1
|
Tian B, Xu X, Li L, Tian Y, Liu Y, Mu Y, Lu J, Song K, Lv J, He Q, Zhong W, Xia H, Lan C. Epigenetic Insights Into Necrotizing Enterocolitis: Unraveling Methylation-Regulated Biomarkers. Inflammation 2025; 48:236-253. [PMID: 38814387 PMCID: PMC11807086 DOI: 10.1007/s10753-024-02054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Necrotizing enterocolitis (NEC) is a multifactorial gastrointestinal disease with high morbidity and mortality among premature infants. This study aimed to identify novel methylation-regulated biomarkers in NEC intestinal tissue through multiomics analysis. We analyzed DNA methylation and transcriptome datasets from ileum and colon tissues of patients with NEC. We identify methylation-related differential genes (MrDEGs) based on the rule that the degree of methylation in the promoter region is inversely proportional to RNA transcription. These MrDEGs included ADAP1, GUCA2A, BCL2L14, FUT3, MISP, USH1C, ITGA3, UNC93A and IL22RA1. Single-cell data revealed that MrDEGs were mainly located in the intestinal epithelial part of intestinal tissue. These MrDEGs were verified through Target gene bisulfite sequencing and RT-qPCR. We successfully identified and verified the ADAP1, GUCA2A, IL22RA1 and MISP, primarily expressed in intestinal epithelial villus cells through single-cell data. Through single-gene gene set enrichment analysis, we found that these genes participate mainly in the pathological process of T-cell differentiation and the suppression of intestinal inflammation in NEC. This study enhances our understanding of the pathogenesis of NEC and may promote the development of new precision medicine methods for NEC prediction and diagnosis.
Collapse
Affiliation(s)
- Bowen Tian
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaogang Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Lin Li
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Yan Tian
- Department of Anesthesiology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Yanqing Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Yide Mu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Jieting Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Song
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Junjian Lv
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China.
| | - Huimin Xia
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China.
| | - Chaoting Lan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Huang B, Li X. Mechanisms of GPM6A in Malignant Tumors. Cancer Rep (Hoboken) 2025; 8:e70137. [PMID: 39957375 PMCID: PMC11831008 DOI: 10.1002/cnr2.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/20/2024] [Accepted: 01/25/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Glycoprotein M6A (GPM6A) encodes a transmembrane protein, expressing in large quantities on the cell surface of central nervous system (CNS) neurons. GPM6A acts importantly in neurodevelopment by modulating neuronal differentiation, migration, axon growth, synaptogenesis, and spine formation, but its role in malignancy remains controversial and requires further research. This article reviewed the mechanisms of GPM6A in colorectal cancer, liver cancer, lung cancer, glioblastoma, and other malignant tumors, and made a "one-stop" summary of the relevant mechanisms. RECENT FINDINGS Researches have indicated that GPM6A is related to malignant tumors. It affects epithelial-mesenchymal transition and induces the formation of filopodia, participating in the adhesion, migration, and metastasis of cancer cells. Its role in malignant tumors remains controversial, however. On the one hand, GPM6A may have carcinogenic properties and is related to poor prognosis of malignant tumors. It is highly expressed in lymphoblastic leukemia and is a potential oncogene. It also shows carcinogenic properties in colorectal cancer, glioblastoma, gonadotroph adenomas and so on. On the other hand, the expression of GPM6A decreases in lung adenocarcinoma, liver cancer, thyroid cancer, and so forth as the tumor progresses, and it can inhibit the progression of malignant tumors by inhibiting some signaling pathways, suggesting that it may be a tumor suppressor gene. CONCLUSION Carcinogenic or tumor suppressive? Although the biological function of GPM6A in the development of malignant tumors is still unclear, according to the current research progress, it is still expected to become an effective molecular marker for predicting tumor occurrence, metastasis and prognosis, as well as a new target for diagnosis and treatment.
Collapse
Affiliation(s)
- Bei Huang
- Operation Management and Evaluation Department, West China Second University HospitalSichuan UniversityChengduSichuanPeople's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduSichuanPeople's Republic of China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduSichuanPeople's Republic of China
- Emergency Department, West China Second University HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| |
Collapse
|
3
|
Yang K, Chai S, Song H, Cao S, Gao F, Zhou C, Li L. Downregulation of ECRG4 by DNMT1 promotes EC growth via IRF3/IFN-γ/miR-29b/DNMT1/ECRG4 positive feedback loop. iScience 2025; 28:111614. [PMID: 39834855 PMCID: PMC11742825 DOI: 10.1016/j.isci.2024.111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Esophageal carcinoma (EC) is one of the most common malignant tumors in the world. ECRG4 has been recently discovered to be downregulated in EC. However, the mechanism leading to reduced expression of ECRG4 in esophageal cancer remains obscure. Here, we found that ECRG4 expression was significantly downregulated in EC tissues and cell lines. ECRG4 overexpression led to a significant decrease in proliferation in vitro and in vivo. Mechanistically, ECRG4 can activate IRF3/IFN-γ pathway. IFN-γ can promote the expression of miR-29b. MiR-29b reduces the expression of DNMT1. DNMT1 may affect the expression of ECRG4 by affecting the methylation of ECRG4 promoter. These results reveal ECRG4/IRF3/IFN-γ/miR-29b/DNMT1 positive feedback loop in esophageal carcinoma cells, which may become a potential therapeutic target for esophageal carcinoma.
