1
|
Haubner S, Subklewe M, Sadelain M. Honing CAR T cells to tackle acute myeloid leukemia. Blood 2025; 145:1113-1125. [PMID: 39630061 DOI: 10.1182/blood.2024024063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 03/14/2025] Open
Abstract
ABSTRACT Acute myeloid leukemia (AML) remains a dismal disease with poor prognosis, particularly in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR) therapy has yielded remarkable clinical results in other leukemias and thus has, in principle, the potential to achieve similar outcomes in R/R AML. Redirecting the approved CD19-specific CAR designs against the myeloid antigens CD33, CD123, or CLEC12A has occasionally yielded morphologic leukemia-free states but has so far been marred by threatening myeloablation and early relapses. These safety and efficacy limitations are largely due to the challenge of identifying suitable target antigens and designing adequate receptors for effective recognition and safe elimination of AML. Building on lessons learned from the initial clinical attempts, a new wave of CAR strategies relying on alternative target antigens and innovative CAR designs is about to enter clinical evaluation. Adapted multiantigen targeting, logic gating, and emerging cell engineering solutions offer new possibilities to better direct T-cell specificity and sensitivity toward AML. Pharmacologic modulation and genetic epitope engineering may extend these approaches by augmenting target expression in AML cells or minimizing target expression in normal hematopoietic cells. On/off switches or CAR T-cell depletion may curb excessive or deleterious CAR activity. Investigation of AML-intrinsic resistance and leukemic microenvironmental factors is poised to reveal additional targetable AML vulnerabilities. We summarize here the findings, challenges, and new developments of CAR therapy for AML. These illustrate the need to specifically adapt CAR strategies to the complex biology of AML to achieve better therapeutic outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- Animals
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Sascha Haubner
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Michel Sadelain
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| |
Collapse
|
2
|
Kitte R, Serfling R, Blache U, Seitz C, Schrader S, Köhl U, Fricke S, Bär C, Tretbar US. Optimal Chimeric Antigen Receptor (CAR)-mRNA for Transient CAR T Cell Generation. Int J Mol Sci 2025; 26:965. [PMID: 39940734 PMCID: PMC11818003 DOI: 10.3390/ijms26030965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) are becoming increasingly important in the treatment of hematologic malignancies and are also intensively being investigated for other diseases such as autoimmune disorders and HIV. Current CAR T cell therapies predominantly use viral transduction methods which, despite their efficacy, raise safety concerns related to genomic integration and potentially associated malignancies as well as labor- and cost-intensive manufacturing. Therefore, non-viral gene transfer methods, especially mRNA-based approaches, have attracted research interest due to their transient modification and enhanced safety profile. In this study, the optimization of CAR-mRNA for T cell applications is investigated, focusing on the impact of mRNA modifications, in vitro transcription protocols, and purification techniques on the translation efficiency and immunogenicity of mRNA. Furthermore, the refined CAR-mRNA was used to generate transient CAR T cells from acute myeloid leukemia patient samples, demonstrating efficacy in vitro and proof-of-concept for clinically relevant settings. These results highlight the potential of optimized mRNA to produce transient and safe CAR T cells.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Immunotherapy, Adoptive/methods
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Reni Kitte
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Robert Serfling
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| | - Claudius Seitz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Selina Schrader
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Medicine Campus MEDiC, Technical University of Dresden, Klinikum Chemnitz gGmbH, 09116 Chemnitz, Germany
| | - Christian Bär
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany;
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - U. Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
4
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
5
|
Zhu S. CAR-T in cancer therapeutics and updates. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:189-194. [PMID: 39281717 PMCID: PMC11402450 DOI: 10.1016/j.jncc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 09/18/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a groundbreaking approach in cancer treatment, utilizing the immune system's capabilities to combat malignancies. This innovative therapy involves extracting T-cells from a patient's blood, genetically modifying them to target specific cancer cells, and reinfusing them back into the patient's body. The genetically modified T-cells then seek out and eliminate cancer cells, offering a promising therapeutic strategy. Since its initial approval in 2017, CAR-T therapy has witnessed remarkable advancements and updates. Notably, CAR-T therapy, which was initially developed for hematological malignancies, has expanded its scope to target solid tumors. Currently, clinical trials are underway to explore the efficacy of CAR-T therapy in treating various solid tumors, such as lung cancer, breast cancer, and ovarian cancer. These trials hold great potential to revolutionize cancer treatment and provide new hope to patients with challenging-to-treat solid tumors. In this mini-review, we present an overview of CAR-T therapy's mechanisms, emphasizing its role in targeting cancer cells and the potential therapeutic benefits. Additionally, we discuss the recent progress and updates in CAR-T therapy, particularly its application in treating solid tumors, and highlight the ongoing clinical trials aimed at broadening its therapeutic horizon. The evolving landscape of CAR-T therapy signifies a promising direction in cancer therapeutics, with the potential to revolutionize the treatment of both hematological and solid tumor malignancies.
Collapse
Affiliation(s)
- Shigui Zhu
- Cellular Biomedical Group, Inc., Shanghai, China
| |
Collapse
|
6
|
Fredon M, Poussard M, Biichlé S, Bonnefoy F, Mantion CF, Seffar E, Renosi F, Bôle-Richard E, Boidot R, Chevrier S, Anna F, Loustau M, Caumartin J, Gonçalves-Venturelli M, Robinet E, Saas P, Deconinck E, Daguidau E, Roussel X, Godet Y, Adotévi O, Angelot-Delettre F, Galaine J, Garnache-Ottou F. Impact of scFv on Functionality and Safety of Third-Generation CD123 CAR T Cells. Cancer Immunol Res 2024; 12:1090-1107. [PMID: 38819256 DOI: 10.1158/2326-6066.cir-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/01/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Chimeric antigen receptor (CAR) T cells express an extracellular domain consisting of a single-chain fragment variable (scFv) targeting a surface tumor-associated antigen. scFv selection should involve safety profiling with evaluation of the efficacy/toxicity balance, especially when the target antigen also is expressed on healthy cells. Here, to assess differences in terms of efficacy and on-target/off-tumor effects, we generated five different CARs targeting CD123 by substituting only the scFv. In in vitro models, T cells engineered to express three of these five CD123 CARs were effectively cytotoxic on leukemic cells without increasing lysis of monocytes or endothelial cells. Using the IncuCyte system, we confirmed the low cytotoxicity of CD123 CAR T cells on endothelial cells. Hematotoxicity evaluation using progenitor culture and CD34 cell lysis showed that two of the five CD123 CAR T cells were less cytotoxic on hematopoietic stem cells. Using a humanized mouse model, we confirmed that CD123- cells were not eliminated by the CD123 CAR T cells. Two CD123 CAR T cells reduced tumor infiltration and increased the overall survival of mice in three in vivo models of blastic plasmacytoid dendritic cell neoplasm. In an aggressive version of this model, bulk RNA sequencing analysis showed that these CD123 CAR T cells upregulated genes associated with cytotoxicity and activation/exhaustion a few days after the injection. Together, these results emphasize the importance of screening different scFvs for the development of CAR constructs to support selection of cells with the optimal risk-benefit ratio for clinical development.
