1
|
Yuan F, Huang M, Huang H, Mao X, Xie P, Li X, Gao Y, Zeng F, Liu Z. Hsa_circ_0092856 Promoted the Proliferation, Migration, and Invasion of NSCLC Cells by Up-Regulating the Expression of eIF3a. Biomedicines 2024; 12:247. [PMID: 38275418 PMCID: PMC10812961 DOI: 10.3390/biomedicines12010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Circular RNA (circRNA) plays a very important regulatory role in a variety of human malignancies such as non-small-cell lung cancer (NSCLC). In the current study, we explored the role of hsa_circ_0092856 in the progression of NSCLC. We screened CircRNA from the eIF3a gene in the Circbase database. The biological functions of hsa_circ_0092856 in NSCLC were analyzed via qRT-PCR, a CCK-8 assay, a plate cloning experiment, scratch testing, a transwell chamber experiment, an RNA nuclear mass separation experiment, an RIP experiment, and a Western blot test. The results showed that hsa_circ_0092856 was highly expressed in NSCLC cells, and the knockdown of hsa_circ_0092856 could inhibit the proliferation, migration, and invasion of NSCLC cells. The overexpression of hsa_circ_0092856 has the opposite effect. The expression of eIF3a also changed with the change in hsa_circ_0092856. These results suggest that hsa_circ_0092856 may play a key role in the progression of NSCLC by regulating the expression of eIF3a.
Collapse
Affiliation(s)
- Fuqiang Yuan
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; (F.Y.); (M.H.); (H.H.); (X.M.); (P.X.); (X.L.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Masha Huang
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; (F.Y.); (M.H.); (H.H.); (X.M.); (P.X.); (X.L.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
- Department of Biochemistry and Molecular Cell Biology, College of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Hanxue Huang
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; (F.Y.); (M.H.); (H.H.); (X.M.); (P.X.); (X.L.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Xiaoyuan Mao
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; (F.Y.); (M.H.); (H.H.); (X.M.); (P.X.); (X.L.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Pan Xie
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; (F.Y.); (M.H.); (H.H.); (X.M.); (P.X.); (X.L.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Xi Li
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; (F.Y.); (M.H.); (H.H.); (X.M.); (P.X.); (X.L.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhaoqian Liu
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; (F.Y.); (M.H.); (H.H.); (X.M.); (P.X.); (X.L.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| |
Collapse
|
2
|
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, Chubarev V, Fan R, Liu J. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13:6147-6175. [PMID: 38187051 PMCID: PMC10767355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Small non-coding RNAs (microRNA, miR), powerful epigenetic regulators, were found involved in the regulation of most biological functions via post-translational inhibition of protein expression. Increased expression of pro-oncogenic miRs (known as miR cancer biomarkers) and inhibition of pro-apoptotic miR expression have been demonstrated in different tumors. The recently identified miR-183 was found implicated in gastrointestinal tumor metabolism regulation. Elevated miR-183 expression and cancer-promoting effects were reported in esophageal and colorectal cancers, which was partially contradicted by controversial data observed in gastric cancers. Anti-cancer effect of miR-183 in gastric cancer cells was associated with the Bim-1 and Ezrin genes regulation. Many studies indicated that miR-183 can inhibit tumor suppressor genes in most cell lines, promoting tumor cell proliferation and migration. Increased miR-183 level results in the downregulation of FOXO1, PDCD4, and other tumor suppressor genes in gastrointestinal tumor cells. MiR-183 also influences the signaling of PI3K/AKT/mTOR, Wnt/β-catenin, and Bcl-2/p53 signaling pathways. Mir-183 inhibits apoptosis and autophagy, and promotes epithelial-to-mesenchymal transition, cancer cell proliferation, and migration. Accordingly, gastrointestinal cancer occurrence, development of chemoradiotherapy resistance, recurrence/metastasis, and prognosis were associated with miR-183 expression. The current study assessed reported miR-183 functions and signaling, providing new insights for the diagnosis and treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Ruiwen Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Vladimir Chubarev
- Sechenov First Moscow State Medical University (Sechenov University)8-2 Trubetskaya St., Moscow 119991, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
3
|
