the molecular mechanisms of epigenetic and metabolic reprogramming in relapsed and refractory B-cell acute lymphoblastic leukemia and provides potential targeted therapeutic strategies to improve its inadequate prognosis. The schematic model showed the regulator network of UHRF1-SFRP5-WNT5A-P38 MAPK-HK2 in B-ALL.
Collapse
Affiliation(s)
- Yan Huang
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Luting Luo
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Yangqi Xu
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Jiazheng Li
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, P.R. China
| | - Zhengjun Wu
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Chenxing Zhao
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Jingjing Wen
- Department of Lymphoma, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, P.R. China
| | - Peifang Jiang
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, P.R. China
| | - Haojie Zhu
- The Second Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Lingyan Wang
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Yanxin Chen
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.
| | - Ting Yang
- The Second Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, P.R. China.
| | - Jianda Hu
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China.
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China.
| |
Collapse
|
2
|
Nwabo Kamdje AH, Dongmo Fogang HP, Mimche PN. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1426454. [PMID: 39308891 PMCID: PMC11412843 DOI: 10.3389/fmmed.2024.1426454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Hervet Paulain Dongmo Fogang
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Patrice N. Mimche
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Šestáková Š, Cerovská E, Šálek C, Kundrát D, Ježíšková I, Folta A, Mayer J, Ráčil Z, Cetkovský P, Remešová H. A validation study of potential prognostic DNA methylation biomarkers in patients with acute myeloid leukemia using a custom DNA methylation sequencing panel. Clin Epigenetics 2022; 14:22. [PMID: 35148810 PMCID: PMC8832751 DOI: 10.1186/s13148-022-01242-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple studies have reported the prognostic impact of DNA methylation changes in acute myeloid leukemia (AML). However, these epigenetic markers have not been thoroughly validated and therefore are still not considered in clinical practice. Hence, we aimed to independently verify results of selected studies describing the relationship between DNA methylation of specific genes and their prognostic potential in predicting overall survival (OS) and event-free survival (EFS). RESULTS Fourteen studies (published 2011-2019) comprising of 27 genes were subjected to validation by a custom NGS-based sequencing panel in 178 newly diagnosed non-M3 AML patients treated by 3 + 7 induction regimen. The results were considered as successfully validated, if both the log-rank test and multivariate Cox regression analysis had a p-value ≤ 0.05. The predictive role of DNA methylation was confirmed for three studies comprising of four genes: CEBPA (OS: p = 0.02; EFS: p = 0.03), PBX3 (EFS: p = 0.01), LZTS2 (OS: p = 0.05; EFS: p = 0.0003), and NR6A1 (OS: p = 0.004; EFS: p = 0.0003). For all of these genes, higher methylation was an indicator of longer survival. Concurrent higher methylation of both LZTS2 and NR6A1 was highly significant for survival in cytogenetically normal (CN) AML group (OS: p < 0.0001; EFS: p < 0.0001) as well as for the whole AML cohort (OS: p = 0.01; EFS < 0.0001). In contrast, for two studies reporting the poor prognostic effect of higher GPX3 and DLX4 methylation, we found the exact opposite, again linking higher GPX3 (OS: p = 0.006; EFS: p < 0.0001) and DLX4 (OS: p = 0.03; EFS = 0.03) methylation to a favorable treatment outcome. Individual gene significance levels refer to the outcomes of multivariate Cox regression analysis. CONCLUSIONS Out of twenty-seven genes subjected to DNA methylation validation, a prognostic role was observed for six genes. Therefore, independent validation studies are necessary to reveal truly prognostic DNA methylation changes and to enable the introduction of these promising epigenetic markers into clinical practice.
Collapse
Affiliation(s)
- Šárka Šestáková
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ela Cerovská
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Cyril Šálek
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dávid Kundrát
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Ivana Ježíšková
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Adam Folta
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jiří Mayer
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Zdeněk Ráčil
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Petr Cetkovský
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Remešová
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.