Collapse
Affiliation(s)
- Ke Yang
- Department of Oncology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Shuaining Chai
- Department of Oncology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Helong Song
- Department of Oncology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Sinan Cao
- Department of Oncology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Fangmiao Gao
- Department of Oncology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Chenxuan Zhou
- Department of Oncology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Linwei Li
- Department of Oncology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
- Department of Oncology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| |
Collapse
|
4
|
Liu Z, Xia G, Liang X, Li B, Deng J. DNA methylation-mediated suppression of TUSC1 expression regulates the malignant progression of esophagogastric junction cancer. Clin Epigenetics 2024; 16:97. [PMID: 39044262 PMCID: PMC11267789 DOI: 10.1186/s13148-024-01689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Esophagogastric junction cancer (EJC) refers to malignant tumors that develop at the junction between the stomach and the esophagus. TUSC1 is a recently identified tumor suppressor gene known for its involvement in various types of cancer. The objective of this investigation was to elucidate the regulatory influence of DNA methylation on TUSC1 expression and its role in the progression of EJC. METHODS Bioinformatics software was utilized to analyze the expression of TUSC1, enriched pathways, and highly methylated sites in the promoter region. TUSC1 expression in EJC was assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot (WB), and immunohistochemistry. Methylation-specific PCR was employed to detect the methylation level of TUSC1. To analyze the effects of TUSC1 and 5-AZA-2 on tumor cell proliferation, migration, invasion, cell cycle, and apoptosis, several assays including CCK-8, colony formation, transwell, and flow cytometry were conducted. The expression of MDM2 was assessed using qRT-PCR and WB. WB detected the expression of p53, and p-p53, markers for EJC cell proliferation, epithelial-mesenchymal transition, and apoptosis. The role of TUSC1 in tumor occurrence in vivo was examined using a xenograft mouse model. RESULTS TUSC1 expression was significantly downregulated in EJC. Overexpression of TUSC1 and treatment with 5-AZA-2 inhibited the malignant progression of EJC cells. In EJC, low methylation levels promoted the expression of TUSC1. Upregulation of TUSC1 suppressed the expression of MDM2 and activated the p53 signaling pathway. Inactivation of this pathway attenuated the inhibitory effect of TUSC1 overexpression on EJC cell proliferation, migration, invasion, and other behaviors. Animal experiments demonstrated that TUSC1 overexpression inhibited EJC tumor growth and metastasis in vivo. CONCLUSION TUSC1 was commonly downregulated in EJC and regulated by methylation. It repressed the malignant progression of EJC tumors by mediating the p53 pathway, suggesting its potential as a diagnostic and therapeutic target for EJC.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and Therapy, TianjinTianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang, 455000, China
| | - Ganshu Xia
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang, 455000, China
| | - Xiaolong Liang
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang, 455000, China
| | - Baozhong Li
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang, 455000, China.
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and Therapy, TianjinTianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
5
|
Wang C, He J, Chen C, Luo W, Dang X, Mao L. A potential role of human esophageal cancer-related gene-4 in cardiovascular homeostasis. Gene 2024; 894:147977. [PMID: 37956966 DOI: 10.1016/j.gene.2023.147977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Human esophageal cancer related gene-4 (ECRG-4) encodes a 148-aminoacid pre-pro-peptide that can be processed tissue-dependently into multiple small peptides possessing multiple functions distinct from, similar to, or opposite to the tumor suppressor function of the full-length Ecrg4. Ecrg-4 is covalently bound to the cell surface through its signal peptide, colocalized with the innate immunity complex (TLR4-CD14-MD2), and functions as a 'sentinel' molecule in the maintenance of epithelium and leukocyte homeostasis, meaning that the presence of Ecrg-4 on the cell surface signals the maintained homeostasis, whereas the loss of Ecrg-4 due to tissue injury activates pro-inflammatory and tissue proliferative responses, and the level of Ecrg-4 gradually returns to its pre-injury level upon wound healing. Interestingly, Ecrg-4 is also highly expressed in the heart and its conduction system, endothelial cells, and vascular smooth muscle cells. Accumulating evidence has shown that Ecrg-4 is involved in cardiac rate/rhythm control, the development of atrial fibrillation, doxorubicin-induced cardiotoxicity, the ischemic response of the heart and hypoxic response in the carotid body, the pathogenesis of atherosclerosis, and likely the endemic incidence of idiopathic dilated cardiomyopathy. These preliminary discoveries suggest that Ecrg-4 may function as a 'sentinel' molecule in cardiovascular system as well. Here, we briefly review the basic characteristics of ECRG-4 as a tumor suppressor gene and its regulatory functions on inflammation and apoptosis; summarize the discoveries about its distribution in cardiovascular system and involvement in the development of CVDs, and discuss its potential as a novel therapeutic target for the maintenance of cardiovascular system homeostasis.
