1
|
Liao L, Deng L, Zhang Y, Yang S, Andriani L, Hu S, Zhang F, Shao Z, Li D. C9orf142 transcriptionally activates MTBP to drive progression and resistance to CDK4/6 inhibitor in triple-negative breast cancer. Clin Transl Med 2023; 13:e1480. [PMID: 38009308 PMCID: PMC10679971 DOI: 10.1002/ctm2.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) presents the most challenging subtype of all breast cancers because of its aggressive clinical phenotypes and absence of viable therapy targets. In order to identify effective molecular targets for treating patients with TNBC, we conducted an integration analysis of our recently published TNBC dataset of quantitative proteomics and RNA-Sequencing, and found the abnormal upregulation of chromosome 9 open reading frame 142 (C9orf142) in TNBC. However, the functional roles of C9orf142 in TNBC are unclear. METHODS In vitro and in vivo functional experiments were performed to assess potential roles of C9orf142 in TNBC. Immunoblotting, real-time quantitative polymerase chain reaction (RT-qPCR), and immunofluorescent staining were used to investigate the expression levels of C9orf142 and its downstream molecules. The molecular mechanisms underlying C9orf142-regulated mouse double minute 2 (MDM2)-binding protein (MTBP) were determined by chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS In TNBC tissues and metastatic lymph nodes, we observed that C9orf142 exhibited abnormal up-regulation, and its elevated expression was indicative of unfavorable prognosis for TNBC patients. Both in vitro and in vivo functional experiments demonstrated that C9orf142 accelerated TNBC growth and metastasis. Further mechanism exploration revealed that C9orf142 transcriptionally activated MTBP, thereby regulating its downstream MDM2/p53/p21 signaling axis and the transition of cell cycle from G1 to S phase. Functional rescue experiment demonstrated that knockdown of MTBP attenuated C9orf142-mediated tumour growth and metastasis. Furthermore, depletion of C9orf142 remarkably increased the responsiveness of TNBC cells to CDK4/6 inhibitor abemaciclib. CONCLUSIONS Together, these findings unveil a previously unrecognized effect of C9orf142 in TNBC progression and responsiveness to CDK4/6 inhibitor, and emphasize C9orf142 as a promising intervention target for TNBC treatment.
Collapse
Affiliation(s)
- Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yin‐Ling Zhang
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shao‐Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lisa Andriani
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Shu‐Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Fang‐Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhi‐Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Da‐Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Ranjan A, Thoenen EA, Kaida A, Wood S, Van Dyke T, Iwakuma T. Characterization of an Mtbp Hypomorphic Allele in a Diethylnitrosamine-Induced Liver Carcinogenesis Model. Cancers (Basel) 2023; 15:4596. [PMID: 37760565 PMCID: PMC10526184 DOI: 10.3390/cancers15184596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
MTBP is implicated in cell cycle progression, DNA replication, and cancer metastasis. However, the function of MTBP remains enigmatic and is dependent on cellular contexts and its cellular localization. To understand the in vivo physiological role of MTBP, it is important to generate Mtbp knockout mice. However, complete deletion of the Mtbp gene in mice results in early embryonic lethality, while its heterozygous deletion shows modest biological phenotypes, including enhanced cancer metastasis. To overcome this and better characterize the in vivo physiological function of MTBP, we, for the first time, generated mice that carry an Mtbp hypomorphic allele (MtbpH) in which Mtbp protein is expressed at approximately 30% of that in the wild-type allele. We treated wild-type, Mtbp+/-, and MtbpH/- mice with a liver carcinogen, diethylnitrosamine (DEN), and found that the MtbpH/- mice showed worse overall survival when compared to the wild-type mice. Consistent with previous reports using human liver cancer cells, mouse embryonic fibroblasts (MEFs) from the MtbpH/- mice showed an increase in the nuclear localization of p-Erk1/2 and migratory potential. Thus, MtbpH/- mice and cells from MtbpH/- mice are valuable to understand the in vivo physiological role of Mtbp and validate the diverse functions of MTBP that have been observed in human cells.
