1
|
Terry J. Gene Expression Patterns in a Congenital Neurocristic Hamartoma With Multiple Proliferative Nodules. J Cutan Pathol 2025; 52:85-91. [PMID: 39504946 PMCID: PMC11710900 DOI: 10.1111/cup.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Cutaneous neurocristic hamartoma (CNH) is a rare lesion composed of neural crest derivatives, thought to arise from aberrant migration and differentiation of neural crest cells. Recognition of CNH may be difficult, as they may resemble giant congenital nevus, and development of proliferative nodules (PNs) may raise concern for malignant transformation. Assessment of gene expression in CNH and PNs derived from CNH may offer insight into pathogenesis and suggest clinically useful biomarkers to identify these entities. This study investigates gene expression patterns in a congenital CNH and three separate PNs derived from that CNH with giant congenital nevus and malignant melanoma as comparator groups. Comparison of PN to CNH demonstrates downregulation of WIF1, which encodes as a tumor suppressor, and loss of WIF1 expression might explain the progression from CNH to PN. Comparison of gene expression in PN and CNH with giant congenital nevus and malignant melanoma shows relative overexpression of IGF2 and H19 in CNH and PN, suggesting that abnormal imprinting and IGF2 overexpression may have integral functions in the foundation of CNH.
Collapse
Affiliation(s)
- Jefferson Terry
- Department of PathologyBritish Columbia Children's and Women's HospitalsVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Wang R, Zhu XY, Wang Y. Knowledge graph and frontier trends in melanoma-associated ncRNAs: a bibliometric analysis from 2006 to 2023. Front Oncol 2024; 14:1439324. [PMID: 39659781 PMCID: PMC11628868 DOI: 10.3389/fonc.2024.1439324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024] Open
Abstract
Objectives Malignant melanoma (MM) is a highly malignant skin tumor. Although research on non-coding RNAs (ncRNAs) of MM has advanced swiftly in recent years, no specific bibliometric analyses have been conducted on this topic. The present study aims to summarize the knowledge graphs and frontier trends and to provide new perspectives and direction of collaboration for researchers. Method Research data on melanoma and ncRNA published from January 1, 2006 to October 9, 2023 were retrieved and extracted from Web of Science. R Studio (Version 4.3.1), Scimago Graphica (Version 1.0.36), VOSviewer version (1.6.19), and Citespace (6.2.4R) were used to analyze the publications, countries, journals, institutions, authors, keywords, references, and other relevant data and to build collaboration network graphs and co-occurrence network graphs accordingly. Results A total of 1,222 articles were retrieved, involving 4,894 authors, 385 journals, 43,220 references, 2413 keywords, and 1,651 institutions in 47 countries. The average annual growth rate in the number of articles was 25.02% from 2006 to 2023; among all the journals, Plos One had the highest number of publications and citations, which are 42 publications and 2,228 citations, respectively. Chinese researchers were the most prolific publishers in this field, having published a total of 657 articles, among which 42 were published by Shanghai Jiao Tong University, which was the most productive institution. In recent years, the most explored keywords included long non-coding RNAs, immunotherapy, and exosm. According to the timeline chart of reference co-citation, "functional role" has been the most explored hotspot since 2015, and human cancer is a newly emerged hotspot after 2021. Conclusion Through a bibliometric analysis, this study included all publications on ncRNAs and melanoma that were published in English from 2006 to 2023 in Web of Science to analyze the trends in the number of publications, international research focuses, and the direction of collaboration. The results of this study may provide information on knowledge graph, frontier trends and identify research topics in melanoma. More current research proved that ncRNA plays a crucial role in the biological behavior of melanoma including proliferation, invasion, metastasis, drug resistance, etc. With the development of research on ncRNA and melanoma, ncRNA may great potential in development of early diagnosis, targeted therapy and efficacy evaluation in the future. The results of this study also provide new perspectives and research partners for researchers in this field.
Collapse
Affiliation(s)
- Ru Wang
- Department of Pediatrics, Xinzhou District People’s Hospital, Wuhan, Hubei, China
| | - Xiao-yan Zhu
- Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yi Wang
- The Fifth People’s Hospital of Hainan Province, Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Liu Y, Huang S, Dong G, Hou C, Zhao Y, Zhang D. Computational identification of DNA damage-relevant lncRNAs for predicting therapeutic efficacy and clinical outcomes in cancer. Comput Biol Med 2024; 171:108107. [PMID: 38412692 DOI: 10.1016/j.compbiomed.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES The role of long non-coding RNAs (lncRNAs) in cancer treatment, particularly in modulating DNA repair programs, is an emerging field that warrants systematic exploration. This study aimed to systematically identify the lncRNA regulators that potentially regulate DNA damage response (DDR). METHODS Using genome-wide mRNA and lncRNA expression profiles of the same tumor patients, we proposed a novel computational framework. This framework performed Gene Set Variation Analysis to calculate DDR pathway enrichment score, which relies on weighting by tumor purity to obtain DDR activity score for each patient. Then, an in-depth differential expression profiling was conducted to identify pathway activity lncRNAs between high- and low-activity groups, utilizing a bootstrap-based randomization method. RESULTS We comprehensively charted the landscape of DDR-relevant lncRNAs across 23 epithelial-based cancer types. Its effectiveness was validated by assessing the consistency of these lncRNAs within various datasets of the same cancer type (hypergeometric test P < 0.001), examining the expression perturbation of these lncRNAs in response to treatment and demonstrating its application in prioritizing clinically-related lncRNAs. Furthermore, leveraging 820 epithelial ovarian cancer patients from four public datasets, we applied these lncRNAs identified by DDRLnc to establish and validate a risk stratification model to evaluate the benefits of platinum-based adjuvant chemotherapy for the improvement of clinical treatment outcomes. CONCLUSIONS Comprehensive pan-cancer analysis illustrates the utility of computational framework in identifying potentially lncRNAs involved in DDR, thereby offering novel insights into the complex realm of cancer research, and it will become a valuable tool for identifying potential therapeutic targets for cancer.