Collapse
Affiliation(s)
- Chaoying Wang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Jianghui He
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Chunyue Chen
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Wenjun Luo
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China.
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
6
|
Li X, Hu S, Ma M, Wang P, Qi Y, Zhou Y, Zhong Z, Gao H, Bai F. Esophageal cancer-related gene 4 inhibits gastric cancer growth and metastasis by upregulating Krüppel-like factor 2 expression. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:176. [PMID: 36923086 PMCID: PMC10009579 DOI: 10.21037/atm-23-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023]
Abstract
Background There are a large number of people suffering from gastric cancer (GC) worldwide, so the study of biomarkers for GC is urgently needed. This study aimed to investigate the role of esophageal cancer-related gene 4 (ECRG4) in the growth, metastasis, and prognosis of GC and the possible underlying mechanism. Methods The expression of ECRG4 was detected in GC tissues by quantitative polymerase chain reaction (PCR), Western blot, and immunohistochemistry. The relationships between ECRG4 expression and clinicopathological parameters of patients with GC were statistically analyzed, and Kaplan-Meier prognosis and survival curves of the patients were plotted. ECRG4 was overexpressed in the human gastric adenocarcinoma cell line (AGS) and human GC cell line 27 (HGC27), and the in vivo effects of ECRG4 overexpression on the growth, invasion, and metastasis of GC were analyzed and verified in nude mice. To identify the downstream transcription factors potentially regulated by ECRG4, ribonucleic acid (RNA) sequencing and differential gene expression analysis were performed on ECRG4-overexpressing cells. Quantitative PCR, Western blot, and immunohistochemistry were used to detect the expression of the downstream transcription factors targeted by ECRG4 in GC. Results The ECRG4 mRNA and protein expression levels were low in GC tissues and were associated with a poor prognosis. Least absolute shrinkage and selection operator (LASSO) Cox regression and Kaplan-Meier survival analyses showed that patients with low ECRG4 expression had worse prognosis and survival. Overexpression of ECRG4 inhibited the proliferation, metastasis, and invasion of GC cells. RNA sequencing analysis showed that overexpression of ECRG4 induced the upregulation of Krüppel-like factor 2. Conclusions Our findings show that ECRG4 promotes GC progression via Krüppel-like factor 2 signaling and highlight ECRG4 as a potential GC biomarker and therapeutic target.
Collapse
Affiliation(s)
- Ximei Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Shengjuan Hu
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Meijuan Ma
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Pengda Wang
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yao Qi
- Department of Gastroenterology, Tongji Hospital, Institute of Digestive Disease, School of Medicine, Tongji University, Shanghai, China.,National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Yan Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Zishao Zhong
- Department of Gastroenterology, Tongji Hospital, Institute of Digestive Disease, School of Medicine, Tongji University, Shanghai, China
| | - Hengjun Gao
- Department of Gastroenterology, Tongji Hospital, Institute of Digestive Disease, School of Medicine, Tongji University, Shanghai, China.,National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China.,Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
You Y, Hu S. Aberrant expression of the esophageal carcinoma related gene 4 as a prognostic signature for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2022; 46:101891. [PMID: 35189425 DOI: 10.1016/j.clinre.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Hepatocellular carcinoma (HCC) is a lethal cancer with increasing incidence, yet the molecular biomarkers that have strong prognostic impact and also hold great therapeutic promise remain elusive. METHODS Data mining approaches with a set of publicly accessible databases and immunohistochemistry were used to provide a novel insight into the expression pattern and prognostic significance of the esophageal cancer-related gene (ECRG) family members in HCC. RESULTS We found that elevated mRNA expression levels of ECRG factors were correlated with better overall survival, relapse-free survival and progression-free survival rates in patients with HCC. Subgroup analyses showed significant associations between ECRG expression and survival outcome in select HCC patients. In addition, immunohistochemical and multivariate analysis confirmed increased ECRG4 expression as an independent prognostic indicator for survival. CONCLUSIONS Our data suggest that ECRG factors have significant impacts on the survival of HCC patients. The expression of ECRG factors may be involved in HCC progression and could serve as novel biomarkers for predicting more accurate prognosis.
Collapse
Affiliation(s)
- Yanjie You
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, 750002, PR China.
| | - Shengjuan Hu
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, 750002, PR China.