| |
Collapse
|
4
|
Kheirandish S, Eshghyar N, Yazdani F, Amini Shakib P, Hosseini-Bereshneh A, Nouri Z, Kheiran-Dish A, Karami F. Methylation Assessment of Two DKK2 and DKK4 Genes in Oral Squamous Cell Carcinoma Patients. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1947-1953. [PMID: 33346226 PMCID: PMC7719650 DOI: 10.18502/ijph.v49i10.4698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most important types of oral malignancies. DKK gene family members as well as DKK2/4 have critical roles in regulation of Wnt signaling as one of the main determining pathway in oral carcinogenesis. This study aimed to identify promoter methylation status of DKK2/4 genes to provide possible biomarkers for early detection and treatment of OSCC patients. Methods: A case control study was performed on 31 fresh tissues obtained from oral cavity of patients affected by OSCC and 31 fresh corresponding tissues from normal healthy controls in Tehran and, between the years of 2016–2018. Purified DNA from tissue samples was subjected to bisulfite treatment and then methylation specific polymerase chain reaction (MSP-PCR) was carried out on treated DNA samples. Results: DKK4 promoter was methylated in none of OSCC samples while it was methylated in 16.1% of healthy controls. 16.1% of OSCC samples were detected to be semimethylated and 22.6% of healthy normal samples were methylated for DKK2 promoter gene. Meaningful difference was found in DKK4 promoter methylation among OSCC patients and healthy controls. Significant correlation was found between DKK4 promoter methylation and tumor grade. The age of all enrolled samples was demonstrated to have strong effect on promoter methylation of studied genes. Conclusion: Hypomethylation of DKK2 and DKK4 genes in higher grades of OSCC samples may indicate the pivotal role of their expression in tumor cells invasion and progression through modulation of Wnt signaling pathway. Further study required to determine simultaneous expression of those genes and Wnt signaling elements at mRNA and protein levels.
Collapse
Affiliation(s)
- Sedigheh Kheirandish
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nosratollah Eshghyar
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Yazdani
- Department of Otorhinolaryngology, Amir A'lam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouyan Amini Shakib
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hosseini-Bereshneh
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Nouri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Kheiran-Dish
- Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Karami
- Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Baharudin R, Tieng FYF, Lee LH, Ab Mutalib NS. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers (Basel) 2020; 12:E445. [PMID: 32074995 PMCID: PMC7072595 DOI: 10.3390/cancers12020445] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Secreted frizzled-related protein 1 (SFRP1) is a gene that belongs to the secreted glycoprotein SFRP family. SFRP1 has been classified as a tumor suppressor gene due to the loss of expression in various human cancers, which is mainly attributed by epigenetic inactivation via DNA methylation or transcriptional silencing by microRNAs. Epigenetic silencing of SFRP1 may cause dysregulation of cell proliferation, migration, and invasion, which lead to cancer cells formation, disease progression, poor prognosis, and treatment resistance. Hence, restoration of SFRP1 expression via demethylating drugs or over-expression experiments opens the possibility for new cancer therapy approach. While the role of SFRP1 as a tumor suppressor gene is well-established, some studies also reported the possible oncogenic properties of SFRP1 in cancers. In this review, we discussed in great detail the dual roles of SFRP1 in cancers-as tumor suppressor and tumor promoter. The epigenetic regulation of SFRP1 expression will also be underscored with additional emphasis on the potentials of SFRP1 in modulating responses toward chemotherapeutic and epigenetic-modifying drugs, which may encourage the development of novel drugs for cancer treatment. We also present findings from clinical trials and patents involving SFRP1 to illustrate its clinical utility, extensiveness of each research area, and progression toward commercialization. Lastly, this review provides directions for future research to advance SFRP1 as a promising cancer biomarker.