Collapse
Affiliation(s)
- Yixin Liu
- Modern Education Technology Center, Harbin Medical University, Harbin, 150080, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Chang Hou
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yuming Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150007, China.
| |
Collapse
|
4
|
Beatriz Cristina Biz T, Carolina de Sousa CS, Frank John S, Miriam Galvonas J. LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. RNA Biol 2024; 21:81-93. [PMID: 39498940 PMCID: PMC11540095 DOI: 10.1080/15476286.2024.2421672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
Collapse
Affiliation(s)
- Tonin Beatriz Cristina Biz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Slack Frank John
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jasiulionis Miriam Galvonas
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Zhang R, Zeng Y, Deng JL. Long non-coding RNA H19: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2023; 23:1425-1440. [PMID: 36484927 DOI: 10.1007/s10238-022-00947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs play important roles in cellular functions and disease development. H19, as a long non-coding RNA, is pervasively over-expressed in almost all kinds of human malignant tumors. Although many studies have reported that H19 is closely associated with tumor cell proliferation, apoptosis, invasion, metastasis, and chemoresistance, the role and mechanism of H19 in gene regulation and tumor development are largely unclear. In this review, we summarized the recent progress in the study of the major functions and mechanisms of H19 lncRNA in cancer development and progression. H19 possesses both oncogenic and tumor-suppressing activities, presumably through regulating target gene transcription, mRNA stability and splicing, and competitive inhibition of endogenous RNA degradation. Studies indicate that H19 may involve in cell proliferation and apoptosis, tumor initiation, migration, invasion, metastasis and chemoresistance and may serve as a potential biomarker for early diagnosis, prognosis, and novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, People's Republic of China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410008, People's Republic of China
| | - Jun-Li Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
6
|
Natarelli N, Boby A, Aflatooni S, Tran JT, Diaz MJ, Taneja K, Forouzandeh M. Regulatory miRNAs and lncRNAs in Skin Cancer: A Narrative Review. Life (Basel) 2023; 13:1696. [PMID: 37629553 PMCID: PMC10455148 DOI: 10.3390/life13081696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant regulatory role in the pathogenesis of skin cancer, despite the fact that protein-coding genes have generally been the focus of research efforts in the field. We comment on the actions of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the current review with an eye toward potential therapeutic treatments. LncRNAs are remarkably adaptable, acting as scaffolding, guides, or decoys to modify key signaling pathways (i.e., the Wnt/β-catenin pathway) and gene expression. As post-transcriptional gatekeepers, miRNAs control gene expression by attaching to messenger RNAs and causing their degradation or suppression during translation. Cell cycle regulation, cellular differentiation, and immunological responses are all affected by the dysregulation of miRNAs observed in skin cancer. NcRNAs also show promise as diagnostic biomarkers and prognostic indicators. Unraveling the complexity of the regulatory networks governed by ncRNAs in skin cancer offers unprecedented opportunities for groundbreaking targeted therapies, revolutionizing the landscape of dermatologic care.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Aleena Boby
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Jasmine Thuy Tran
- School of Medicine, University of Indiana, Indianapolis, IN 46202, USA;
| | | | - Kamil Taneja
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mahtab Forouzandeh
- Department of Dermatology, University of Florida, Gainesville, FL 32606, USA
| |
Collapse
|
7
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G, Gazouli M. The Role of EMT-Related lncRNAs in Ovarian Cancer. Int J Mol Sci 2023; 24:10079. [PMID: 37373222 PMCID: PMC10298523 DOI: 10.3390/ijms241210079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers worldwide; late diagnosis and drug resistance are two major factors often responsible for high morbidity and treatment failure. Epithelial-to-mesenchymal transition (EMT) is a dynamic process that has been closely linked with cancer. Long non-coding RNAs (lncRNAs) have been also associated with several cancer-related mechanisms, including EMT. We conducted a literature search in the PubMed database in order to sum up and discuss the role of lncRNAs in regulating OC-related EMT and their underlying mechanisms. Seventy (70) original research articles were identified, as of 23 April 2023. Our review concluded that the dysregulation of lncRNAs is highly associated with EMT-mediated OC progression. A comprehensive understanding of lncRNAs' mechanisms in OC will help in identifying novel and sensitive biomarkers and therapeutic targets for this malignancy.
Collapse
Affiliation(s)
| | - Marios Papadimitriou
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- National Organization for Medicines (EOF), 15562 Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece;
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
8
|
Aprile M, Costa V, Cimmino A, Calin GA. Emerging role of oncogenic long noncoding RNA as cancer biomarkers. Int J Cancer 2023; 152:822-834. [PMID: 36082440 DOI: 10.1002/ijc.34282] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The view of long noncoding RNAs as nonfunctional "garbage" has been definitely outdated by the large body of evidence indicating this class of ncRNAs as "golden junk", especially in precision oncology. Indeed, in light of their oncogenic role and the higher expression in multiple cancer types compared with paired adjacent tissues, the clinical interest for lncRNAs as diagnostic and/or prognostic biomarkers has been rapidly increasing. The emergence of large-scale sequencing technologies, their subsequent diffusion even in small research and clinical centers, the technological advances for the detection of low-copy lncRNAs in body fluids, coupled to the huge reduction of operating costs, have nowadays made possible to rapidly and comprehensively profile them in multiple tumors and large cohorts. In this review, we first summarize some relevant data about the oncogenic role of well-studied lncRNAs having a clinical relevance. Then, we focus on the description of their potential use as diagnostic/prognostic biomarkers, including an updated overview about licensed patents or clinical trials on lncRNAs in oncology.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Amelia Cimmino
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - George Adrian Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Zhou W, Xu X, Cen Y, Chen J. The role of lncRNAs in the tumor microenvironment and immunotherapy of melanoma. Front Immunol 2022; 13:1085766. [PMID: 36601121 PMCID: PMC9806239 DOI: 10.3389/fimmu.2022.1085766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is one of the most lethal tumors with highly aggressive and metastatic properties. Although immunotherapy and targeted therapy have certain therapeutic effects in melanoma, a significant proportion of patients still have drug resistance after treatment. Recent studies have shown that long noncoding RNAs (lncRNAs) are widely recognized as regulatory factors in cancer. They can regulate numerous cellular processes, including cell proliferation, metastasis, epithelial-mesenchymal transition (EMT) progression and the immune microenvironment. The role of lncRNAs in malignant tumors has received much attention, whereas the relationship between lncRNAs and melanoma requires further investigation. Our review summarizes tumor suppressive and oncogenic lncRNAs closely related to the occurrence and development of melanoma. We summarize the role of lncRNAs in the immune microenvironment, immunotherapy and targeted therapy to provide new targets and therapeutic methods for clinical treatment.
Collapse
|
10
|
Deng J, Li Y, Song J, Zhu F. Regulation of the TUG1/miR‑145‑5p/SOX2 axis on the migratory and invasive capabilities of melanoma cells. Exp Ther Med 2022; 24:599. [PMID: 35949341 PMCID: PMC9353493 DOI: 10.3892/etm.2022.11535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the most prevalent malignancy of cutaneous carcinomas. Taurine-upregulated gene 1 (TUG1), a lncRNA, is a pivotal regulator of cutaneous malignancies. The present study aimed to investigate the impact and possible mechanisms of action of TUG1 behind the progression of melanomas. Reverse transcription-quantitative PCR was conducted to detect the expression levels of TUG1, microRNA (miR)-145-5p and SOX2 in melanoma tissues and cell lines. Cell Counting Kit-8 (CCK-8) assays were performed to measure the proliferative ability of melanoma cells and transwell assays were used to examine the migration and invasion of melanoma cells. Dual luciferase reporter and RNA immunoprecipitation (RIP) assays were utilized to identify the interactions among TUG1, miR-145-5p and SOX2. Western blotting and immunohistochemical assays were performed to determine the expression profile of SOX2. The impact of TUG1 on melanoma tumorigenesis was assessed using tumorigenicity assays. TUG1 expression levels were elevated in melanoma tumor tissues and cell lines. Reduced TUG1 expression levels significantly inhibited the proliferative, migratory and invasive abilities of melanoma cells. The expression levels of miR-145-5p were decreased in melanoma tumor tissues and cell lines. TUG1 directly targeted miR-145-5p and downregulated miR-145-5p. Upregulation of TUG1 counteracted the promotion of the proliferative, migratory and invasive abilities of melanoma cells induced by the overexpression of miR-145-5p. SOX2 was a target of miR-145-5p and its expression was negatively regulated by miR-145-5p, while positively regulated by TUG1. TUG1 regulated SOX2 expression through sponging miR-145-5p. Silencing of TUG1 also inhibited melanoma tumorigenesis in mice. In conclusion, the TUG1/miR-145-5p/SOX2 axis regulated the migration and invasion of melanoma cells.