Collapse
Affiliation(s)
- Maxime Fredon
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Margaux Poussard
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Sabeha Biichlé
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Francis Bonnefoy
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | | | - Evan Seffar
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Medical Oncology Department, CHU, Besançon, France
| | - Florian Renosi
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Molecular Onco-Hematology Laboratory, CHU, Besançon, France
| | | | - Romain Boidot
- Department of Tumor Biology and Pathology, Molecular Biology Unit, Georges-François Leclerc Center, Dijon, France
- ICMUB UMR CNRS 6302, Dijon, France
| | - Sandrine Chevrier
- Department of Tumor Biology and Pathology, Molecular Biology Unit, Georges-François Leclerc Center, Dijon, France
| | - François Anna
- Preclinical Department, Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Pasteur Institute, Paris, France
| | | | | | - Mathieu Gonçalves-Venturelli
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Lymphobank S.A.S.U, Besançon, France
| | | | - Philippe Saas
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Eric Deconinck
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology Department, CHU, Besançon, France
| | - Etienne Daguidau
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology Department, CHU, Besançon, France
| | - Xavier Roussel
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology Department, CHU, Besançon, France
| | - Yann Godet
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Olivier Adotévi
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Medical Oncology Department, CHU, Besançon, France
| | | | - Jeanne Galaine
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Francine Garnache-Ottou
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology and Cellular Immunology Laboratory, CHU, Besançon, France
| |
Collapse
|
7
|
Recchia Luciani G, Barilli A, Visigalli R, Dall’Asta V, Rotoli BM. Cytokines from SARS-CoV-2 Spike-Activated Macrophages Hinder Proliferation and Cause Cell Dysfunction in Endothelial Cells. Biomolecules 2024; 14:927. [PMID: 39199315 PMCID: PMC11353037 DOI: 10.3390/biom14080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Endothelial dysfunction plays a central role in the severity of COVID-19, since the respiratory, thrombotic and myocardial complications of the disease are closely linked to vascular endothelial damage. To address this issue, we evaluate here the effect of conditioned media from spike S1-activated macrophages (CM_S1) on the proliferation of human umbilical endothelial cells (HUVECs), focusing on the specific role of interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Results obtained demonstrate that the incubation with CM_S1 for 72 h hinders endothelial cell proliferation and induces signs of cytotoxicity. Comparable results are obtained upon exposure to IFN-γ + TNF-α, which are thus postulated to play a pivotal role in the effects observed. These events are associated with an increase in p21 protein and a decrease in Rb phosphorylation, as well as with the activation of IRF-1 and NF-kB transcription factors. Overall, these findings further sustain the pivotal role of a hypersecretion of inflammatory cytokines as a trigger for endothelial activation and injury in the immune-mediated effects of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.R.L.); (A.B.); (R.V.); (B.M.R.)
| | | |
Collapse
|
8
|
Zha C, Song J, Wan M, Lin X, He X, Wu M, Huang R. Recent advances in CAR-T therapy for the treatment of acute myeloid leukemia. Ther Adv Hematol 2024; 15:20406207241263489. [PMID: 39050113 PMCID: PMC11268017 DOI: 10.1177/20406207241263489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy, which has demonstrated notable efficacy against B-cell malignancies and is approved by the US Food and Drug Administration for clinical use in this context, represents a significant milestone in cancer immunotherapy. However, the efficacy of CAR-T therapy for the treatment of acute myeloid leukemia (AML) is poor. The challenges associated with the application of CAR-T therapy for the clinical treatment of AML include, but are not limited to, nonspecific distribution of AML therapeutic targets, difficulties in the production of CAR-T cells, AML blast cell heterogeneity, the immunosuppressive microenvironment in AML, and treatment-related adverse events. In this review, we summarize the recent findings regarding various therapeutic targets for AML (CD33, CD123, CLL1, CD7, etc.) and the results of the latest clinical studies on these targets. Thereafter, we also discuss the challenges related to CAR-T therapy for AML and some promising strategies for overcoming these challenges, including novel approaches such as gene editing and advances in CAR design.
Collapse
Affiliation(s)
- Chenyu Zha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jialu Song
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Wan
- Department of Hematology, Zhujiang Hospital of Southern Medical University, No. 253 Gongyedadaozhong Road, Guangzhou, Guangdong 510282, China
| | - Xiao Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, No. 253 Gongyedadaozhong Road, Guangzhou, Guangdong 510282, China
| |
Collapse
|
9
|
Bianchi M, Reichen C, Croset A, Fischer S, Eggenschwiler A, Grübler Y, Marpakwar R, Looser T, Spitzli P, Herzog C, Villemagne D, Schiegg D, Abduli L, Iss C, Neculcea A, Franchini M, Lekishvili T, Ragusa S, Zitt C, Kaufmann Y, Auge A, Hänggi M, Ali W, Frasconi TM, Wullschleger S, Schlegel I, Matzner M, Lüthi U, Schlereth B, Dawson KM, Kirkin V, Ochsenbein AF, Grimm S, Reschke N, Riether C, Steiner D, Leupin N, Goubier A. The CD33xCD123xCD70 Multispecific CD3-Engaging DARPin MP0533 Induces Selective T Cell-Mediated Killing of AML Leukemic Stem Cells. Cancer Immunol Res 2024; 12:921-943. [PMID: 38683145 PMCID: PMC11217734 DOI: 10.1158/2326-6066.cir-23-0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The prognosis of patients with acute myeloid leukemia (AML) is limited, especially for elderly or unfit patients not eligible for hematopoietic stem cell (HSC) transplantation. The disease is driven by leukemic stem cells (LSCs), which are characterized by clonal heterogeneity and resistance to conventional therapy. These cells are therefore believed to be a major cause of progression and relapse. We designed MP0533, a multispecific CD3-engaging designed ankyrin repeat protein (DARPin) that can simultaneously bind to three antigens on AML cells (CD33, CD123, and CD70), aiming to enable avidity-driven T cell-mediated killing of AML cells coexpressing at least two of the antigens. In vitro, MP0533 induced selective T cell-mediated killing of AML cell lines, as well as patient-derived AML blasts and LSCs, expressing two or more target antigens, while sparing healthy HSCs, blood, and endothelial cells. The higher selectivity also resulted in markedly lower levels of cytokine release in normal human blood compared to single antigen-targeting T-cell engagers. In xenograft AML mice models, MP0533 induced tumor-localized T-cell activation and cytokine release, leading to complete eradication of the tumors while having no systemic adverse effects. These studies show that the multispecific-targeting strategy used with MP0533 holds promise for improved selectivity toward LSCs and efficacy against clonal heterogeneity, potentially bringing a new therapeutic option to this group of patients with a high unmet need. MP0533 is currently being evaluated in a dose-escalation phase 1 study in patients with relapsed or refractory AML (NCT05673057).