| |
Collapse
|
8
|
Yang Z, Ye X, Zhang Y, Huang Y, Chen J, Zeng Y, Chen J. ECRG4 acts as a tumor suppressor in nasopharyngeal carcinoma by suppressing the AKT/GSK3β/β-catenin signaling pathway. Cytotechnology 2022; 74:231-243. [PMID: 35464163 PMCID: PMC8976024 DOI: 10.1007/s10616-022-00520-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Nasopharyngeal carcinoma (NPC) is a malignant tumor with a poor prognosis. Studies have shown that esophageal carcinoma related gene 4 (ECRG4) is hypermethylated and significantly downregulated in NPC tissues. However, the role of ECRG4 in NPC, and in particular the underlying molecular mechanism, is largely unclear. In this study, using immunohistochemical staining of ECRG4 in NPC and normal specimens, we confirmed that ECRG4 was downregulated in human NPC tissues. In addition, various biological and molecular studies were carried out and the results showed that ECRG4 exerted anticancer effect in NPC, including inhibiting cell growth, migration, and invasion of NPC cells in vitro. Moreover, restoring ECRG4 expression suppressed the in vivo tumorigenesis of CNE2 cells. ECRG4 inhibited AKT/GSK3β/β-catenin signaling, as well as the downstream targets of β-catenin. LiCl treatment, which reduced GSK3β phosphorylation and upregulated β-catenin expression, restored the invasive ability of ECRG4-overexpressing NPC cells. Furthermore, we showed that the DNA methylation inhibitor 5-aza-dC reduced ECRG4 methylation and the invasive ability of negative control cells, but not that of ECRG4-overexpressing cells, suggesting that the inhibitory effect of 5-aza-dC depends on low expression of ECRG4. Collectively, our results demonstrated that ECRG4 downregulation contributed to NPC growth and invasion by activating AKT/GSK3β/β-catenin signaling pathway. ECRG4 could be a promising therapeutic target for the treatment of NPC. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-022-00520-8.
Collapse
Affiliation(s)
- Zhengyuan Yang
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 People’s Republic of China
| | - Xiajun Ye
- Department of Medical Affairs, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 People’s Republic of China
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, No. 241 Daxue Road, Shantou, 515031 People’s Republic of China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, 515041 People’s Republic of China
| | - Jian Chen
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. Raoping Road, Shantou, 515031 People’s Republic of China
| | - Yunzhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 Guangdong Province People’s Republic of China
| | - Jiongyu Chen
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 Guangdong Province People’s Republic of China
| |
Collapse
|
9
|
Yu X, Yu B, Fang W, Xiong J, Ma M. Identification hub genes of consensus molecular subtype correlation with immune infiltration and predict prognosis in gastric cancer. Discov Oncol 2021; 12:41. [PMID: 35201473 PMCID: PMC8777542 DOI: 10.1007/s12672-021-00434-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
Gastric cancer (GC) has a great fatality rate, meanwhile, there is still a lack of available biomarkers for prognosis. The goal of the research was to discover key and novel potential biomarkers for GC. We screened for the expression of significantly altered genes based on survival rates from two consensus molecular subtypes (CMS) of GC. Subsequently, functional enrichment analysis showed these genes involved in many cancers. And we picked 6 hub genes that could both secreted in the tumor microenvironment and expression enhanced in immune cells. Then, Kaplan Meier survival and expression detected in the tumor pathological stage were utilized to clarify the prognostic of these 6 hub genes. The results indicated that OGN, CHRDL2, C2orf40, THBS4, CHRDL1, and ANGPTL1, respectively, were significantly associated with poor OS in GC patients. And their expression increased with cancer advanced. Moreover, immune infiltration analysis displayed that those hub genes expression positively with M2 macrophage, CD8+ T Cell, most immune inhibitors, and majority immunostimulators. In summary, our results suggested that OGN, CHRDL2, C2orf40, THBS4, CHRDL1, and ANGPTL1 were all potential biomarkers for GC prognosis and might also be potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Xin Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Weidan Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Mei Ma
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
10
|
You Y, Hu S. Dysregulation of ECRG4 is associated with malignant properties and of prognostic importance in human gastric cancer. Cancer Biomark 2021; 34:55-66. [PMID: 34657878 DOI: 10.3233/cbm-210334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND We have previously characterized esophageal carcinoma-related gene 4 (ECRG4) as a novel tumor suppressor gene, which is frequently inactivated in nasopharyngeal carcinoma and breast cancer. Nevertheless, the expression status and prognostic significance of ECRG4 maintain elusive in human gastric cancer. Herein, we examined ECRG4 expression profile in gastric cancer and assessed its association with clinicopathological characteristics and patient survival. METHODS Online data mining, real-time RT-PCR and immunohistochemistry were employed to determined ECRG4 expression at transcriptional and protein levels in tumors vs. noncancerous tissues. Statistical analyses including the Kaplan-Meier survival analysis and the Cox hazard model were utilized to detect the impact on clinical outcome. Moreover, ECRG4 expression was silenced in gastric cancer SGC7901 cells, and cell proliferation, colony formation and invasion assays were carried out. RESULTS ECRG4 mRNA and protein levels were obviously downregulated in cancer tissues than noncancerous tissues. Statistical analyses demonstrated that low ECRG4 expression was found in 34.5% (58/168) of primary gastric cancer tissues, which was associated with higher histological grade (P= 0.018), lymph node metastasis (P= 0.011), invasive depth (P= 0.020), advanced tumor stage (P= 0.002) and poor overall survival (P< 0.001). Multivariate analysis showed ECRG4 expression is an independent prognostic predictor (P< 0.001). Silencing ECRG4 expression promoted gastric cancer cell growth and invasion. Western blot analysis revealed the anti-metastatic functions of ECRG4 by downregulating of E-cadherin and α-Catenin, as well as upregulating N-cadherin and Vimentin. CONCLUSIONS Our observations reveal that ECRG4 expression is involved in gastric cancer pathogenesis and progression, and may serve as a candidate prognostic biomarker for this disease.