Collapse
Affiliation(s)
- Rashidah Baharudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| | - Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Nurul Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| |
Collapse
|
6
|
Xu ZJ, Ma JC, Zhou JD, Wen XM, Yao DM, Zhang W, Ji RB, Wu DH, Tang LJ, Deng ZQ, Qian J, Lin J. Reduced protocadherin17 expression in leukemia stem cells: the clinical and biological effect in acute myeloid leukemia. J Transl Med 2019; 17:102. [PMID: 30922328 PMCID: PMC6440111 DOI: 10.1186/s12967-019-1851-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Leukemia stem cell (LSC)-enriched genes have been shown to be highly prognostic in acute myeloid leukemia (AML). However, the prognostic value of tumor suppressor genes (TSGs) that are repressed early in LSC remains largely unknown. Methods We compared the public available expression/methylation profiling data of LSCs with that of hematopoietic stem cells (HSCs), in order to identify potential tumor suppressor genes in LSC. The prognostic relevance of PCDH17 was analyzed on a cohort of 173 AML patients from The Cancer Genome Atlas (TCGA), and further validated in three independent cohorts (n = 339). Results We identified protocadherin17 (PCDH17) and demonstrated that it was significantly down-regulated and hypermethylated in LSCs compared with HSCs. Our analyses of primary AML patient samples also confirmed these deregulations. Clinically, low PCDH17 expression was associated with female sex (P = 0.01), higher WBC (P < 0.0001), higher percentages of blasts in bone marrow (BM) and peripheral blood (PB) (P = 0.04 and < 0.001, respectively), presence of FLT3-internal tandem duplications (P = 0.002), mutated NPM1 (P = 0.02), and wild-type TP53 (P = 0.005). Moreover, low PCDH17 expression predicted worse overall survival (OS) in four independent cohorts as well as in the molecularly defined subgroups of AML patients. In multivariable analyses, low PCDH17 expression retained independent prognostic value for OS. Biologically, PCDH17 expression-associated gene signatures were characterized by deregulations of EMT- and Wnt pathway-related genes. Conclusions PCDH17 gene was silenced by DNA methylation in AML. Low PCDH17 expression is associated with distinct clinical and biological features and improves risk stratification in patients with AML. Electronic supplementary material The online version of this article (10.1186/s12967-019-1851-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Dong-Ming Yao
- Department of Clinical Laboratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, People's Republic of China
| | - Wei Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Run-Bi Ji
- Department of Clinical Laboratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of Kunshan City, Kunshan, 215300, Jiangsu, People's Republic of China
| | - Li-Juan Tang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Fetisov TI, Lesovaya EA, Yakubovskaya MG, Kirsanov KI, Belitsky GA. Alterations in WNT Signaling in Leukemias. BIOCHEMISTRY (MOSCOW) 2019; 83:1448-1458. [PMID: 30878020 DOI: 10.1134/s0006297918120039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT/β-catenin signaling pathway plays an important role in the differentiation and proliferation of hematopoietic cells. In recent years, special attention has been paid to the role of impairments in the WNT signaling pathway in pathogenesis of malignant neoplasms of the hematopoietic system. Disorders in the WNT/β-catenin signaling in leukemias identified to date include hypersensitivity to the WNT ligands, epigenetic repression of WNT antagonists, overexpression of WNT ligands, impaired β-catenin degradation in the cytoplasm, and changes in the activity of the TCF/Lef transcription factors. At the molecular level, these impairments involve overexpression of the FZD protein, hypermethylation of the SFRP, DKK, WiF, Sox, and CXXC gene promoters, overexpression of Lef1 and plakoglobin, mutations in GSK3β, and β-catenin phosphorylation by the BCR-ABL kinase. This review is devoted to the systematization of these data.
Collapse
Affiliation(s)
- T I Fetisov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - E A Lesovaya
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,Pavlov Ryazan State Medical University, Ryazan, 390026, Russia
| | - M G Yakubovskaya
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - K I Kirsanov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - G A Belitsky
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
| |
Collapse
|
8
|
Pehlivan M, Çalışkan C, Yüce Z, Sercan HO. Secreted Wnt antagonists in leukemia: A road yet to be paved. Leuk Res 2018; 69:24-30. [PMID: 29625321 DOI: 10.1016/j.leukres.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/21/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022]
Abstract
Wnt signaling has been a topic of research for many years for its diverse and fundamental functions in physiological (such as embryogenesis, organogenesis, proliferation, tissue repair and cellular differentiation) and pathological (carcinogenesis, congenital/genetic diseases, and tissue degeneration) processes. Wnt signaling pathway aberrations are associated with both solid tumors and hematological malignancies. Unregulated Wnt signaling observed in malignancies may be due to a wide spectrum of abnormalities, from mutations in the genes of key players to epigenetic modifications of Wnt antagonists. Of these, Wnt antagonists are gaining significant attention for their potential of being targets for treatment and inhibition of Wnt signaling. In this review, we discuss and summarize the significance of Wnt signaling antagonists in the pathogenesis and treatment of hematological malignancies.
Collapse
Affiliation(s)
- Melek Pehlivan
- Vocational School of Health Services, Izmir Katip Celebi University, Izmir, Turkey.
| | - Ceyda Çalışkan
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology & Genetics, Izmir, Turkey.
| | - Zeynep Yüce
- Dokuz Eylul University Faculty of Medicine, Department of Medical Biology and Genetics, Izmir, Turkey.
| | - Hakki Ogun Sercan
- Dokuz Eylul University Faculty of Medicine, Department of Medical Biology and Genetics, Izmir, Turkey.
| |
Collapse
|