Gao X, Yu S, Liu S, Zhang S, Sha X, Sun D, Jiang X. Circular RNA nuclear receptor interacting protein 1 promoted biliary tract cancer epithelial-mesenchymal transition and stemness by regulating the miR-515-5p/AKT2 axis and PI3K/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2632-2644. [PMID: 37466171 DOI: 10.1002/tox.23898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
Biliary tract cancer (BTC) is a devastating malignancy that is notoriously difficult to diagnose and is associated with high mortality. Circular RNA (circRNA) is a class of endogenous non-coding RNA which has been regarded as the key regulator of tumor initiation and progression, including BTC. Circular RNA nuclear receptor interacting protein 1 (circ_NRIP1), as a circular RNA, is abnormally expressed in many human tumors and exhibits diverse functions in cancer progression. However, its biological significance in BTC has not been thoroughly investigated. In this research, we elucidated that circ_NRIP1 was notably overexpressed in both BTC tissues and cells. We further established a correlation between circ_NRIP1 expression and clinicopathological features in BTC patients, highlighting its clinical relevance. Through functional assays, we observed that knockdown of circ_NRIP1 significantly inhibited tumor cell proliferation, invasion, stemness maintenance, and epithelial-mesenchymal transition, indicating its active involvement in promoting BTC progression. Additionally, it attenuated growth of xenograft and metastasis models. Mechanically, we revealed that circ_NRIP1 served as the competing endogenous RNA to sequester miR-515-5p through complementary base pairing mechanism, thereby upregulated AKT2 expression and indirectly activated PI3K/AKT/mTOR signaling pathway. Generally, targeting the circ_NRIP1/miR-515-5p/AKT2 axis and aberrant activation of the PI3K/AKT/mTOR pathway may hold promising therapeutic strategies for BTC. Our research contributes to a better understanding of the underlying biological basis of BTC and paves the way for the development of innovative treatment approaches.
Collapse
Affiliation(s)
- Xin Gao
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shaobo Yu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sidi Liu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siyuan Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangjun Sha
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongsheng Sun
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
5
|
Zhu X, Chen H, Li H, Ren H, Ye C, Xu K, Liu J, Du F, Zhang Z, Liu Y, Xie X, Wang M, Ma T, Chong W, Shang L, Li L. ITGB1-mediated molecular landscape and cuproptosis phenotype induced the worse prognosis in diffuse gastric cancer. Front Oncol 2023; 13:1115510. [PMID: 37007126 PMCID: PMC10063208 DOI: 10.3389/fonc.2023.1115510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Diffuse type gastric cancer was identified with relatively worse prognosis than other Lauren’s histological classification. Integrin β1 (ITGB1) was a member of integrin family which played a markedly important role in tumorigenesis and progression. However, the influence of ITGB1 in diffuse gastric cancer (DGC) remains uncertain. Here, we leveraged the transcriptomic and proteomic data to explore the association between ITGB1 expression and clinicopathologic information and biological process in DGC. Cell phenotype experiments combined with quantitative-PCR (q-PCR) and western blotting were utilized to identify the potential molecular mechanism underling ITGB1.Transcriptomics and proteomics both revealed that the higher ITGB1 expression was significantly associated with worse prognosis in DGC, but not in intestinal GC. Genomic analysis indicated that the mutation frequency of significantly mutated genes of ARID1A and COL11A1, and mutational signatures of SBS6 and SBS15 were markedly increased in the ITGB1 low expression subgroup. The enrichment analysis revealed diverse pathways related to dysregulation of ITGB1 in DGC, especially in cell adhesion, proliferation, metabolism reprogramming, and immune regulation alterations. Elevated activities of kinase-ROCK1, PKACA/PRKACA and AKT1 were observed in the ITGB1 high-expression subgroup. The ssGSEA analysis also found that ITGB1 low-expression had a higher cuproptosis score and was negatively correlated with key regulators of cuproptosis, including FDX1, DLAT, and DLST. We further observed that the upregulated expression of mitochondrial tricarboxylic acid (TCA) cycle in the ITGB1 low-expression group. Reduced expression of ITGB1 inhibited the ability of cell proliferation and motility and also potentiated the cell sensitive to copper ionophores via western blotting assay. Overall, this study revealed that ITGB1 was a protumorigenic gene and regulated tumor metabolism and cuproptosis in DGC.