Collapse
Affiliation(s)
- Yanjie You
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia Hui Autonomous Region, China.,Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| | - Shengjuan Hu
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia Hui Autonomous Region, China.,Endoscopy Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia Hui Autonomous Region, China.,Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| |
Collapse
|
11
|
Hu D, Lou X, Meng N, Li Z, Teng Y, Zou Y, Wang F. Peripheral Blood-Based DNA Methylation of Long Non-Coding RNA H19 and Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promoters are Potential Non-Invasive Biomarkers for Gastric Cancer Detection. Cancer Control 2021; 28:10732748211043667. [PMID: 34615385 PMCID: PMC8504648 DOI: 10.1177/10732748211043667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction The early diagnosis and detection could greatly improve the clinical outcome of gastric cancer (GC) patients. However, the non-invasive biomarkers for GC detection remain to be identified. Method We used online databases (GEPIA, UALCAN, Kaplan-Meier plotter, TIMER, and MEXPRESS) to explore the association between H19 or metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression in tissues and the occurrence, development, prognosis, the levels of immune cell infiltration, and methylation of GC; the correlation between mRNA expression and DNA methylation levels of genes were also examined. Methylation levels of H19 or MALAT1 in peripheral blood were compared between 150 GC patients and 100 healthy controls (HCs). Predictive nomograms were constructed among female and male groups for GC diagnosis. The calibration curves, Hosmer–Lemeshow test, and decision curve analysis were also used to examine the nomograms’ predictive ability and clinical values. Results Using multiple online databases, we found that the mRNA expressions of H19 and MALAT1 in tissues were related to the occurrence of GC, and such expressions were associated with immune cell infiltration of GC and negatively correlated with DNA methylation levels of H19 and MALAT1. H19 gene, H19C island, and MALAT1B island, as well as 20 CpG sites were hypermethylated in peripheral blood of GC patients compared with HCs; similar results were also found in female and male groups (P < .05 for all). The combination of H19c3, H19c4, MALAT1b12, and age, as well as the combination of H19b7, H19c1, H19c5, and age in the nomograms could distinguish GC patients from HCs in the female group and male group, respectively. Conclusion We found statistically significant hypermethylation of H19 and MALAT1 promoters in GC patients, and meaningful sensitivity and specificity of MALAT1 and H19 methylation in discriminating GC and HCs were observed in both female and male groups, which indicates that the peripheral blood-based DNA methylation of H19 and MALAT1 could act as potential non-invasive biomarkers for the diagnosis of GC.
Collapse
Affiliation(s)
- Dingtao Hu
- Department of Oncology, 36639The First Affiliated Hospital of Anhui Medical University, China
| | - Xiaoqi Lou
- Department of Oncology, 36639The First Affiliated Hospital of Anhui Medical University, China
| | - Nana Meng
- Department of Quality Management Office, 533251The Second Affiliated Hospital of Anhui Medical University, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health of Anhui Medical University, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health of Anhui Medical University, China
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health of Anhui Medical University, China
| | - Fang Wang
- Department of Oncology, 36639The First Affiliated Hospital of Anhui Medical University, China
| |
Collapse
|
12
|
Wu Y, Xiang Q, Lv X, Xiang X, Feng Z, Tian S, Tang J, Xiang T, Gong J. C2orf40 inhibits hepatocellular carcinoma through interaction with UBR5. J Gastroenterol Hepatol 2021; 36:2581-2591. [PMID: 33576531 DOI: 10.1111/jgh.15441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) urgently needs a marker for early diagnosis and targeted treatment. C2orf40 has been identified as a tumor suppressor gene in many cancers. However, the precise role and regulatory mechanism by C2orf40 contribute to HCC remain elusive and merit exploration. METHODS Reverse-transcription PCR, quantitative real-time PCR, and methylation-specific PCR were used to detect expression and methylation of C2orf40 in HCC cell lines or tissues. The effects of C2orf40 in liver cancer cells were examined via colony formation, CCK8, transwell, and flow cytometric assays. The effect of C2orf40 on tumorigenesis in vivo was determined by xenografts and immunohistochemical analysis. Western blot, indirect immunofluorescence, Co-IP, and cycloheximide (CHX) were used to further investigate the potential mechanism of C2orf40. RESULTS The down-regulation of C2orf40 in hepatocellular cancer tissue samples is often related to the degree of methylation of its promoter CpG. The recovery of C2orf40 expression in HCC cell lines can induce G0/G1 phase arrest and apoptosis and also inhibit cell migration and invasion by reversing the epithelial-mesenchymal transition (EMT) process, both in vivo and in vitro. In addition, C2orf40 can increase the expression of p21 through interaction with UBR5. CONCLUSIONS Low expression levels of C2orf40 are related to the hypermethylation of its promoter. C2orf40 can inhibit HCC through UBR5-dependent or p53-independent mechanisms. C2orf40 may be a diagnostic biomarker and a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Yue Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqin Lv
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Xia Xiang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Zhihao Feng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaorong Tian
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Abstract
Gastric cancer is one of the most common malignant tumors. MicroRNA-196b (miR-196b) has been demonstrated to play important roles in human cancers. However, its functions in gastric cancer progression were still largely unknown. In this study, the expression of miR-196b was determined by quantitative real-time PCR. Esophageal cancer-related gene 4 (ECRG4) level was examined by western blot assay and immunohistochemistry staining assay. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and colony formation assay. Cell migration and invasion were analyzed by transwell assay. The association between miR-196b and ECRG4 was analyzed by dual-luciferase reporter assay. The functional role of miR-196b in vivo was analyzed by murine xenograft assay. As a result, we found the expression of miR-196b was elevated and the protein expression of ECRG4 was reduced in gastric cancer tissues and cells. MiR-196b inhibition suppressed gastric cancer cell proliferation, migration and invasion. ECRG4 was a target of miR-196b and its protein expression was negatively regulated by miR-196b. Moreover, ECRG4 overexpression showed similar effects with miR-196b inhibition on the malignant behaviors of GC cells and ECRG4 knockdown reversed the effects of miR-196b inhibition on gastric cancer cell proliferation, migration and invasion. In addition, miR-196b inhibition suppressed tumor volume and weight in vivo. In conclusion, downregulation of miR-196b inhibited gastric cancer progression by modulating ECRG4 expression, indicating that miR-196b might be a potential therapeutic target for gastric cancer.