Collapse
Affiliation(s)
- Jiabin Deng
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Yinqiu Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiaqian Song
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Fei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
11
|
Sun R, Liu Y, Lei C, Tang Z, Lu L. A novel 7 RNA-based signature for prediction of prognosis and therapeutic responses of wild-type BRAF cutaneous melanoma. Biol Proced Online 2022; 24:7. [PMID: 35751033 PMCID: PMC9233353 DOI: 10.1186/s12575-022-00170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background The prognosis of wild-type BRAF cutaneous melanoma (WT Bf-CM) patients remains poor due to the lack of therapeutic options. However, few studies have investigated the factors contributing to the prognosis of WT Bf-CM patients. Methods In this paper, we proposed and validated a novel 7-RNA based signature to predict the prognosis of WT Bf-CM by analyzing the information from TCGA database. Results Dependence of this signature to other clinical factors were verified and a nomogram was also drawn to promote its application in clinical practice. Functional analysis suggested that the predictive function of this signature might attribute to the prediction of the up-regulation of RNA splicing, transcription, and cellular proliferation in the high-risk group, which have been demonstrated to be linked to malignancy of cancer. Moreover, functional analysis and therapy response analysis supported that the prognosis is highly related to PI3K/Akt/mTOR pathway among WT Bf-CM patients. Conclusion Collectively, this study will provide a preliminary bioinformatics evidence for the molecular mechanism and potential drug targets that could improving WT Bf-CM prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00170-2.
Collapse
Affiliation(s)
- Ruizheng Sun
- Department of Dermatology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 41008, Hunan, China.,Clinical Medicine Eight-Year Program, Central South University, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaozhong Liu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cheng Lei
- Clinical Medicine Eight-Year Program, Central South University, Changsha, China
| | - Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 41008, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 41008, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
12
|
Olabayo Olatubosun M, Abubakar MB, Batiha GES, Malami I, Ibrahim KG, Abubakar B, Bello MB, Alexiou A, Imam MU. LncRNA SNHG15: A potential therapeutic target in the treatment of colorectal cancer. Chem Biol Drug Des 2022; 101:1138-1150. [PMID: 35191201 DOI: 10.1111/cbdd.14036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
The global burden of colorectal cancer (CRC) is increasing annually. CRC could develop from genetic and phenotypic factors involving changes in gene expression. Incredibly, the human genome transcribes into non-coding RNAs, among which long non-coding RNAs (lncRNAs) signify the most crucial part of the transcriptome in multicellular organisms. lncRNAs affect gene expression at multiple levels, from transcription to protein localization and stability. Recent studies have implicated lncRNA small nucleolar RNA host gene 15 (SNHG15) in cancers occurrence and progression. Previously, an indication suggests SNHG15 overexpression triggers proliferation, metastasis, and impedes apoptosis in CRC. Further, through its activity of binding micro-RNAs, lncRNA SNHG15 modulates genes associated with CRC progression and promotes CRC resistance to chemotherapeutic drugs. Here we reviewed recent findings on the various mechanisms and roles of lncRNA SNHG15 implicated in CRC tumorigenesis. We further highlight how SNHG15 plays a vital role in regulating critical pathways linked to the development and progression of CRC. Finally, we highlight how SNHG15 can be modulated for CRC treatments and the various therapeutic strategies to be implored when targeting SNHG15 in the context of CRC treatments. Findings from these studies present SNHG15 as a potential therapeutic target for preventing and treating CRC.
Collapse
Affiliation(s)
- Mutolib Olabayo Olatubosun
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria.,Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Wien, Austria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| |
Collapse
|
13
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
14
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
15
|
Yang J, Qi M, Fei X, Wang X, Wang K. LncRNA H19: A novel oncogene in multiple cancers. Int J Biol Sci 2021; 17:3188-3208. [PMID: 34421359 PMCID: PMC8375239 DOI: 10.7150/ijbs.62573] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a series of non-coding RNAs that lack open reading frameworks. Accumulating evidence suggests important roles for lncRNAs in various diseases, including cancers. Recently, lncRNA H19 (H19) became a research focus due to its ectopic expression in human malignant tumors, where it functioned as an oncogene. Subsequently, H19 was confirmed to be involved in tumorigenesis and malignant progression in many tumors and had been implicated in promoting cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. H19 also sequesters some microRNAs, facilitating a multilayer molecular regulatory mechanism. In this review, we summarize the abnormal overexpression of H19 in human cancers, which suggests wide prospects for further research into the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Manlong Qi
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
16
|
METTL14 promotes tumorigenesis by regulating lncRNA OIP5-AS1/miR-98/ADAMTS8 signaling in papillary thyroid cancer. Cell Death Dis 2021; 12:617. [PMID: 34131102 PMCID: PMC8206147 DOI: 10.1038/s41419-021-03891-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022]
Abstract
Background Papillary thyroid cancer (PTC) is the most common type of cancer of the endocrine system. Long noncoding RNAs (lncRNAs) are emerging as a novel class of gene expression regulators associated with tumorigenesis. Through preexisting databases available for differentially expressed lncRNAs in PTC, we uncovered that lncRNA OIP5-AS1 was significantly upregulated in PTC tissues. However, the function and the underlying mechanism of OIP5-AS1 in PTC are poorly understood. Methods Expression of lncRNA OIP5-AS1 and miR-98 in PTC tissue and cells were measured by quantitative real-time PCR (qRT-PCR). And expression of METTL14 and ADAMTS8 in PTC tissue and cells were measured by qRT-PCR and western blot. The biological functions of METTL14, OIP5-AS1, and ADAMTS8 were examined using MTT, colony formation, transwell, and wound healing assays in PTC cells. The relationship between METTL14 and OIP5-AS1 were evaluated using RNA immunoprecipitation (RIP) and RNA pull down assay. And the relationship between miR-98 and ADAMTS8 were examined by luciferase reporter assay. For in vivo experiments, a xenograft model was used to investigate the effects of OIP5-AS1 and ADAMTS8 in PTC. Results Functional validation revealed that OIP5-AS1 overexpression promotes PTC cell proliferation, migration/invasion in vitro and in vivo, while OIP5-AS1 knockdown shows an opposite effect. Mechanistically, OIP5-AS1 acts as a target of miR-98, which activates ADAMTS8. OIP5-AS1 promotes PTC cell progression through miR-98/ADAMTS8 and EGFR, MEK/ERK pathways. Furthermore, RIP and RNA pull down assays identified OIP5-AS1 as the downstream target of METTL14. Overexpression of METTL14 suppresses PTC cell proliferation and migration/invasion through inhibiting OIP5-AS1 expression and regulating EGFR, MEK/ERK pathways. Conclusions Collectively, our findings demonstrate that OIP5-AS1 is a METTL14-regulated lncRNA that plays an important role in PTC progression and offers new insights into the regulatory mechanisms underlying PTC development.