Collapse
Affiliation(s)
| | | | - Amelie Croset
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | | | | | | | - Thamar Looser
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | | | | | | | | | - Chloé Iss
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | | | | | - Simone Ragusa
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | - Christof Zitt
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | - Alienor Auge
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | - Martin Hänggi
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | - Waleed Ali
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | | | - Iris Schlegel
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | - Ursina Lüthi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | | | | | | - Adrian F. Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | | - Nina Reschke
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | | | | - Anne Goubier
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| |
Collapse
|
10
|
Harfmann M, Schröder T, Głów D, Jung M, Uhde A, Kröger N, Horn S, Riecken K, Fehse B, Ayuk FA. CD45-Directed CAR-T Cells with CD45 Knockout Efficiently Kill Myeloid Leukemia and Lymphoma Cells In Vitro Even after Extended Culture. Cancers (Basel) 2024; 16:334. [PMID: 38254824 PMCID: PMC10814116 DOI: 10.3390/cancers16020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND CAR-T cell therapy has shown impressive results and is now part of standard-of-care treatment of B-lineage malignancies, whereas the treatment of myeloid diseases has been limited by the lack of suitable targets. CD45 is expressed on almost all types of blood cells including myeloid leukemia cells, but not on non-hematopoietic tissue, making it a potential target for CAR-directed therapy. Because of its high expression on T and NK cells, fratricide is expected to hinder CD45CAR-mediated therapy. Due to its important roles in effector cell activation, signal transduction and cytotoxicity, CD45 knockout aimed at preventing fratricide in T and NK cells has been expected to lead to considerable functional impairment. METHODS CD45 knockout was established on T and NK cell lines using CRISPR/Cas9-RNPs and electroporation, and the successful protocol was transferred to primary T cells. A combined protocol was developed enabling CD45 knockout and retroviral transduction with a third-generation CAR targeting CD45 or CD19. The functionality of CD45ko effector cells, CD45ko/CD45CAR-T and CD45ko/CD19CAR-T cells was studied using proliferation as well as short- and long-term cytotoxicity assays. RESULTS As expected, the introduction of a CD45-CAR into T cells resulted in potent fratricide that can be avoided by CD45 knockout. Unexpectedly, the latter had no negative impact on T- and NK-cell proliferation in vitro. Moreover, CD45ko/CD45CAR-T cells showed potent cytotoxicity against CD45-expressing AML and lymphoma cell lines in short-term and long-term co-culture assays. A pronounced cytotoxicity of CD45ko/CD45CAR-T cells was maintained even after four weeks of culture. In a further setup, we confirmed the conserved functionality of CD45ko cells using a CD19-CAR. Again, the proliferation and cytotoxicity of CD45ko/CD19CAR-T cells showed no differences from those of their CD45-positive counterparts in vitro. CONCLUSIONS We report the efficient production of highly and durably active CD45ko/CAR-T cells. CD45 knockout did not impair the functionality of CAR-T cells in vitro, irrespective of the target antigen. If their activity can be confirmed in vivo, CD45ko/CD45CAR-T cells might, for example, be useful as part of conditioning regimens prior to stem cell transplantation.
Collapse
Affiliation(s)
- Maraike Harfmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Tanja Schröder
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Maximilian Jung
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Almut Uhde
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Francis A. Ayuk
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
11
|
Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, Lu Y, Fu P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis 2023; 14:586. [PMID: 37666809 PMCID: PMC10477350 DOI: 10.1038/s41419-023-06119-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments. In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
Collapse
Affiliation(s)
- Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, 313000, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Six Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Haixing Shen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, 315300, Cixi, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, 318000, Taizhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| |
Collapse
|
12
|
Gauthier L, Virone-Oddos A, Beninga J, Rossi B, Nicolazzi C, Amara C, Blanchard-Alvarez A, Gourdin N, Courta J, Basset A, Agnel M, Guillot F, Grondin G, Bonnevaux H, Bauchet AL, Morel A, Morel Y, Chiron M, Vivier E. Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat Biotechnol 2023; 41:1296-1306. [PMID: 36635380 PMCID: PMC10497414 DOI: 10.1038/s41587-022-01626-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 01/13/2023]
Abstract
CD123, the alpha chain of the IL-3 receptor, is an attractive target for acute myeloid leukemia (AML) treatment. However, cytotoxic antibodies or T cell engagers targeting CD123 had insufficient efficacy or safety in clinical trials. We show that expression of CD64, the high-affinity receptor for human IgG, on AML blasts confers resistance to anti-CD123 antibody-dependent cell cytotoxicity (ADCC) in vitro. We engineer a trifunctional natural killer cell engager (NKCE) that targets CD123 on AML blasts and NKp46 and CD16a on NK cells (CD123-NKCE). CD123-NKCE has potent antitumor activity against primary AML blasts regardless of CD64 expression and induces NK cell activation and cytokine secretion only in the presence of AML cells. Its antitumor activity in a mouse CD123+ tumor model exceeds that of the benchmark ADCC-enhanced antibody. In nonhuman primates, it had prolonged pharmacodynamic effects, depleting CD123+ cells for more than 10 days with no signs of toxicity and very low inflammatory cytokine induction over a large dose range. These results support clinical development of CD123-NKCE.
Collapse
Affiliation(s)
| | | | | | | | | | - Céline Amara
- Sanofi Drug Metabolism and Pharmacokinetics, Chilly Mazarin, France
| | | | | | - Jacqueline Courta
- Sanofi TMED Biomarkers and Clinical Bioanalysis, Chilly Mazarin, France
| | | | - Magali Agnel
- Sanofi Global Project Management, Vitry sur-Seine, France
| | | | | | | | | | | | | | | | - Eric Vivier
- Innate Pharma, Marseille, France.
- Aix-Marseille University, Centre of National Scientific Research (CNRS), National Insititute of Health and Medical Research (INSERM), Centre of Immunology at Marseille-Luminy (CIML), Marseille, France.