Collapse
|
14
|
Ding S, Zhang H, Zhao X, Dang J, Li G. UNC5A, an epigenetically silenced gene, functions as a tumor suppressor in non-small cell lung cancer. Saudi J Biol Sci 2020; 27:3009-3017. [PMID: 33100860 PMCID: PMC7569136 DOI: 10.1016/j.sjbs.2020.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/01/2022] Open
Abstract
UNC5A has been reported to be related with human cancers. However, the function and mechanism in non-small cell lung carcinoma (NSCLC) remains unknown. We analyzed two NSCLC cell lines (A549 and H157), one normal human bronchial epithelial cell line (BEAS-2B) and the tissues of NSCLC. We used quantitative real-time PCR (qRT-PCR), western blot and immunohistochemical (IHC) staining to examine the expression of UNC5A. Methylation status of the UNC5A promoter was analyzed using methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). We used western blot to analyzed protein levels of PI3K/Akt pathway. We found that the mRNA expression of UNCA5 was significantly downregulated in NSCLC cells and tissues. The promoter of UNC5A was hypermethylated in NSCLC cells compared to normal control cells. The expression of UNC5A could be reversed by demethylation agent in NSCLC cells. The expression of UNC5A was decreased in NSCLC samples and significantly associated with the advanced types of NSCLC. Functionally, knockdown of UNC5A promoted cell proliferation, migration, invasion and induced apoptosis in NSCLC, overexpression of UNC5A yielded the opposite result. Moreover, we found that UNC5A negatively regulated PI3K/Akt signaling pathway in NSCLC. UNC5A is a novel epigenetically silenced gene in NSCLC and consequent under-expression of UNC5A may contribute to NSCLC tumorigenesis through regulating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Silu Ding
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Hongwei Zhang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Xinyu Zhao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Jun Dang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
15
|
Liang X, Gao J, Wang Q, Hou S, Wu C. ECRG4 Represses Cell Proliferation and Invasiveness via NFIC/OGN/NF-κB Signaling Pathway in Bladder Cancer. Front Genet 2020; 11:846. [PMID: 32922434 PMCID: PMC7456849 DOI: 10.3389/fgene.2020.00846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BCa) is a malignant tumor in the urinary system with high cancer-related mortality worldwide. However, the molecular mechanisms of many genes dysregulated in BCa are still unclear. Herein, we showed that esophageal cancer-related gene-4 (ECRG4), which is downregulated in BCa tissues and cell lines, has a positive correlation with osteoglycin (OGN). Further functional experimental studies suggested that both ECRG4 and OGN inhibit cell proliferation, migration, and invasion in BCa cells. Moreover, ECRG4 acts as a tumor repressor and promotes the expression of OGN via the upregulation of nuclear factor 1 C-type (NFIC), which can bind to the promoter region of OGN and regulate its transcription. Bioinformatics analysis revealed that NFIC is downregulated in BCa tissues and has a positive correlation with ECRG4 or OGN. Esophageal cancer-related gene-4 could positively regulate the protein levels of NFIC in BCa cells. In addition, we demonstrated for the first time that ECRG4 inhibits the nuclear factor (NF)-κB signaling pathway via the upregulation of OGN in BCa cells. Overall, these findings provide evidence that both ECRG4 and OGN function as tumor repressors and that overexpression of ECRG4 inhibits the NF-κB signaling pathway by promoting NFIC/OGN signaling in BCa cells. Our results reveal the molecular regulatory mechanisms of the ECRG4-mediated repression of the NFIC/OGN/NF-κB signaling pathway in BCa and provide potential biomarkers or therapeutic targets for BCa.