Collapse
|
17
|
LncRNA LINC01503 aggravates the progression of cervical cancer through sponging miR-342-3p to mediate FXYD3 expression. Biosci Rep 2021; 40:224893. [PMID: 32432654 PMCID: PMC7286873 DOI: 10.1042/bsr20193371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC), an aggressive malignancy, has a high risk of relapse and death, mainly occurring in females. Accumulating investigations have confirmed the critical role of long noncoding RNAs (lncRNAs) in diverse cancers. LncRNA LINC01503 has been reported as an oncogene in several cancers. Nonetheless, its role and molecular mechanism in CC have not been explored. In the present study, we found that FXYD3 expression was considerably up-regulated in CC tissues and cells. Moreover, FXYD3 deficiency conspicuously hampered cell proliferation and migration while facilitated cell apoptosis in CC cells. Subsequently, molecular mechanism experiments implied that FXYD3 was a downstream target gene of miR-342-3p, and FXYD3 expression was reversely mediated by miR-342-3p. Moreover, we discovered that LINC01503 acted as the endogenous sponge for miR-342-3p. Besides, LINC01503 negatively regulated miR-342-3p expression and positively regulated FXYD3 expression in CC. Rescue assays revealed that LINC01503 depletion-induced repression on CC progression could be partly recovered by miR-342-3p inhibition, and then the co-transfection of sh-FXYD3#1 rescued this effect. Conclusively, LINC01503 aggravated CC progression through sponging miR-342-3p to mediate FXYD3 expression, providing promising therapeutic targets for CC patients.
Collapse
|
18
|
Downregulation of lncRNA H19 sensitizes melanoma cells to cisplatin by regulating the miR-18b/IGF1 axis. Anticancer Drugs 2021; 31:473-482. [PMID: 32265386 DOI: 10.1097/cad.0000000000000888] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (LncRNAs) lncRNA H19 has been shown to be involved in the chemotherapy resistance of cancer cells. However, the role of lncRNA H19 in chemotherapy resistance of melanoma cells remains unknown. Here, we determined lncRNA H19, miR-18b, and insulin-like growth factor 1 (IGF1) expression by utilizing quantitative real-time PCR. Cell proliferation ability and chemosensitivity were assessed by colony formation assay and MTT assay. Flow cytometry assay was applied to detect cell apoptosis. We discovered that lncRNA H19 was upregulated, but miR-18b was downregulated in melanoma tissues and cisplatin (DDP)-resistant melanoma cells. The overall survival for the group with lower lncRNA H19 was significantly better than the group with higher H19. IGF1 mRNA level was higher in melanoma tissues than that in normal tissues. miR-18b expression level A negative correlation was observed between the expression levels of miR-18b, lncRNA H19, and IGF1 mRNA. Functionally, knockdown of lncRNA H19 sensitized resistant A375/DDP and M8/DDP cells to DDP. Silencing lncRNA H19 inhibited colony formation ability and promoted apoptosis of DDP-resistant melanoma cells, which was abrogated by miR-18b inhibition and IGF1 upregulation. Mechanistically, lncRNA H19 directly interacted with miR-18b to regulate its expression. IGF1 was identified as a target of miR-18b. These findings highlight the fact that lncRNA H19 could influence DDP-resistance by modulating the miR-18b/IGF axis in melanoma cells, suggesting a new potential therapeutic target for melanoma patient treatment.
Collapse
|
19
|
Zhang W, Zhou K, Zhang X, Wu C, Deng D, Yao Z. Roles of the H19/microRNA‑675 axis in the proliferation and epithelial‑mesenchymal transition of human cutaneous squamous cell carcinoma cells. Oncol Rep 2021; 45:39. [PMID: 33649811 PMCID: PMC7905556 DOI: 10.3892/or.2021.7990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The long non-coding RNA (lncRNA) H19 and microRNA(miR)-675 were reported to serve an important role in the tumorigenesis and metastasis of numerous cancer types by promoting the epithelial-mesenchymal transition (EMT) process; however, the underlying mechanisms of action of H19 and miR-675 in cutaneous squamous cell carcinoma (cSCC) remain unknown. The mRNA expression levels of H19 and miR-675 were analyzed using reverse transcription-quantitative PCR, and Cell Counting Kit-8, wound healing and Transwell assays were performed to analyze the cell proliferation, migration and invasion of cSCC cells, respectively. The levels of cell apoptosis were also determined using a TUNEL assay. Protein expression levels of p53 and marker proteins related to the EMT process were analyzed using western blotting. In addition, a dual luciferase reporter assay was performed to determine the interactions between H19, miR-675 and p53. The results of the present study revealed that the expression levels of H19 and miR-675 were upregulated in cSCC tissues and cSCC cell lines. The knockdown of H19 or miR-675 expression inhibited cell proliferation, migration and invasion, but induced cell apoptosis. In addition, the expression levels of EMT-related markers were also downregulated. The overexpression of H19 upregulated the expression levels of its predicted target, miR-675, which subsequently promoted the EMT process and downregulated the expression levels of p53. Conversely, the genetic silencing of H19 or miR-675 inhibited proliferation and invasion in SCL1 and A431 cSCC cell lines. In conclusion, the findings of the present study provided novel insight into the potential role of H19 and miR-675 in the development, metastasis and progression of cSCC, which may help the development of treatments for cSCC.