- APHM, Marseille-Immunopole, University Hospital of Timone, Marseille, France.
| |
Collapse
|
13
|
Zarychta J, Kowalczyk A, Krawczyk M, Lejman M, Zawitkowska J. CAR-T Cells Immunotherapies for the Treatment of Acute Myeloid Leukemia-Recent Advances. Cancers (Basel) 2023; 15:cancers15112944. [PMID: 37296906 DOI: 10.3390/cancers15112944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In order to increase the effectiveness of cancer therapies and extend the long-term survival of patients, more and more often, in addition to standard treatment, oncological patients receive also targeted therapy, i.e., CAR-T cells. These cells express a chimeric receptor (CAR) that specifically binds an antigen present on tumor cells, resulting in tumor cell lysis. The use of CAR-T cells in the therapy of relapsed and refractory B-type acute lymphoblastic leukemia (ALL) resulted in complete remission in many patients, which prompted researchers to conduct tests on the use of CAR-T cells in the treatment of other hematological malignancies, including acute myeloid leukemia (AML). AML is associated with a poorer prognosis compared to ALL due to a higher risk of relapse caused by the development of resistance to standard treatment. The 5-year relative survival rate in AML patients was estimated at 31.7%. The objective of the following review is to present the mechanism of action of CAR-T cells, and discuss the latest findings on the results of anti-CD33, -CD123, -FLT3 and -CLL-1 CAR-T cell therapy, the emerging challenges as well as the prospects for the future.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Milena Krawczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Shang S, Chen Y, Yang X, Yang Y, Wang W, Wang Y. RNA silencing of GM-CSF in CAR-T cells reduces the secretion of multiple inflammatory cytokines. Invest New Drugs 2023; 41:220-225. [PMID: 36988829 PMCID: PMC10050814 DOI: 10.1007/s10637-023-01344-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has become a research hotspot in the field of hematological malignancies. However, CAR-T cell therapy can lead to immunotherapy-associated side effects including cytokine release syndrome and neurotoxicity. Gene depletion of GM-CSF in CAR-T cells was found preventive against adverse effects, but additional transfections were required to produce CAR-T cells. In this study, we interrupted GM-CSF expression in CAR-T cells by inserting the GM-CSF shRNA-expression cassette in the CAR vector. Reduction of GM-CSF in CAR-T cells could decrease the level of several proinflammatory cytokines without hampering the killing capacity. The manufacture of GM-CSF knockdown CAR-T cells does not require complicated transfections, which makes it more practical and feasible for clinical application.
Collapse
Affiliation(s)
- Siqi Shang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Department of Neurology, Zhongshan Hospital, Fudan University, 200000, Shanghai, China
| | - Yunshuo Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Xuejiao Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Ying Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Navy Medical University, 200003, Shanghai, China
| | - Wenbo Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
| | - Yueying Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
| |
Collapse
|
15
|
Caruso S, De Angelis B, Del Bufalo F, Ciccone R, Donsante S, Volpe G, Manni S, Guercio M, Pezzella M, Iaffaldano L, Silvestris DA, Sinibaldi M, Di Cecca S, Pitisci A, Velardi E, Merli P, Algeri M, Lodi M, Paganelli V, Serafini M, Riminucci M, Locatelli F, Quintarelli C. Safe and effective off-the-shelf immunotherapy based on CAR.CD123-NK cells for the treatment of acute myeloid leukaemia. J Hematol Oncol 2022; 15:163. [PMID: 36335396 PMCID: PMC9636687 DOI: 10.1186/s13045-022-01376-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Background Paediatric acute myeloid leukaemia (AML) is characterized by poor outcomes in patients with relapsed/refractory disease, despite the improvements in intensive standard therapy. The leukaemic cells of paediatric AML patients show high expression of the CD123 antigen, and this finding provides the biological basis to target CD123 with the chimeric antigen receptor (CAR). However, CAR.CD123 therapy in AML is hampered by on-target off-tumour toxicity and a long “vein-to-vein” time.
Methods We developed an off-the-shelf product based on allogeneic natural killer (NK) cells derived from the peripheral blood of healthy donors and engineered them to express a second-generation CAR targeting CD123 (CAR.CD123). Results CAR.CD123-NK cells showed significant anti-leukaemia activity not only in vitro against CD123+ AML cell lines and CD123+ primary blasts but also in two animal models of human AML-bearing immune-deficient mice. Data on anti-leukaemia activity were also corroborated by the quantification of inflammatory cytokines, namely granzyme B (Granz B), interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α), both in vitro and in the plasma of mice treated with CAR.CD123-NK cells.
To evaluate and compare the on-target off-tumour effects of CAR.CD123-T and NK cells, we engrafted human haematopoietic cells (hHCs) in an immune-deficient mouse model. All mice infused with CAR.CD123-T cells died by Day 5, developing toxicity against primary human bone marrow (BM) cells with a decreased number of total hCD45+ cells and, in particular, of hCD34+CD38− stem cells. In contrast, treatment with CAR.CD123-NK cells was not associated with toxicity, and all mice were alive at the end of the experiments. Finally, in a mouse model engrafted with human endothelial tissues, we demonstrated that CAR.CD123-NK cells were characterized by negligible endothelial toxicity when compared to CAR.CD123-T cells.
Conclusions Our data indicate the feasibility of an innovative off-the-shelf therapeutic strategy based on CAR.CD123-NK cells, characterized by remarkable efficacy and an improved safety profile compared to CAR.CD123-T cells. These findings open a novel intriguing scenario not only for the treatment of refractory/resistant AML patients but also to further investigate the use of CAR-NK cells in other cancers characterized by highly difficult targeting with the most conventional T effector cells.
Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01376-3.
Collapse
Affiliation(s)
- Simona Caruso
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Roselia Ciccone
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Samantha Donsante
- grid.7841.aDepartment of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gabriele Volpe
- grid.414125.70000 0001 0727 6809Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Simona Manni
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Marika Guercio
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Michele Pezzella
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Laura Iaffaldano
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Domenico Alessandro Silvestris
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Matilde Sinibaldi
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Stefano Di Cecca
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Angela Pitisci
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Enrico Velardi
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Pietro Merli
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Mattia Algeri
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Mariachiara Lodi
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Valeria Paganelli
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Marta Serafini
- grid.7563.70000 0001 2174 1754Department of Pediatrics, Tettamanti Research Center, Fondazione MBBM/San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Mara Riminucci
- grid.7841.aDepartment of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Concetta Quintarelli
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
He W, Chen P, Chen Q, Cai Z, Zhang P. Cytokine storm: behind the scenes of the collateral circulation after acute myocardial infarction. Inflamm Res 2022; 71:1143-1158. [PMID: 35876879 PMCID: PMC9309601 DOI: 10.1007/s00011-022-01611-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
At least 17 million people die from acute myocardial infarction (AMI) every year, ranking it first among causes of death of human beings, and its incidence is gradually increasing. Typical characteristics of AMI include acute onset and poor prognosis. At present, there is no satisfactory treatment, but development of coronary collateral circulation (CCC) can be key to improving prognosis. Recent research indicates that the levels of cytokines, including those related to promoting inflammatory responses and angiogenesis, increase after the onset of AMI. In the early phase of AMI, cytokines play a vital role in inducing development of collateral circulation. However, when myocardial infarction is decompensated, cytokine secretion increases greatly, which may induce a cytokine storm and worsen prognosis. Cytokines can regulate the activation of a variety of signal pathways and form a complex network, which may promote or inhibit the establishment of collateral circulation. We searched for published articles in PubMed and Google Scholar, employing the keyword "acute myocardial infarction", "coronary collateral circulation" and "cytokine storm", to clarify the relationship between AMI and a cytokine storm, and how a cytokine storm affects the growth of collateral circulation after AMI, so as to explore treatment methods based on cytokine agents or inhibitors used to improve prognosis of AMI.