Collapse
Affiliation(s)
- Xin Liang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Urology, Qingdao Municipal Hospital, Qingdao, China
| | - Jiangang Gao
- Department of Urology, Qingdao Municipal Hospital, Qingdao, China
| | - Quan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
| | - Sichuan Hou
- Department of Urology, Qingdao Municipal Hospital, Qingdao, China
| | - Changli Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Abstract
Cancer can be identified as an uncontrolled growth and reproduction of cell. Accumulation of genetic aberrations (mutations of oncogenes and tumor-suppressor genes and epigenetic modifications) is one of the characteristics of cancer cell. Increasing number of studies highlighted importance of the epigenetic alterations in cancer treatment and prognosis. Now, cancer epigenetics have a huge importance for developing novel biomarkers and therapeutic target for cancer. In this review, we will provide a summary of the major epigenetic changes involved in cancer and preclinical results of epigenetic therapeutics.
Collapse
Affiliation(s)
- Cansu Aydin
- Department of Molecular Biology and Genetics, Faculty of Medicine, Trakya University, Merkez/Edirne, Turkey
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Turkish Republic of Northern Cyprus
| |
Collapse
|
17
|
Li XF, Zhang TG, Zhang YX. Correlation among VEGFR3 gene promoter methylation, protein overexpression, and clinical pathology in early gastric cancer. Transl Cancer Res 2020; 9:3499-3506. [PMID: 35117715 PMCID: PMC8798734 DOI: 10.21037/tcr.2020.03.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/02/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The occurrence and development of gastric cancer is a multi-factor, multi-stage, multi-gene abnormal accumulation process. Both genetic and epigenetic mechanisms play an important role in the molecular mechanism of gastric cancer. DNA methylation is one of the most studied epigenetic expression mechanisms. To study the correlation between gene promoter methylation status and protein expression of vascular endothelial growth factor receptor 3 (VEGFR3), as well as their association with clinicopathological features in early gastric cancer (EGC) cases. METHODS Immunohistochemical analysis and methylation-specific PCR (MSP) were used to detect the expression of VEGFR3 protein and methylation status of the VEGFR3 promoter in 50 cases of EGC and their paired normal gastric mucosa tissues. The level of DNA methylation of the VEGFR3 promoter, in situ VEGFR3 protein expression, and the clinicopathological characteristics of EGC patients were statistically analyzed. RESULTS The positive rate of VEGFR3 protein expression in EGC tumor tissue (60%) was significantly higher than that in the normal gastric mucosa (10%). The detectable methylation frequency of VEGFR3 promoter in EGC tumor tissue (48%) was significantly lower than that in the normal gastric mucosa (85%). As anticipated, the methylation level of the VEGFR3 gene promoter was negatively associated with the overexpression of VEGFR3 protein. In addition, methylation status of the VEGFR3 gene promoter was positively correlated with lymph node metastasis in EGC patients (P<0.05), but was not linked to patients' gender, age, tumor size, degree of differentiation, or tumor invasion depth (P>0.05). CONCLUSIONS Hypomethylation of the VEGFR3 gene promoter is one of the major mechanisms underlying VEGFR3 gene overexpression in EGC tumor tissues and is related to lymph node metastasis in EGC patients. DNA methylation of VEGFR3 is expected to become a molecular diagnostic and prognostic biomarker for EGC.
Collapse
Affiliation(s)
- Xiu-Feng Li
- Department of Pathology, Wei Fang People’s Hospital, Weifang 261041, China
- Shandong University School of Medicine of China, Jinan 250012, China
| | - Ting-Guo Zhang
- Shandong University School of Medicine of China, Jinan 250012, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yun-Xiang Zhang
- Department of Pathology, Wei Fang People’s Hospital, Weifang 261041, China
| |
Collapse
|
18
|
Dang X, Coimbra R, Mao L, Podvin S, Li X, Yu H, Costantini TW, Zeng X, Larocca D, Eliceiri BP, Baird A. Open reading frame mining identifies a TLR4 binding domain in the primary sequence of ECRG4. Cell Mol Life Sci 2019; 76:5027-5039. [PMID: 31190084 PMCID: PMC11105628 DOI: 10.1007/s00018-019-03159-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 01/22/2023]
Abstract
The embedding of small peptide ligands within large inactive pre-pro-precursor proteins encoded by orphan open reading frames (ORFs) makes them difficult to identify and study. To address this problem, we generated oligonucleotide (< 100-400 base pair) combinatorial libraries from either the epidermal growth factor (EGF) ORF that encodes the > 1200 amino acid EGF precursor protein or the orphan ECRG4 ORF, that encodes a 148 amino acid Esophageal Cancer Related Gene 4 (ECRG4), a putative cytokine precursor protein of up to eight ligands. After phage display and 3-4 rounds of biopanning for phage internalization into prostate cancer epithelial cells, sequencing identified the 53-amino acid EGF ligand encoded by the 5' region of the EGF ORF and three distinct domains within the primary sequence of ECRG4: its membrane targeting hydrophobic signal peptide, an unanticipated amino terminus domain at ECRG437-63 and a C-terminus ECRG4133-148 domain. Using HEK-blue cells transfected with the innate immunity receptor complex, we show that both ECRG437-63 and ECRG4133-148 enter cells by interaction with the TLR4 immune complex but neither stimulate NFkB. Taken together, the results help establish that phage display can be used to identify cryptic domains within ORFs of the human secretome and identify a novel TLR4-targeted internalization domain in the amino terminus of ECRG4 that may contribute to its effects on cell migration, immune cell activation and tumor suppression.