Collapse
Affiliation(s)
- Wenqing Zhang
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Kaili Zhou
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Xue Zhang
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Chenglong Wu
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Dan Deng
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| |
Collapse
|
20
|
De Falco V, Napolitano S, Esposito D, Guerrera LP, Ciardiello D, Formisano L, Troiani T. Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. Int J Mol Sci 2021; 22:1166. [PMID: 33503876 PMCID: PMC7865742 DOI: 10.3390/ijms22031166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is considered a rare tumor, although it is one of the most common cancers in young adults and its incidence has risen in the last decades. Targeted therapy, with BRAF and MEK inhibitors, and immunotherapy revolutionized the treatment of metastatic melanoma but there is still a considerable percentage of patients with primary or acquired resistance to these therapies. Recently, oncology researchers directed their attention at the role of long non-coding RNAs (lncRNAs) in different types of cancers, including melanoma. lncRNAs are RNA transcripts, initially considered "junk sequences", that have been proven to have a crucial role in the fine regulation of physiological and pathological processes of different tissues. Furthermore, they are more expressed in tumors than protein-coding genes, constituting perfect candidates either as biomarkers (diagnostic, prognostic, predictive) or as therapeutic targets. In this work, we reviewed all the literature available for lncRNA in melanoma, elucidating all the potential roles in this tumor.
Collapse
Affiliation(s)
- Vincenzo De Falco
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Stefania Napolitano
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Luigi Pio Guerrera
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Davide Ciardiello
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Teresa Troiani
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| |
Collapse
|
21
|
Safa A, Gholipour M, Dinger ME, Taheri M, Ghafouri-Fard S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp Mol Pathol 2020; 117:104558. [PMID: 33096077 DOI: 10.1016/j.yexmp.2020.104558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) embrace a huge fraction of human transcripts and participate in the pathogenesis of human disorders especially malignant conditions. Malignant melanoma, as the most fatal type of cutaneous malignnacies, is associated with dysregulation of several lncRNAs including PVT1, H19, MALAT1, and CCAT1. Moreover, a portion of lncRNAs are exclusively expressed in melanoma cell lines. Expression levels of several lncRNAs are associated with TNM stage, tumor size and progression of melanoma. Thus, these lncRNAs are regarded as biomarkers for this malignancy. Peripheral transcript levels of a number of lncRNAs, such as PVT1, SNHG5 and SPRY4-IT1, could distinguish melanoma patients from unaffected persons with appropriate sensitivity and specificity values. Moreover, expression levels of numerous lncRNAs in tissue biopsies could differentiate malignant samples from benign samples. Based on the results of both cell line and in vivo studies, lncRNAs regulate critical pathways in the carcinogenesis of melanoma, such as the PI3K/Akt and NF-κB signaling pathways, and are involved in the modulation of response to chemotherapeutic agents. Here we review the existing information on the role of lncRNAs in malignant melanoma.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Yang F, Lei P, Zeng W, Gao J, Wu N. Long Noncoding RNA LINC00173 Promotes the Malignancy of Melanoma by Promoting the Expression of IRS4 Through Competitive Binding to microRNA-493. Cancer Manag Res 2020; 12:3131-3144. [PMID: 32440211 PMCID: PMC7211300 DOI: 10.2147/cmar.s243869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Long intergenic non-protein-coding RNA 173 (LINC00173) plays crucial roles in lung cancer. However, the expression and biological functions of LINC00173 in melanoma have not yet been investigated. In this study, we aimed to characterize the involvement of LINC00173 in melanoma and elucidate its mechanisms of action. Materials and Methods Reverse-transcription quantitative PCR was performed to measure LINC00173 expression in melanoma. A CCK-8 assay, flow cytometry, and migration and invasion assays were applied to examine melanoma cell proliferation, apoptosis, migration, and invasion, respectively. A xenograft tumor experiment was performed to determine the tumorous growth of melanoma cells in vivo. Results We found that LINC00173 was upregulated in melanoma tissues and cell lines. High LINC00173 expression was closely associated with TNM stage, lymph node metastasis, and shorter overall survival of patients with melanoma. Functional assays revealed that LINC00173 downregulation inhibited melanoma cell proliferation, migration, and invasion and induced apoptosis, suggesting that LINC00173 acts as an oncogenic RNA. LINC00173 knockdown retarded the tumorous growth of melanoma cells in vivo. Mechanistically, LINC00173 increased insulin receptor substrate 4 (IRS4) expression by sponging microRNA-493 (miR-493), thereby acting as a competing endogenous RNA. The effects of LINC00173 knockdown on the malignant phenotype of melanoma cells were reversed by overexpression of IRS4 or knockdown of miR-493. Conclusion The LINC00173–miR-493–IRS4 pathway regulates melanoma characteristics by increasing the expression of IRS4 via competitive binding of LINC00173 to miR-493, suggesting that this pathway is a potential target for the diagnosis, prognosis, and/or treatment of melanoma.
Collapse
Affiliation(s)
- Fan Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Pengzhen Lei
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710048, People's Republic of China
| | - Jianwu Gao
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Na Wu
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| |
Collapse
|
23
|
Yu H, Li S, Wu SX, Huang S, Li S, Ye L. The prognostic value of long non-coding RNA H19 in various cancers: A meta-analysis based on 15 studies with 1584 patients and the Cancer Genome Atlas data. Medicine (Baltimore) 2020; 99:e18533. [PMID: 31914026 PMCID: PMC6959945 DOI: 10.1097/md.0000000000018533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recent studies have shown that long noncoding RNA (lncRNA) H19 is aberrantly expressed in various cancers. However, the prognostic significance of H19 in cancer patients remains to be elucidated. Here, we designed and conducted a meta-analysis to evaluate the prognostic value of this lncRNA for malignant solid neoplasms. METHODS Relevant publications were collected from PubMed, Cochrane Library, Web of Science, and Embase databases. The relevant survival data of patients with H19-associated cancers were downloaded from The Cancer Genome Atlas (TCGA) project. Statistically significant relationships between H19 expression levels and overall survival were analyzed by hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). RESULTS A total of 15 studies with 1584 patients were ultimately included for this literature meta-analysis. An elevated level of H19 expression was found to be negatively correlated with the overall survival (OS) (HR = 1.62, 95% CI = 1.36-1.93, P < .001) in various cancers. Abnormal H19 expression was also positively correlated with poor tumor differentiation (P < .0001), more advanced clinical stage (P < .0001), earlier lymph node metastasis (P < .0001), and earlier distant metastasis (P < .05). The relationship between elevated H19 expression and overall survival was further validated by a TCGA dataset consisting of 7462 cancer patients (HR = 1.12, 95% CI = 1.03-1.22, P < .05). CONCLUSION Our study indicates that H19 expression is closely relevant to clinical outcome and suggests that lncRNA H19 could be a crucial prognostic biomarker for certain carcinoma types.