Collapse
Affiliation(s)
- Weixin He
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Peixian Chen
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Qingquan Chen
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zongtong Cai
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Pemmaraju N, Wilson NR, Senapati J, Economides MP, Guzman ML, Neelapu SS, Kazemimood R, Davis RE, Jain N, Khoury JD, Sugita M, Cai T, Smith J, Frattini MG, Garton A, Roboz G, Konopleva M. CD123-directed allogeneic chimeric-antigen receptor T-cell therapy (CAR-T) in blastic plasmacytoid dendritic cell neoplasm (BPDCN): Clinicopathological insights. Leuk Res 2022; 121:106928. [PMID: 35963025 DOI: 10.1016/j.leukres.2022.106928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a hematologic malignancy associated with overexpression of CD123. Allogeneic chimeric antigen receptor T cells (CAR-T) directed against CD123 in BPDCN have been studied in clinical trials. We performed post-mortem analysis of a patient treated with anti-CD123 CAR-T to elucidate cause of death, development of cytokine release syndrome (CRS), and tissue distribution of UCART123 cells. METHODS A post-mortem multidisciplinary clinicopathologic analysis was performed with digital droplet polymerase chain reaction of isolated blood and tissue ribonucleic acid (RNA) to evaluate tissue distribution of infused CAR-T. Multiparameter flow cytometry for detection of CAR-T was used for whole blood samples. Cytokine levels in plasma were measured using multiplex bead assay. Gene expression profiling on isolated RNA was performed using semi-custom Nanostring immune gene panel and RNA-sequence method. RNA in situ hybridization was performed using CAR-specific probe. RESULTS The patient developed severe clinical CRS refractory to corticosteroids, tocilizumab, and lymphodepletion. Despite significant reduction in BPDCN lesions, the patient passed away on day 9 of CAR-T. Autopsy results show that following lymphodepletion and UCART123 administration, the patient remained severely lymphopenic with few UCART123 cells detected, predominantly localized to spleen. CONCLUSIONS No definitive cause of death was determined, but we hypothesized that the patient may have succumbed to CAR-T-mediated cardiopulmonary toxicity. UCART123 cells displayed low overall distribution, with predominance in immune organs and tissues. Mechanism of CRS development is still poorly understood in patients receiving CAR-T therapy. Future directions in the field developing CD123-targeted agents in BPDCN are discussed.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Minas P Economides
- Department of Hematology and Oncology, New York University, NY, United States
| | - Monica L Guzman
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rossana Kazemimood
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph D Khoury
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mayumi Sugita
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Tianyu Cai
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | - Gail Roboz
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Targeting vascular inflammation through emerging methods and drug carriers. Adv Drug Deliv Rev 2022; 184:114180. [PMID: 35271986 PMCID: PMC9035126 DOI: 10.1016/j.addr.2022.114180] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Acute inflammation is a common dangerous component of pathogenesis of many prevalent conditions with high morbidity and mortality including sepsis, thrombosis, acute respiratory distress syndrome (ARDS), COVID-19, myocardial and cerebral ischemia-reperfusion, infection, and trauma. Inflammatory changes of the vasculature and blood mediate the course and outcome of the pathology in the tissue site of insult, remote organs and systemically. Endothelial cells lining the luminal surface of the vasculature play the key regulatory functions in the body, distinct under normal vs. pathological conditions. In theory, pharmacological interventions in the endothelial cells might enable therapeutic correction of the overzealous damaging pro-inflammatory and pro-thrombotic changes in the vasculature. However, current agents and drug delivery systems (DDS) have inadequate pharmacokinetics and lack the spatiotemporal precision of vascular delivery in the context of acute inflammation. To attain this level of precision, many groups design DDS targeted to specific endothelial surface determinants. These DDS are able to provide specificity for desired tissues, organs, cells, and sub-cellular compartments needed for a particular intervention. We provide a brief overview of endothelial determinants, design of DDS targeted to these molecules, their performance in experimental models with focus on animal studies and appraisal of emerging new approaches. Particular attention is paid to challenges and perspectives of targeted therapeutics and nanomedicine for advanced management of acute inflammation.
Collapse
|
19
|
Parol W, Anderson GSF, Chapman MA. CAR-T cell therapies for cancer: what novel technologies are being developed for toxicity data? Expert Opin Drug Metab Toxicol 2022; 18:241-244. [PMID: 35686653 DOI: 10.1080/17425255.2022.2085551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Wiktoria Parol
- University of Cambridge, MRC Toxicology Unit, Cambridge, UK
| | | | | |
Collapse
|
20
|
Wu H, Zhang L, Zhu Z, Ding C, Chen S, Liu R, Fan H, Chen Y, Li H. Novel CD123 polyaptamer hydrogel edited by Cas9/sgRNA for AML-targeted therapy. Drug Deliv 2021; 28:1166-1178. [PMID: 34121564 PMCID: PMC8205012 DOI: 10.1080/10717544.2021.1934191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
CD123 targeting molecules have been widely applied in acute myelocytic leukemia (AML) therapeutics. Although antibodies have been more widely used as targeting molecules, aptamer have unique advantages for CD123 targeting therapy. In this study, we constructed an aptamer hydrogel termed as SSFH which could be precisely cut by Cas9/sgRNA for programmed SS30 release. To construct hydrogel, rolling-circle amplification (RCA) was used to generate hydrogel containing CD123 aptamer SS30 and sgRNA-targeting sequence. After incubation with Cas9/sgRNA, SSFH could lose its gel property and liberated the SS30 aptamer sequence, and released SS30 has been confirmed by gel electrophoresis. In addition, SS30 released from SSFH could inhibit cell proliferation and induce cell apoptosis in vitro. Moreover, SSFH could prolong survival rate and inhibit tumor growth via JAK2/STAT5 signaling pathway in vivo. Additionally, molecular imaging revealed SSFH co-injected with Cas9/sgRNA remained at the injection site longer than free aptamer. Furthermore, once the levels of cytokines were increasing, the complementary sequences of aptamers injection could neutralize SS30 and relieve side effect immediately. This study suggested that CD123 aptamer hydrogel SSFH and Cas9/sgRNA system has strong potential for CD123-positive AML anticancer therapy.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Institute of Pediatric Diseases, Affiliated Children’s hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liyu Zhang
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Institute of Pediatric Diseases, Affiliated Children’s hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenxi Ding
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shengquan Chen
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruiping Liu
- Department of Clinical Nutrition, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huafeng Fan
- Department of Cardiovascular Medicine, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Chen
- Department of Clinical Nutrition, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Neonatology, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Richards RM, Zhao F, Freitas KA, Parker KR, Xu P, Fan A, Sotillo E, Daugaard M, Oo HZ, Liu J, Hong WJ, Sorensen PH, Chang HY, Satpathy AT, Majzner RG, Majeti R, Mackall CL. NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. Blood Cancer Discov 2021; 2:648-665. [PMID: 34778803 PMCID: PMC8580619 DOI: 10.1158/2643-3230.bcd-20-0208] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/25/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
CD93 CAR T cells eliminate AML in preclinical models without targeting hematopoietic progenitor cells, and a NOT-gated CAR engineering strategy mitigates on-target, off-tumor toxicity to endothelial cells. Chimeric antigen receptor (CAR) T cells hold promise for the treatment of acute myeloid leukemia (AML), but optimal targets remain to be defined. We demonstrate that CD93 CAR T cells engineered from a novel humanized CD93-specific binder potently kill AML in vitro and in vivo but spare hematopoietic stem and progenitor cells (HSPC). No toxicity is seen in murine models, but CD93 is expressed on human endothelial cells, and CD93 CAR T cells recognize and kill endothelial cell lines. We identify other AML CAR T-cell targets with overlapping expression on endothelial cells, especially in the context of proinflammatory cytokines. To address the challenge of endothelial-specific cross-reactivity, we provide proof of concept for NOT-gated CD93 CAR T cells that circumvent endothelial cell toxicity in a relevant model system. We also identify candidates for combinatorial targeting by profiling the transcriptome of AML and endothelial cells at baseline and after exposure to proinflammatory cytokines.