Collapse
Affiliation(s)
- Atul Ranjan
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Elizabeth A. Thoenen
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Atsushi Kaida
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stephanie Wood
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Tomoo Iwakuma
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Sahni S, Nahm C, Ahadi MS, Sioson L, Byeon S, Chou A, Maloney S, Moon E, Pavlakis N, Gill AJ, Samra J, Mittal A. Gene expression profiling of pancreatic ductal adenocarcinomas in response to neoadjuvant chemotherapy. Cancer Med 2023; 12:18050-18061. [PMID: 37533202 PMCID: PMC10523964 DOI: 10.1002/cam4.6411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
AIM Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all major cancers. Chemotherapy is the mainstay systemic therapy for PDAC, and chemoresistance is a major clinical problem leading to therapeutic failure. This study aimed to identify key differences in gene expression profile in tumors from chemoresponsive and chemoresistant patients. METHODS Archived formalin-fixed paraffin-embedded tumor tissue samples from patients treated with neoadjuvant chemotherapy were obtained during surgical resection. Specimens were macrodissected and gene expression analysis was performed. Multi- and univariate statistical analysis was performed to identify differential gene expression profile of tumors from good (0%-30% residual viable tumor [RVT]) and poor (>30% RVT) chemotherapy-responders. RESULTS Initially, unsupervised multivariate modeling was performed by principal component analysis, which demonstrated a distinct gene expression profile between good- and poor-chemotherapy responders. There were 396 genes that were significantly (p < 0.05) downregulated (200 genes) or upregulated (196 genes) in tumors from good responders compared to poor responders. Further supervised multivariate analysis of significant genes by partial least square (PLS) demonstrated a highly distinct gene expression profile between good- and poor responders. A gene biomarker of panel (IL18, SPA17, CD58, PTTG1, MTBP, ABL1, SFRP1, CHRDL1, IGF1, and CFD) was selected based on PLS model, and univariate regression analysis of individual genes was performed. The identified biomarker panel demonstrated a very high ability to diagnose good-responding PDAC patients (AUROC: 0.977, sensitivity: 82.4%; specificity: 87.0%). CONCLUSION A distinct tumor biological profile between PDAC patients who either respond or not respond to chemotherapy was identified.
Collapse
Affiliation(s)
- Sumit Sahni
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
| | - Christopher Nahm
- Western Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Mahsa S. Ahadi
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Loretta Sioson
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sooin Byeon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Angela Chou
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sarah Maloney
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Elizabeth Moon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Sydney Cancer Center, Royal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Cancer InstituteSt LeonardsNew South WalesAustralia
| | - Anthony J. Gill
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- The University of Notre Dame AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Wang H, Chu F, Zhijie L, Bi Q, Lixin L, Zhuang Y, Xiaofeng Z, Niu X, Zhang D, Xi H, Li BA. MTBP enhances the activation of transcription factor ETS-1 and promotes the proliferation of hepatocellular carcinoma cells. Front Oncol 2022; 12:985082. [PMID: 36106099 PMCID: PMC9464980 DOI: 10.3389/fonc.2022.985082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence indicates that the oncoprotein murine double minute (MDM2) binding protein (MTBP) can be considered a pro-oncogene of human malignancies; however, its function and mechanisms in hepatocellular carcinoma (HCC) are still not clear. In the present work, our results demonstrate that MTBP could function as a co-activator of transcription factor E26 transformation-specific sequence (ETS-1), which plays an important role in HCC cell proliferation and/or metastasis and promotes proliferation of HCC cells. Using luciferase and real-time polymerase chain reaction (qPCR) assays, MTBP was found to enhance the transcription factor activation of ETS-1. The results from chromatin co-immunoprecipitation showed that MTBP enhanced the recruitment of ETS-1 to its downstream gene’s (mmp1’s) promoter region with ETS-1 binding sites. In cellular and nude mice models, overexpression of MTBP was shown to promote the proliferation of MHCC97-L cells with low endogenous MTBP levels, whereas the knockdown of MTBP led to inhibition of the proliferation of MHCC97-H cells that possessed high endogenous levels of MTBP. The effect of MTBP on ETS-1 was confirmed in the clinical specimens; the expression of MTBP was positively correlated with the downstream genes of ETS-1, mmp3, mmp9, and uPA. Therefore, by establishing the role of MTBP as a novel co-activator of ETS-1, this work expands our knowledge of MTBP or ETS-1 and helps to provide new ideas concerning HCC-related research.