Collapse
Affiliation(s)
- Hui Yu
- Department of Otorhinolaryngology
- Department of Otorhinolaryngology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
| | - Shuo Li
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Tian J, Yang Y, Li MY, Zhang Y. A novel RNA sequencing-based prognostic nomogram to predict survival for patients with cutaneous melanoma: Clinical trial/experimental study. Medicine (Baltimore) 2020; 99:e18868. [PMID: 32011509 PMCID: PMC7220347 DOI: 10.1097/md.0000000000018868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Plenty of evidence has suggested that long non-coding RNAs (lncRNAs) have played a vital part may act as prognostic biomarkers in a variety of cancers. The aim of this study was to screen survival-related lncRNAs and to construct a lncRNA-based prognostic model in patients with cutaneous melanoma (CM). METHODS We obtained lncRNAs expression profiles and clinicopathological data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. A lncRNA-based prognostic model was established in training set. The established prognostic model was evaluated, and validated in the validation set. Then, a prognostic nomogram combining the lncRNA-based risk score and clinicopathological characteristics was developed in training set, and assessed in the validation set. The accuracy of the model was evaluated by the discrimination and calibration plots. RESULTS A total of 212 lncRNAs were identified to be differentially expressed in CM. After univariate analysis, LASSO penalized regression analysis, and multivariate analysis, 3 lncRNAs were used to construct risk score model. The proposed risk score model could divide patients into high-risk and low-risk groups with significantly different survival in both training set and validation set. The ROC curve showed good performance in survival prediction in both sets. Furthermore, the nomogram for predicting 3-, 5-, and 10-year OS was established based on lncRNA-based risk score and clinicopathologic factors. The prognostic accuracy of the risk model was confirmed by the discrimination and calibration plots in both training set and validation set. CONCLUSIONS We established a novel three lncRNA-based risk score model and nomogram to predict overall survival of CM. The proposed nomogram may provide information for individualized treatment in CM patients.
Collapse
Affiliation(s)
- Jun Tian
- Department of Dermatology, Shanxi Provincial People's Hospital, Xi’an
| | - Ye Yang
- Department of Dermatology, 63600 Hospital of PLA, Lanzhou
| | - Meng-Yang Li
- Department of Hepatobiliary Surgery, The Fourth Medical Center, Chinese PAL General Hospital, Beijing
| | - Yuan Zhang
- Department of Oncology, Shanxi Provincial People's Hospital, Xi’an, China
| |
Collapse
|
25
|
Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: Roles in tumorigenesis. Biomed Pharmacother 2019; 123:109774. [PMID: 31855739 DOI: 10.1016/j.biopha.2019.109774] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
H19 is a long non-coding RNA [lncRNA] which was firstly described as an oncofetal transcript. The imprinted gene is normally expressed from the maternal allele. However, this pattern of imprinting is dysregulated in several cancers leading to aberrant up-regulation of H19 in malignant tissues. Several studies have utilized this aberrant expression pattern to find specific biomarkers for detection of cancer in tumoral tissues or peripheral blood. Moreover, single nucleotide polymorphisms within H19 have been associated with risk of oral squamous cell carcinoma, hepatocellular carcinoma, breast cancer, bladder cancer, gastric cancer and colorectal cancer. Taken together, H19 is regarded as a biomarker for cancer and a putative therapeutic target in these human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadhosein Esmaeili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Wang X, Zhong J, Chen F, Hu K, Sun S, Leng Y, Chen X, Gan F, Pan Y, Luo Q. Association between lncRNA H19 rs217727 polymorphism and the risk of cancer: an updated meta-analysis. BMC MEDICAL GENETICS 2019; 20:186. [PMID: 31752724 PMCID: PMC6873771 DOI: 10.1186/s12881-019-0904-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Background We have performed this study to evaluate the association between H19 rs217727 polymorphism and the risk of cancer. Methods An odds ratio (OR) with a 95% confidence interval (CI) was applied to determine a potential association. Results A total of 17 case–control publications were selected. This meta-analysis showed that H19 rs217727 has a significant increased association with cancer risk in allelic, homozygous, heterozygote, dominant and recessive models (T vs C: OR = 1.16, 95% CI = 1.06–1.27, I2 = 75.7; TT vs CC: OR = 1.29, 95% CI = 1.06–1.56, I2 = 71.6; CT vs CC: OR = 1.15, 95% CI = 1.01–1.31, I2 = 75.4; CT + TT vs CC: OR = 1.20, 95% CI = 1.05–1.36, I2 = 76.5; TT vs CT + CC: OR = 1.22, 95% CI = 1.02–1.45, I2 = 70.6;). In the subgroup analysis of smoking status, both smokers and nonsmokers showed an increase in cancer risk in allelic, homozygous, dominant and heterozygote models. Conclusion This meta-analysis revealed H19 rs217727 may influence cancer susceptibility.
Collapse
Affiliation(s)
- Xue Wang
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, China.,The people's Hospital of Tongnan District, Chongqing, China
| | - Jialing Zhong
- Clinical Laboratory, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Fang Chen
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, China
| | - Kang Hu
- Breast & Thyroid Disease Medical Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Suhong Sun
- Breast & Thyroid Disease Medical Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanxiu Leng
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, China
| | - Xumei Chen
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, China
| | - Fengjiao Gan
- Breast & Thyroid Disease Medical Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yana Pan
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, China
| | - Qing Luo
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, China.
| |
Collapse
|
27
|
Bi Y, Fu Y, Wang S, Chen X, Cai X. Schizandrin A exerts anti-tumor effects on A375 cells by down-regulating H19. ACTA ACUST UNITED AC 2019; 52:e8385. [PMID: 31618367 PMCID: PMC6787960 DOI: 10.1590/1414-431x20198385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Malignant melanoma (MM) is one of the malignant tumors with highly metastatic and aggressive biological actions. Schizandrin A (SchA) is a bioactive lignin compound with strong anti-oxidant and anti-aging properties, which is stable at room temperature and is often stored in a cool dry place. Hence, we investigated the effects of SchA on MM cell line A375 and its underlying mechanism. A375 cells were used to construct an in vitro MM cell model. Cell viability, proliferation, apoptosis, and migration were detected by Cell Counting Kit-8, BrdU assay, flow cytometry, and transwell two-chamber assay, respectively. The cell cycle-related protein cyclin D1 and cell apoptotic proteins (Bcl-2, Bax, cleaved-caspase-3, and cleaved-caspase-9) were analyzed by western blot. Alteration of H19 expression was achieved by transfecting with pEX-H19. PI3K/AKT pathway was measured by detecting phosphorylation of PI3K and AKT. SchA significantly decreased cell viability in a dose-dependent manner. Furthermore, SchA inhibited cell proliferation and cyclin D1 expression. SchA increased cell apoptosis along with the up-regulation of pro-apoptotic proteins (cleaved-caspase-3, cleaved-caspase-9, and Bax) and the down-regulation of anti-apoptotic protein (Bcl-2). Besides, SchA decreased migration and down-regulated matrix metalloproteinases (MMP)-2 and MMP-9. SchA down-regulated lncRNA H19. Overexpression of H19 blockaded the inhibitory effects of SchA on A375 cells. SchA decreased the phosphorylation of PI3K and AKT while H19 overexpression promoted the phosphorylation of PI3K and AKT. SchA inhibited A375 cell growth, migration, and the PI3K/AKT pathway through down-regulating H19.