Collapse
Affiliation(s)
- Rebecca M Richards
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Feifei Zhao
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, California.,Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | | | - Kevin R Parker
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California
| | - Peng Xu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Amy Fan
- Immunology Graduate Program, Stanford University, Stanford, California
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Jie Liu
- Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Wan-Jen Hong
- Genentech, Inc., South San Francisco, California
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California.,Parker Institute for Cancer Immunotherapy, Stanford University School of Medicine, Stanford, California
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, California.,Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, California.,Division of Blood and Stem Cell Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
22
|
Meyer JE, Loff S, Dietrich J, Spehr J, Jurado Jiménez G, von Bonin M, Ehninger G, Cartellieri M, Ehninger A. Evaluation of switch-mediated costimulation in trans on universal CAR-T cells (UniCAR) targeting CD123-positive AML. Oncoimmunology 2021; 10:1945804. [PMID: 34290907 PMCID: PMC8274446 DOI: 10.1080/2162402x.2021.1945804] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR-T) targeting CD19 have achieved significant success in patients with B cell malignancies. To date, implementation of CAR-T in other indications remains challenging due to the lack of truly tumor-specific antigens as well as control of CAR-T activity in patients. CD123 is highly expressed in acute myeloid leukemia (AML) blasts including leukemia-initiating cells making it an attractive immunotherapeutic target. However, CD123 expression in normal hematopoietic progenitor cells and endothelia bears the risk of severe toxicities and may limit CAR-T applications lacking fine-tuned control mechanisms. Therefore, we recently developed a rapidly switchable universal CAR-T platform (UniCAR), in which CAR-T activity depends on the presence of a soluble adapter called targeting module (TM), and confirmed clinical proof-of-concept for targeting CD123 in AML with improved safety. As costimulation via 4–1BB ligand (4–1BBL) can enhance CAR-T expansion, persistence, and effector functions, a novel CD123-specific TM variant (TM123-4-1BBL) comprising trimeric single-chain 4–1BBL was developed for transient costimulation of UniCAR-T cells (UniCAR-T) at the leukemic site in trans. TM123-4-1BBL-directed UniCAR-T efficiently eradicated CD123-positive AML cells in vitro and in a CDX in vivo model. Moreover, additional costimulation via TM123-4-1BBL enabled enhanced expansion and persistence with a modulated UniCAR-T phenotype. In addition, the increased hydrodynamic volume of TM123-4-1BBL prolonged terminal plasma half-life and ensured a high total drug exposure in vivo. In conclusion, expanding the soluble adapter optionality for CD123-directed UniCAR-T maintains the platforms high anti-leukemic efficacy and immediate control mechanism for a flexible, safe, and individualized CAR-T therapy of AML patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Malte von Bonin
- Division of Hematology, Oncology and Stem Cell Transplantation, Medical Clinic I, Department of Medicine I, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
23
|
Certo M, Elkafrawy H, Pucino V, Cucchi D, Cheung KC, Mauro C. Endothelial cell and T-cell crosstalk: Targeting metabolism as a therapeutic approach in chronic inflammation. Br J Pharmacol 2021; 178:2041-2059. [PMID: 31999357 PMCID: PMC8246814 DOI: 10.1111/bph.15002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
The role of metabolic reprogramming in the coordination of the immune response has gained increasing consideration in recent years. Indeed, it has become clear that changes in the metabolic status of immune cells can alter their functional properties. During inflammation, T cells need to generate sufficient energy and biomolecules to support growth, proliferation, and effector functions. Therefore, T cells need to rearrange their metabolism to meet these demands. A similar metabolic reprogramming has been described in endothelial cells, which have the ability to interact with and modulate the function of immune cells. In this overview, we will discuss recent insights in the complex crosstalk between endothelial cells and T cells as well as their metabolic reprogramming following activation. We highlight key components of this metabolic switch that can lead to the development of new therapeutics against chronic inflammatory disorders. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Hagar Elkafrawy
- Medical Biochemistry and Molecular Biology Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Danilo Cucchi
- Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Kenneth C.P. Cheung
- School of Life SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Metabolism and Systems Research, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
24
|
CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021; 35:281-302. [PMID: 33826079 DOI: 10.1007/s40259-021-00477-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in chemorefractory B cell malignancies, raising the possibilities of using this immunotherapeutic modality for other devastating hematologic malignancies, such as acute myeloid leukemia (AML). AML is an aggressive hematologic malignancy which, like B cell malignancies, poses several challenges for clinical translation of successful immunotherapy. The antigenic heterogeneity of AML results in a list of potential targets that CAR-T cells could be directed towards, each with advantages and disadvantages. In this review, we provide an up-to-date report of outcomes and adverse effects from published and presented clinical trials of CAR-T cell therapy for AML and provide the preclinical rationale underlying these studies and antigen selection. Comparison across trials is difficult, yet themes emerge with respect to appropriate antigen selection and association of adverse effects with outcomes. We highlight currently active clinical trials and the potential improvements and caveats with these novel approaches. Key hurdles to the successful introduction of CAR-T cell therapy for the treatment of AML include the effect of antigenic heterogeneity and trade-offs between therapy specificity and sensitivity; on-target off-tumor toxicities; the AML tumor microenvironment; and practical considerations for future trials that should be addressed to enable successful CAR-T cell therapy for AML.