Collapse
Affiliation(s)
- Hongbo Wang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fang Chu
- Department of Emergency, The Fifth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Li Zhijie
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Bi
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Li Lixin
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yunlong Zhuang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhang Xiaofeng
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaofeng Niu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Dali Zhang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - He Xi
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Bo-an Li
- Clinical Laboratory, The Fifth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Bo-an Li,
| |
Collapse
|
6
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Liu X, Cheng Y, Wang Y, Zhang Y. Circular RNA circVAPA contributes to non-small-cell lung cancer progression via miR-342-3p-dependent regulation of ZEB2. World J Surg Oncol 2021; 19:335. [PMID: 34839824 PMCID: PMC8628473 DOI: 10.1186/s12957-021-02447-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accumulating evidence demonstrated that circular RNAs (circRNAs) play pivotal regulatory roles in the pathology of cancers. Disclosing the roles and molecular mechanisms of circRNAs in tumorigenesis and development is essential to identify novel diagnostic and therapeutic targets. In this study, we explored the role of circVAPA in non-small-cell lung cancer (NSCLC) progression and its associated mechanism. METHODS The expression level of RNA was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was assessed by MTT assay and colony-forming assay. Cell apoptosis was analyzed by flow cytometry. Cell migration and invasion were assessed by transwell assays. Dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays were used to test the intermolecular interactions. The role of circVAPA was assessed in vivo. And xenograft tumor tissues were analyzed by immunohistochemistry (IHC) staining. RESULTS CircVAPA expression was upregulated in NSCLC tissues and cell lines, and a high level of circVAPA was associated with a poor prognosis of NSCLC patients. CircVAPA silencing suppressed the proliferation, migration, and invasion and induced the apoptosis of NSCLC cells. CircVAPA served as a molecular sponge for microRNA-342-3p (miR-342-3p). miR-342-3p interference largely reversed circVAPA knockdown-mediated anti-tumor effects in NSCLC cells. Zinc finger E-box-binding homeobox 2 (ZEB2) was a target of miR-342-3p, and miR-342-3p overexpression suppressed the malignant behaviors of NSCLC cells largely by downregulating ZEB2. CircVAPA silence repressed xenograft tumor growth in vivo, and IHC assay confirmed that circVAPA silence restrained the proliferation and metastasis but induced the apoptosis of NSCLC cells in vivo. CONCLUSION CircVAPA contributes to the progression of NSCLC by binding to miR-342-3p to upregulate ZEB2. CircVAPA/miR-342-3p/ZEB2 axis might be a novel potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekoudong Street, Xicheng District, Beijing, 100035, China.
| | - Yang Cheng
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekoudong Street, Xicheng District, Beijing, 100035, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekoudong Street, Xicheng District, Beijing, 100035, China
| | - Yinhong Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekoudong Street, Xicheng District, Beijing, 100035, China
| |
Collapse
|
8
|
Lv J, Zhu S, Chen H, Xu Y, Su Q, Yu G, Ma W. Paeonol inhibits human lung cancer cell viability and metastasis in vitro via miR-126-5p/ZEB2 axis. Drug Dev Res 2021; 83:432-446. [PMID: 34636432 DOI: 10.1002/ddr.21873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/06/2022]
Abstract
Paeonol exerted an effect in lung cancer, but the underlying mechanism remained vague. In this research, we assessed the effects of Paeonol and microRNA (miR)-126-5p on the viability, migration, invasion, and epithelial-mesenchymal transition (EMT) of lung cancer cells. Lung cancer cells and BEAS-2B cells were treated with Paeonol, and viability was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay. The migration and invasion of lung cancer cells after treatment with Paeonol at 40 μg/mL or 80 μg/mL were detected by wound healing assay and Transwell assay, respectively. The effects of Paeonol on transforming growth factor-β1 (TGF-β1)-induced EMT and relative expressions of EMT-related proteins were determined using Western blot. The target gene of miR-126-5p and the binding sites between them were predicted by TargetScan, and confirmed using dual-luciferase reporter assay. Relative expressions of miR-126-5p, its target gene and EMT-related proteins were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Rescue assay was performed to analyze the relation between Paeonol and miR-126-5p. Paeonol down-regulated cell viability and inhibited migration, invasion and TGF-β1-induced EMT while up-regulating miR-126-5p expression in lung cancer cells as the dose increased. However, miR-126-5p inhibitor could reverse the effect of Paeonol. ZEB2 was the target gene of miR-126-5p, and silencing ZEB2 expression reversed the effects of miR-126-5p downregulation. Paeonol also regulated the expression of ZEB2 in lung cancer cells, and this regulation depends on the regulation of miR-126-5p. Paeonol inhibits human lung cancer cell viability and metastasis via the miR-126-5p/ZEB2 axis, and could be adopted as a potential agent for lung cancer treatment.
Collapse
Affiliation(s)
- Jing Lv
- Department of Traditional Chinese Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Shibing Zhu
- Department of Traditional Chinese Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Huiping Chen
- Department of Endocrinology, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Ying Xu
- Department of Special Medical Treatment, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Qingyu Su
- ICU, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Guofen Yu
- Special Needs Ward, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Wei Ma
- Department of Emergency, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| |
Collapse
|
9
|
Jiang Q, Ma Y, Han J, Chu J, Ma X, Shen L, Liu B, Li BA, Hou J, Bi Q. MDM2 Binding Protein Induces the Resistance of Hepatocellular Carcinoma Cells to Molecular Targeting Agents via Enhancing the Transcription Factor Activity of the Pregnane X Receptor. Front Oncol 2021; 11:715193. [PMID: 34249768 PMCID: PMC8264664 DOI: 10.3389/fonc.2021.715193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
The MDM2 binding protein (MTBP) has been considered an important regulator of human malignancies. In this study, we demonstrate that the high level of MTBP’s endogenous expression is correlated with poor prognosis of advanced hepatocellular carcinoma (HCC) patients who received sorafenib. MTBP interacted with the Pregnane X receptor (PXR) and enhanced the transcription factor activity of PXR. Moreover, MTBP enhanced the accumulation of PXR in HCC cells’ nuclear and the recruitment of PXR to its downstream gene’s (cyp3a4’s) promoter region. Mechanically, the knockdown of MTBP in MHCC97-H cells with high levels of MTBP decelerated the clearance or metabolism of sorafenib in HCC cells and led to the resistance of HCC cells to sorafenib. Whereas overexpression of MTBP in in MHCC97-L cells with low levels of MTBP showed the opposite trend. By establishing the interaction between MTBP and PXR, our results indicate that MTBP could function as a co-activator of PXR and could be a promising therapeutic target to enhance the sensitivity of HCC cells to molecular targeting agents.