Collapse
Affiliation(s)
- Yiming Bi
- Department of Oncology, Binzhou People's Hospital, Binzhou, China
| | - Yan Fu
- Department of Dermatology, Binzhou People's Hospital, Binzhou, China
| | - Shuyan Wang
- Department of Oncology, Binzhou People's Hospital, Binzhou, China
| | - Xingxiu Chen
- Department of Oncology, Binzhou People's Hospital, Binzhou, China
| | - Xiaoping Cai
- Department of Oncology, Binzhou People's Hospital, Binzhou, China
| |
Collapse
|
28
|
Liu N, Liu Z, Liu X, Chen H. Comprehensive Analysis of a Competing Endogenous RNA Network Identifies Seven-lncRNA Signature as a Prognostic Biomarker for Melanoma. Front Oncol 2019; 9:935. [PMID: 31649871 PMCID: PMC6794712 DOI: 10.3389/fonc.2019.00935] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) can act as competing endogenous RNA (ceRNA) involving in tumor initiation and progression. Nevertheless, the prognostic roles of lncRNAs in lncRNA-related ceRNA network of melanoma remain elusive. In this study, RNA sequence profiles were downloaded from The Cancer Genome Atlas (TCGA) database, and there were 2020 differentially expressed messenger RNAs (DEmRNAs), 438 differentially expressed lncRNAs (DElncRNAs) and 65 differentially expressed microRNAs (DEmiRNAs) between primary and metastasis melanoma patients. A ceRNA regulatory network was constructed based on the DElncRNAs-DEmiRNAs and DEmiRNAs-DEmRNAs interactions, which contained 39 lncRNAs, 10 miRNAs, and 16 mRNAs. Furthermore, univariate and multivariate Cox regression analysis were carried out to establish a 7-lncRNA prognostic signature. Subsequently, the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve and the Kaplan-Meier risk survival analysis revealed the significant performance of this signature. Finally, pathway enrichment analyses implied that lncRNA MIR205HG and MIAT were associated with multiple cancer-related pathways, especially epidermis development and immune response. The current study provides novel insights into the lncRNA-related ceRNA network and the potential of lncRNAs to be candidate prognostic biomarkers and therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Liu
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Expression and Clinical Significance of Translation Regulatory Long Non-Coding RNA 1 (TRERNA1) in Ependymomas. Pathol Oncol Res 2019; 26:1975-1981. [PMID: 31489574 DOI: 10.1007/s12253-019-00736-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNA) have emerged as vital molecules governing epithelial-to-mesenchymal transition (EMT) in cancers. Translation regulatory RNA 1 (TRERNA1) is one such lncRNA known to enhance the transcriptional activity of the EMT-transcription factor, Snail. We have previously demonstrated differential upregulation of EMT-transcription factors and cadherin switching across various clinico-pathologic-molecular subclasses of ependymomas (EPN). With an aim to analyze the correlation between the expression of TRERNA1 in EPNs, we performed gene expression analysis for TRERNA1 on 75 Grade II/III EPNs and correlated with tumor site, C11orf95-RELA fusions, age, MIB-1 proliferative indices, and outcome wherever available. Upregulation of gene expression levels of TRERNA1 was seen in intracranial EPNs, with highest expression levels in pediatric posterior fossa EPNs. High TRERNA1 expression was found associated with higher proliferative indices (p = 0.034) and shorter progression free survival (p = 0.002). Our study, for the first time, demonstrates an association between TRERNA1 expressions and pediatric posterior fossa EPNs. Further in-vivo and in-vitro studies are required to confirm these findings and evaluate TRERNA1 as a novel biomarker and potential therapeutic target in childhood PF-EPNs.
Collapse
|
30
|
Zhong Y, Wang J, Lv W, Xu J, Mei S, Shan A. LncRNA TTN-AS1 drives invasion and migration of lung adenocarcinoma cells via modulation of miR-4677-3p/ZEB1 axis. J Cell Biochem 2019; 120:17131-17141. [PMID: 31173403 DOI: 10.1002/jcb.28973] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/28/2022]
Abstract
Lung adenocarcinoma is the most prevalent type of lung cancer with a high incidence and mortality worldwide. Metastasis is the major cause of high death rate in lung cancer and the potential mechanism of lung adenocarcinoma metastasis remains indistinct. Emerging investigations have demonstrated that long noncoding RNA is a kind of non-protein coding RNA and plays a critical role in cancer progression and metastasis. TTN antisense RNA 1 (TTN-AS1) has been reported to promote cell growth and metastasis in cancer. However, the function of TTN-AS1 in lung adenocarcinoma is still to be illustrated. In this study, we observed that TTN-AS1 was upregulated in tissues and cells of lung adenocarcinoma and associated with poor overall survival. TTN-AS1 promoted cell proliferation, migration, invasion, and epithelial-mesenchymal transition in lung cancer. TTN-AS1 directly bound with miR-4677-3p and negatively regulated miR-4677-3p. MiR-4677-3p rescued the inhibitive impacts of TTN-AS1 knockdown on lung adenocarcinoma. Furthermore, zinc finger E-box binding homeobox 1 (ZEB1) was the target of miR-4677-3p, and TTN-AS1 modulated ZEB1 by competing for miR-4677-3p. TTN-AS1 drove the invasion and migration of lung adenocarcinoma cells by targeting the miR-4677-3p/ZEB1 axis. To sum up, our study offers insights into the mechanism of TTN-AS1 in lung adenocarcinoma metastasis and targeting the TTN-AS1/miR-4677-3p/ZEB1 axis may be the potential innovate therapeutic strategy for the patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuanbo Zhong
- Emergency Department, Shenzhen People's Hospital, The Second Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Jin Wang
- Emergency Department, Shenzhen People's Hospital, The Second Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Wen Lv
- Emergency Department, Shenzhen People's Hospital, The Second Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Jianzhong Xu
- Emergency Department, Shenzhen People's Hospital, The Second Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Shanshan Mei
- Emergency Department, Shenzhen People's Hospital, The Second Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Aijun Shan
- Emergency Department, Shenzhen People's Hospital, The Second Medical College of Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
31
|
Motofei IG. Malignant Melanoma: Autoimmunity and Supracellular Messaging as New Therapeutic Approaches. Curr Treat Options Oncol 2019; 20:45. [PMID: 31056729 DOI: 10.1007/s11864-019-0643-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Melanoma is one of the most aggressive forms of cancer, with a high mortality rate in the absence of a safe and curable therapy. As a consequence, several procedures have been tested over time, with the most recent (immunological and targeted) therapies proving to be effective in some patients. Unfortunately, these new treatment options continue to generate debate related to the therapeutic strategy (intended to maximize the long-term results of patients with melanoma), not only about the monotherapy configuration but also regarding association/succession between distinct therapeutic procedures. As an example, targeted therapy with BRAF inhibitors proved to be effective in advanced BRAF-mutant melanoma. However, such treatments with BRAF inhibitors lead to therapy resistance in half of patients after approximately 6 months. Even if most benign nevi incorporate oncogenic BRAF mutations, they rarely become melanoma; therefore, targeted therapy with BRAF inhibitors should be viewed as an incomplete or perfectible therapy. Another example is related to the administration of immune checkpoint inhibitors/ICIs (anti-CTLA-4 antibodies, anti-PD-1/PD-L1 antibodies), which are successfully used in metastatic melanoma. It is currently believed that CTLA-4 and PD-1 blockade would favor a strong immune response against cancer cells. The main side effects of ICIs are represented by the development of immune-related adverse events, which in some cases can be lethal. These ICI side effects would thus be not only therapeutically counterproductive but also potentially dangerous. Surprisingly, a subset of immune-related adverse events (especially autoimmune toxicity) seems to be clearly correlated with better therapeutic results, perhaps due to an additional therapeutic effect (currently insufficiently studied/exploited). Contrary to the classical approach of cancer (considered until now an uncontrolled division of cells), a very recent and comprehensive theory describes malignancy as a supracellular disease. Cancerous disease would therefore be a disturbed supracellular process (embryogenesis, growth, development, regeneration, etc.), which imposes/coordinates an increased rhythm of cell division, angiogenesis, immunosuppression, etc. Melanoma is presented from such a supracellular perspective to be able to explain the beneficial role of autoimmunity in cancer (autoimmune abortion/rejection of the melanoma-embryo phenotype) and to create premises to better optimize the newly emerging therapeutic options. Finally, it is suggested that the supracellular evolution of malignancy implies complex supracellular messaging (between the cells and host organism), which would be interfaced especially by the extracellular matrix and noncoding RNA. Therefore, understanding and manipulating supracellular messaging in cancer could open new treatment perspectives in the form of digitized (supracellular) therapy.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/Oncology, St. Pantelimon Hospital, Carol Davila University, Dionisie Lupu Street, no. 37, 020022, Bucharest, Romania.