Collapse
|
25
|
Wei J, Guo Y, Wang Y, Wu Z, Bo J, Zhang B, Zhu J, Han W. Clinical development of CAR T cell therapy in China: 2020 update. Cell Mol Immunol 2021; 18:792-804. [PMID: 32999455 PMCID: PMC8115146 DOI: 10.1038/s41423-020-00555-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in the treatment of hematological malignancies. In recent years, fast-growing CAR T clinical trials have actively explored their potential application scenarios. According to the data from the clinicaltrials.gov website, China became the country with the most registered CAR T trials in September 2017. As of June 30, 2020, the number of registered CAR T trials in China has reached 357. In addition, as many as 150 other CAR T trials have been registered on ChiCTR. Although CAR T therapy is flourishing in China, there are still some problems that cannot be ignored. In this review, we aim to systematically summarize the clinical practice of CAR T-cell therapy in China. This review will provide an informative reference for colleagues in the field, and a better understanding of the history and current situation will help us more reasonably conduct research and promote cooperation.
Collapse
Affiliation(s)
- Jianshu Wei
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yelei Guo
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yao Wang
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiqiang Wu
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jian Bo
- Department of Hematology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Departments of Lymphoma, Radiology and Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100036, China.
| | - Weidong Han
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
26
|
Perriello VM, Gionfriddo I, Rossi R, Milano F, Mezzasoma F, Marra A, Spinelli O, Rambaldi A, Annibali O, Avvisati G, Di Raimondo F, Ascani S, Falini B, Martelli MP, Brunetti L. CD123 Is Consistently Expressed on NPM1-Mutated AML Cells. Cancers (Basel) 2021; 13:cancers13030496. [PMID: 33525388 PMCID: PMC7865228 DOI: 10.3390/cancers13030496] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary One-third of adult acute myeloid leukemia (AML) harbors NPM1 mutations. A deep knowledge of the distribution of selected antigens on the surface of NPM1-mutated AML cells may help optimizing new therapies for this frequent AML subtype. CD123 is known to be expressed on leukemic cells but also on healthy hematopoietic and endothelial cells, although at lower levels. Differences in antigen densities between AML and healthy cells may enlighten therapeutic windows, where targeting CD123 could be effective without triggering “on-target off-tumor” toxicities. Here, we perform a thorough analysis of CD123 expression demonstrating high expression of this antigen on both NPM1-mutated bulk leukemic cells and CD34+CD38− cells. Abstract NPM1-mutated (NPM1mut) acute myeloid leukemia (AML) comprises about 30% of newly diagnosed AML in adults. Despite notable advances in the treatment of this frequent AML subtype, about 50% of NPM1mut AML patients treated with conventional treatment die due to disease progression. CD123 has been identified as potential target for immunotherapy in AML, and several anti-CD123 therapeutic approaches have been developed for AML resistant to conventional therapies. As this antigen has been previously reported to be expressed by NPM1mut cells, we performed a deep flow cytometry analysis of CD123 expression in a large cohort of NPM1mut and wild-type samples, examining the whole blastic population, as well as CD34+CD38− leukemic cells. We demonstrate that CD123 is highly expressed on NPM1mut cells, with particularly high expression levels showed by CD34+CD38− leukemic cells. Additionally, CD123 expression was further enhanced by FLT3 mutations, which frequently co-occur with NPM1 mutations. Our results identify NPM1-mutated and particularly NPM1/FLT3 double-mutated AML as disease subsets that may benefit from anti-CD123 targeted therapies.
Collapse
Affiliation(s)
- Vincenzo Maria Perriello
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Ilaria Gionfriddo
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Roberta Rossi
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Francesca Milano
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Federica Mezzasoma
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Andrea Marra
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Orietta Spinelli
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (O.S.); (A.R.)
| | - Alessandro Rambaldi
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (O.S.); (A.R.)
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplant Unit, Campus Biomedico University Hospital, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Giuseppe Avvisati
- Hematology and Stem Cell Transplant Unit, Campus Biomedico University Hospital, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Francesco Di Raimondo
- Hematology and Bone Marrow Transplant Unit, Catania University Hospital, 95125 Catania, Italy;
| | - Stefano Ascani
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Pathology, Santa Maria Hospital, 05100 Terni, Italy
| | - Brunangelo Falini
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
| | - Maria Paola Martelli
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Correspondence: (M.P.M.); (L.B.)
| | - Lorenzo Brunetti
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Correspondence: (M.P.M.); (L.B.)
| |
Collapse
|
27
|
Penack O, Koenecke C. Complications after CD19+ CAR T-Cell Therapy. Cancers (Basel) 2020; 12:cancers12113445. [PMID: 33228221 PMCID: PMC7699604 DOI: 10.3390/cancers12113445] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary CD19+ Chimeric antigen receptor (CAR) T-cells are used against CD19+ hematologic malignancies, such as high-grade B-cell lymphoma and acute lymphoblastic leukemia. Since this is a relatively new treatment approach, not all potential side effects are well described, and the underlying pathobiology is often not well defined. Here, we summarize current data on the incidence and the current management of CD19+ CAR T-cell complications. We discuss frequently occurring toxicities and we highlight evidence for the occurrence of rarer side effects affecting different organ systems. In addition, we highlight new findings that shed light on the pathophysiology of CAR T-cell-related complications. Abstract Clinical trials demonstrated that CD19+ chimeric antigen receptor (CAR) T-cells can be highly effective against a number of malignancies. However, the complete risk profile of CAR T-cells could not be defined in the initial trials. Currently, there is emerging evidence derived from post approval studies in CD19+ CAR T-cells demonstrating both short-term and medium-term effects, which were unknown at the time of regulatory approval. Here, we review the incidence and the current management of CD19+ CAR T-cell complications. We highlight frequently occurring events, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, cardiotoxicity, pulmonary toxicity, metabolic complications, secondary macrophage-activation syndrome, and prolonged cytopenia. Furthermore, we present evidence supporting the hypothesis that CAR T-cell-mediated toxicities can involve any other organ system and we discuss the potential risk of long-term complications. Finally, we discuss recent pre-clinical and clinical data shedding new light on the pathophysiology of CAR T-cell-related complications.