Collapse
Affiliation(s)
- Xitong Dang
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Raul Coimbra
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Sonia Podvin
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Xue Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Hua Yu
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Todd W Costantini
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Xiaorong Zeng
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | | | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Andrew Baird
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA.
- Department of Surgery, University of California San Diego, La Jolla, San Diego, CA, 98896, USA.
| |
Collapse
|
19
|
Potential functions of esophageal cancer-related gene-4 in the cardiovascular system. Front Med 2019; 13:639-645. [PMID: 31468282 DOI: 10.1007/s11684-019-0701-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Esophageal cancer-related gene-4 (Ecrg4) is cloned from the normal epithelium of the esophagus. It is constitutively expressed in quiescent epithelial cells and downregulated during tumorigenesis, and Ecrg4 expression levels are inversely correlated with the malignant phenotype of tumor cells, validating that Ecrg4 is a real tumor suppressor gene. Unlike other tumor suppressor genes that usually encode membrane or intracellular proteins, Ecrg4 encodes a 148-amino acid pre-pro-peptide that is tethered on the cell surface in epithelial cells, specialized epithelial cells, and human leukocytes, where it can be processed tissue dependently into several small peptides upon cell activation. Ecrg4 is expressed in a wide variety of other cells/tissues, including cardiomyocytes and conduction system of the heart, the glomus cells of the carotid body, adrenal glands, choroid plexus, and leukocytes among others, where it exerts distinct functions, such as promoting/suppressing inflammation, inducing neuron senescence, stimulating the hypothalamus-pituitary-adrenal axis, maintaining the stemness of stem cells, participating in the rhythm and rate control of the heart, and possibly gauging the responsiveness of the cardiovascular system (CVS) to hypoxia, in addition to tumor suppression. Here, we briefly review the latest discoveries on Ecrg4 and its underlying molecular mechanisms as a tumor suppressor and focus on the emerging roles of Ecrg4 in the CVS.
Collapse
|
20
|
Nakamura S, Kanda M, Kodera Y. Incorporating molecular biomarkers into clinical practice for gastric cancer. Expert Rev Anticancer Ther 2019; 19:757-771. [PMID: 31437076 DOI: 10.1080/14737140.2019.1659136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Gastric cancer is one of the most common causes of cancer-related mortality worldwide. To improve clinical outcomes, it is critical to develop appropriate approaches to diagnosis and treatment. Biomarkers have numerous potential clinical applications, including screening, assessing risk, determining prognosis, monitoring recurrence, and predicting response to treatment. Furthermore, biomarkers may contribute to the development of effective therapies. Areas covered: Here we review recent progress in exploiting GC-specific biomarkers such as protein-coding genes, microRNAs, long noncoding RNAs, and methylated gene promoters. Expert opinion: The development of biomarkers for diagnosing and monitoring gastric cancer and for individualizing therapeutic targets shows great promise for improving gastric cancer management.
Collapse
Affiliation(s)
- Shunsuke Nakamura
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
21
|
Yonemura H, Futakuchi A, Inoue-Mochita M, Fujimoto T, Takahashi E, Tanihara H, Inoue T. DNA methyltransferase inhibitor suppresses fibrogenetic changes in human conjunctival fibroblasts. Mol Vis 2019; 25:382-390. [PMID: 31523116 PMCID: PMC6707755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 07/19/2019] [Indexed: 11/11/2022] Open
Abstract
Purpose This study aimed to clarify the effects of a DNA methyltransferase inhibitor on fibrogenetic changes in human conjunctival fibroblasts (HConF). Methods HConF were pretreated with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza-dC) for 48 h. After one passage, the cells were treated with 5 ng/ml of transforming growth factor (TGF)-β2 for 48 h, and the expression levels of α-smooth muscle actin (α-SMA), extracellular matrix proteins, and phosphorylated Smad3 were evaluated with western blotting. A fusion construct between the COL1A2 promoter and the luciferase gene was introduced into the HConF after the first passage, and the construct's activity was detected via a luciferase reporter gene assay. Results TGF-β2-induced upregulation of α-SMA was suppressed by pretreatment with 5-Aza-dC (0.1, 1.0, and 10 μM) in a dose-dependent manner. Upregulation of type I collagen was also suppressed by 10 μM 5-Aza-dC pretreatment. In contrast, 5-Aza-dC had no inhibitory effect on the expression of fibronectin or phosphorylated Smad3. However, COL1A2 promoter activity was suppressed with 5-Aza-dC pretreatment. Conclusions In HConF, fibrogenetic changes were partly suppressed with a DNA methyltransferase inhibitor, suggesting an indirect inhibitory effect of the inhibitor on the COL1A2 promoter in HConF.
Collapse
Affiliation(s)
- Hitomi Yonemura
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Futakuchi
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miyuki Inoue-Mochita
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomokazu Fujimoto
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Eri Takahashi
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Toshihiro Inoue
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|