| |
Collapse
|
32
|
Li M, Bian Z, Jin G, Zhang J, Yao S, Feng Y, Wang X, Yin Y, Fei B, You Q, Huang Z. LncRNA-SNHG15 enhances cell proliferation in colorectal cancer by inhibiting miR-338-3p. Cancer Med 2019; 8:2404-2413. [PMID: 30945457 PMCID: PMC6536931 DOI: 10.1002/cam4.2105] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/29/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022] Open
Abstract
The incidence and death rate of colorectal cancer (CRC) is very high, which brings great need to understand the early molecular events of CRC. These studies demonstrate that long noncoding RNA (lncRNA) plays an important role in the occurrence and development of human cancer. Small nucleolar RNA host gene 15 (SNHG15) was recently identified as a cancer-related lncRNA. In this study, we aimed to evaluate the function and mechanism of SNHG15 in CRC. The expression of SNHG15 was detected by quantitative RT-PCR (qRT-PCR) in CRC tissues and matched noncancerous tissues (NCTs). CCK-8 assay, colony formation assay, flow cytometric analysis, and nude mouse xenograft mode were used to examine the tumor-promoting function of SNHG15 in vitro and in vivo. The binding relationship between SNHG15, miR-338-3p and the target genes of miR-338-3p were screened and identified by databases, qRT-PCR, dual luciferase reporter assay and western blot. Our results showed that SNHG15 was up-regulated in CRC tissues compared with paired NCTs (P < 0.0001). High level of SNHG15 expression predicted poor prognosis of CRC (P = 0.0051). SNHG15 overexpression could promote cell proliferation and inhibit cell apoptosis. Animal experiments showed that up-regulation of SNHG15 promoted tumor growth in vivo. The results of mechanism experiments showed that SNHG15 could bind to miR-338-3p and block its inhibition on the expression and activity of FOS or RAB14. In conclusion SNHG15 promotes cell proliferation through SNHG15/miR-338-3p/FOS-RAB14 axis in CRC.
Collapse
Affiliation(s)
- Min Li
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
- Pharmacy DepartmentWuxi 9th People's Hospital Affiliated to Soochow UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Guoying Jin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Jia Zhang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Surui Yao
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Yuyang Feng
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Xue Wang
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Yuan Yin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Bojian Fei
- Department of Surgical OncologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Qingjun You
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
33
|
Liang WQ, Zeng D, Chen CF, Sun SM, Lu XF, Peng CY, Lin HY. Long noncoding RNA H19 is a critical oncogenic driver and contributes to epithelial-mesenchymal transition in papillary thyroid carcinoma. Cancer Manag Res 2019; 11:2059-2072. [PMID: 30881130 PMCID: PMC6411319 DOI: 10.2147/cmar.s195906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Growing evidence has indicated that the long noncoding RNA H19 (lncRNA H19), frequently deregulated in almost all tumor types tested, acted as a pivotal contributor to both cancer initiation and progression. However, the role of lncRNA H19 in human papillary thyroid carcinoma (PTC) remains controversial. The aim of the study was to investigate the expression and potential function of lncRNA H19 in human PTC. PATIENTS AND METHODS The lncRNA H19 level was determined by quantitative real-time (RT)-PCR analyses in 58 PTC tissue samples and their paired paracancerous tissue samples. RNA interference, RT-PCR analysis, and Western blot assay were used to determine the impact of lncRNA H19 on epithelial-mesenchymal transition (EMT) markers in human PTC cells. The migratory and invasive capacities of PTC cells were determined by wound-healing and transwell migration and invasion assays. RESULTS lncRNA H19 expression was 2.417-fold higher in PTC tissues than their paired paracancerous tissue (95% CI: 1.898-2.935, P<0.0001). Higher level of lncRNA H19 was correlated to elevated expression of Vimentin, ZEB2, Twist, and Snail2. Inhibition of lncRNA H19 resulted in upregulation of E-cadherin and downregulation of Vimentin both at mRNA and protein levels. Conversely, enforced expression of the exogenous lncRNA H19 led to E-cadherin mRNA and protein downregulation and relative upregulation of Vimentin. Moreover, wound-healing and transwell migration and invasion assays showed that lncRNA H19 could promote the migratory and invasive abilities of PTC cells. CONCLUSION The level of lncRNA H19 was significantly higher in PTC tissues than paired paracancerous tissue or normal tissues. Overexpression of lncRNA H19 was correlated with higher tumor burden of PTC. It also contributes to EMT process, as well as promotes migration and invasion of PTC cells.
Collapse
Affiliation(s)
- Wei-Quan Liang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China
| | - Chun-Fa Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - Shu-Ming Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - Xiao-Feng Lu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - Chun-Yan Peng
- Department of Clinical Laboratory, Taihe Hospital of Hubei University of Medicine, Hubei 442008, People's Republic of China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| |
Collapse
|
34
|
Jiao H, Jiang S, Wang H, Li Y, Zhang W. Upregulation of LINC00963 facilitates melanoma progression through miR-608/NACC1 pathway and predicts poor prognosis. Biochem Biophys Res Commun 2018; 504:34-39. [DOI: 10.1016/j.bbrc.2018.08.115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023]
|