Collapse
Affiliation(s)
- Olaf Penack
- Department for Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, Campus Virchow Clinic, Augustenburger Platz, 113353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-653625
| | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
28
|
Uddin MA, Barabutis N. P53 in the impaired lungs. DNA Repair (Amst) 2020; 95:102952. [PMID: 32846356 PMCID: PMC7437512 DOI: 10.1016/j.dnarep.2020.102952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Our laboratory is focused on investigating the supportive role of P53 towards the maintenance of lung homeostasis. Acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, pulmonary fibrosis, bronchial asthma, pulmonary arterial hypertension, pneumonia and tuberculosis are respiratory pathologies, associated with dysfunctions of this endothelium defender (P53). Herein we review the evolving role of P53 towards the aforementioned inflammatory disorders, to potentially reveal new therapeutic possibilities in pulmonary disease.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA.
| |
Collapse
|
29
|
Wang L, Tan Su Yin E, Zhao H, Ni F, Hu Y, Huang H. CAR-T cells: the Chinese experience. Expert Opin Biol Ther 2020; 20:1293-1308. [PMID: 32605454 DOI: 10.1080/14712598.2020.1790521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Chimeric antigen receptor T (CAR-T) cells are harnessed to identify and lyse malignant cells specifically, efficiently, and independently of the major histocompatibility complex (MHC). As a result, prognoses of relapsed or refractory (R/R) B cell hematological malignancies as well as limited types of solid tumors, have been ameliorated to a great extent. In China, a rising number of clinical trials that contribute to the development of novel CAR-T therapeutic strategies have been conducted on an extensive scale. AREAS COVERED We summarize registered clinical trials related to CAR-T therapy conducted in China by evaluating various parameters such as distribution, study phase, CAR structure, target antigen, and disease. The efficacy, toxicity, and, more importantly, the new strategies for optimization of CAR-T therapy of Chinese studies and clinical trials are elaborated in detail. EXPERT OPINION In terms of the number of CAR-T clinical trials, China is second to the USA, registering approximately 33% of trials worldwide. China's extensive explorations and breakthroughs in the search of novel target antigens, optimization of CAR structure, cocktail CAR-T therapy, combination therapy, and extension of CAR-T cell applications, imply that we are currently on the verge of a revolution in CAR-T therapy.
Collapse
Affiliation(s)
- Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy , Hangzhou, China.,Institute of Hematology, Zhejiang University , Hangzhou, China
| | - Elaine Tan Su Yin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy , Hangzhou, China.,Institute of Hematology, Zhejiang University , Hangzhou, China
| | - Houli Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy , Hangzhou, China.,Institute of Hematology, Zhejiang University , Hangzhou, China
| | - Fang Ni
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy , Hangzhou, China.,Institute of Hematology, Zhejiang University , Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy , Hangzhou, China.,Institute of Hematology, Zhejiang University , Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy , Hangzhou, China.,Institute of Hematology, Zhejiang University , Hangzhou, China
| |
Collapse
|
30
|
Impact of scFv structure in chimeric antigen receptor on receptor expression efficiency and antigen recognition properties. Biochem Biophys Res Commun 2020; 527:350-357. [DOI: 10.1016/j.bbrc.2020.03.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 01/23/2023]
|
31
|
Epperly R, Gottschalk S, Velasquez MP. Harnessing T Cells to Target Pediatric Acute Myeloid Leukemia: CARs, BiTEs, and Beyond. CHILDREN (BASEL, SWITZERLAND) 2020; 7:E14. [PMID: 32079207 PMCID: PMC7072334 DOI: 10.3390/children7020014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Outcomes for pediatric patients with acute myeloid leukemia (AML) remain poor, highlighting the need for improved targeted therapies. Building on the success of CD19-directed immune therapy for acute lymphocytic leukemia (ALL), efforts are ongoing to develop similar strategies for AML. Identifying target antigens for AML is challenging because of the high expression overlap in hematopoietic cells and normal tissues. Despite this, CD123 and CD33 antigen targeted therapies, among others, have emerged as promising candidates. In this review we focus on AML-specific T cell engaging bispecific antibodies and chimeric antigen receptor (CAR) T cells. We review antigens being explored for T cell-based immunotherapy in AML, describe the landscape of clinical trials upcoming for bispecific antibodies and CAR T cells, and highlight strategies to overcome additional challenges facing translation of T cell-based immunotherapy for AML.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| | - Mireya Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| |
Collapse
|
32
|
Yao S, Jianlin C, Yarong L, Botao L, Qinghan W, Hongliang F, Lu Z, Hongmei N, Pin W, Hu C, Liangding H, Bin Z. Donor-Derived CD123-Targeted CAR T Cell Serves as a RIC Regimen for Haploidentical Transplantation in a Patient With FUS-ERG+ AML. Front Oncol 2019; 9:1358. [PMID: 31850234 PMCID: PMC6901822 DOI: 10.3389/fonc.2019.01358] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 01/16/2023] Open
Abstract
Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following chemotherapy is part of standard treatment protocol for patients with acute myeloid leukemia (AML). FUS-ERG+ AML is rare but has an extremely poor prognosis even with allo-HSCT in remission, possibly due to its a leukemia stem cell (LSC)-driven disease resulting in chemotherapy resistance and a novel therapy is urgently required. It has been reported that FUS-ERG-positive AML expresses CD123, a marker of LSC, in some cases. CD123-targeted CAR T cell (CART123) is promising immunotherapy, but how to improve the complete remission (CR) rate and rescue potential hematopoietic toxicity still need to explore. Case Presentation: We used donor-derived CART123 as part of conditioning regimen for haploidentical HSCT (haplo-HSCT) in a patient with FUS-ERG+ AML who relapsed after allogeneic transplantation within 3 months, resists to multi-agent chemotherapy and donor lymphocyte infusion (DLI) and remained non-remission, aiming to reduce these chemotherapy-resistant blasts and rescue potential hematopoietic toxicity. The blasts in BM were reduced within 2 weeks and coincided with CAR copies expansion after CART123 infusion. The patient achieved full donor chimerism, CR with incomplete blood count recovery, and myeloid implantation. Conclusion: Our results hints that CART123 reduces the chemotherapy-resistant AML blasts for FUS-ERG+ AML without affecting the full donor chimerism and myeloid implantation.
Collapse
Affiliation(s)
- Sun Yao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Chen Jianlin
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Liu Yarong
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Li Botao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Wang Qinghan
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Fang Hongliang
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Zhang Lu
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Ning Hongmei
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Wang Pin
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States.,Department of Pharmaceutical Sciences and Pharmacology, University of Southern California, Los Angeles, CA, United States
| | - Chen Hu
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research, Department of Hematopoietic Stem Cell Transplantation, The Cell and Gene Therapy Center, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Hu Liangding
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Zhang Bin
- Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research, Department of Hematopoietic Stem Cell Transplantation, The Cell and Gene Therapy Center, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| |
Collapse
|