Collapse
Affiliation(s)
- Qiyu Jiang
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Ma
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingjing Han
- Department of Gastroenterology, Sangzhi County National Hospital, Zhangjiajie City, China
| | - Jingdong Chu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuemei Ma
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijun Shen
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Liu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo-An Li
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Bi
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Shayimu P, Yusufu A, Rehemutula A, Redati D, Jiapaer R, Tuerdi R. MTBP promoted the proliferation, migration and invasion of colon cancer cells by activating the expression of ZEB2. Anim Cells Syst (Seoul) 2021; 25:152-160. [PMID: 34262658 PMCID: PMC8253212 DOI: 10.1080/19768354.2021.1938218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colon cancer is a malignant tumor that seriously affects human health. Recently, studies revealed that the expression of MTBP enhanced the proliferation and metastasis of many types of cancer cells. And the data also showed that MTBP has the potential to regulate the expression of ZEB2. However, it is unclear whether MTBP can affect the proliferation, migration and invasion of colon cancer cells by modulating the expression of ZEB2. In this study, we established the MTBP overexpression and knockdown colon cancer cells with the transfection. Next, CCK-8 and transwell assays were carried out to determine the changes of the proliferation and invasion of colon cancer cells, respectively. After that, we overexpressed the ZEB2 in these MTBP knockdown colon cancer cells. Finally, the invasion and migration of these cells were detected with the same methods. We revealed that overexpression of MTBP enhanced the proliferation and invasion of colon cancer cells. Moreover, suppression of MTBP repressed the proliferation, migration and invasion of colon cancer cells. Furthermore, MTBP promoted the expression of ZEB2. The overexpression of ZEB2 abolished the MTBP knockdown induced inhibition of the migration and invasion of colon cancer cells. These results implied that MTBP enhanced the proliferation, migration and invasion of colon cancer cells by activating the expression of ZEB2.
Collapse
Affiliation(s)
- Paerhati Shayimu
- Department of Gastrointestinal Surgery, Cancer Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Aikeremu Yusufu
- Department of Gastrointestinal Surgery, Cancer Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Aizimaiti Rehemutula
- Department of Gastrointestinal Surgery, Cancer Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Darebai Redati
- B-Ultrasound Room, Cancer Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Rexida Jiapaer
- Department of Gastrointestinal Surgery, Cancer Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Rousidan Tuerdi
- Central Laboratory, Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
11
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
12
|
Reactivation of microRNA-506 inhibits gastric carcinoma cell metastasis through ZEB2. Aging (Albany NY) 2020; 11:1821-1831. [PMID: 30923258 PMCID: PMC6461178 DOI: 10.18632/aging.101877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are frequently dysregulated in a variety of human cancers, including gastric carcinoma. To improve our understanding of the role of miRNAs in gastric carcinoma and potential identify novel biomarkers or therapeutic agents, we performed microarray analysis to identify differentially expressed miRNAs in gastric carcinoma, compared with paired non-cancerous gastric tissues. We identified significantly differentially expressed miRNAs in gastric carcinoma tissues, including miR-506. We validated the microarray results by quantitative reverse transcription polymerase chain reaction in 26 specimens and confirmed significant downregulation of miR-506 in gastric carcinoma. Bioinformatics analysis predicted ZEB2 (zinc finger E-box-binding homeobox 2) as a potential target of miR-506. MiR-506 levels and ZEB2 levels were inversely correlated in gastric carcinoma, and low miR-506 levels in gastric carcinoma were associated with poor prognosis. Overexpression of miR-506 in gastric carcinoma cells significantly inhibited cell migration and invasion, while depletion of miR-506 in gastric carcinoma cells significantly increased cell migration and invasion. Transplantation of miR-506-overexpressing gastric carcinoma cells developed significantly smaller tumor, compared to the control. Thus, our results suggest that miR-506 may function as a tumor suppressor and targets and inhibits ZEB2 in gastric carcinoma.
Collapse
|