Collapse
Affiliation(s)
- Xingyu Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Han Li
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Huicheng Ren
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chunshui Ye
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Kang Xu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jin Liu
- Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fengying Du
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Mingfei Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tianrong Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Chong, ; ; Leping Li, ; Liang Shang,
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Chong, ; ; Leping Li, ; Liang Shang,
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Chong, ; ; Leping Li, ; Liang Shang,
| |
Collapse
|
6
|
Lu W, Wen J. H 2S-mediated inhibition of RhoA/ROCK pathway and noncoding RNAs in ischemic stroke. Metab Brain Dis 2023; 38:163-176. [PMID: 36469178 DOI: 10.1007/s11011-022-01130-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is one of major causes of disability. In the pathological process of ischemic stroke, the up-regulation of Ras homolog gene family, member A (RhoA) and its downstream effector, Ras homolog gene family (Rho)-associated coiled coil-containing kinase (ROCK), contribute to the neuroinflammation, blood-brain barrier (BBB) dysfunction, neuronal apoptosis, axon growth inhibition and astrogliosis. Accumulating evidences have revealed that hydrogen sulphide (H2S) could reduce brain injury in animal model of ischemic stroke via inhibiting the RhoA/ROCK pathway. Recently, noncoding RNAs (ncRNAs) such as circular RNAs (circRNAs), long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have attracted much attention because of their essential role in adjusting gene expression both in physiological and pathological conditions. Numerous studies have uncovered the role of RhoA/ROCK pathway and ncRNAs in ischemic stroke. In this review, we focused on the role of H2S, RhoA/ROCK pathway and ncRNAs in ischemic stroke and aimed to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
CircNRIP1: An emerging star in multiple cancers. Pathol Res Pract 2023; 241:154281. [PMID: 36586310 DOI: 10.1016/j.prp.2022.154281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are a new class of non-coding RNAs (ncRNAs) with a closed-loop structure that is highly stable and widely present in the eukaryotic cytoplasm. In recent years, circRNA has played a non-negligible role in the occurrence and development of a variety of diseases, which has attracted the research attention of many scholars. Circular RNA nuclear receptor interacting protein 1 (circNRIP1), a newly discovered circRNA, has been confirmed to be closely associated with cervical carcinoma (CC), colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC), gastric cancer (GC), nasopharyngeal carcinoma (NPC), non-small cell lung cancer (NSCLC), osteosarcoma (OS), ovarian cancer (OC) and papillary thyroid carcinoma (PTC). CircNRIP1 can regulate the activity of ERK1/2, PI3K/AKT, and AKT/mTOR signaling pathways. In this review, the author summarizes the biological functions and target molecular mechanisms in carcinogenesis, to point out the potential clinical values and applications of circNRIP1 in diagnosing and treating cancer.
Collapse
|
8
|
He Y, Yang D, Li Y, Xiang J, Wang L, Wang Y. Circular RNA-related CeRNA network and prognostic signature for patients with oral squamous cell carcinoma. Front Pharmacol 2022; 13:949713. [PMID: 36532732 PMCID: PMC9753980 DOI: 10.3389/fphar.2022.949713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/15/2022] [Indexed: 08/10/2023] Open
Abstract
Background: Circular RNA (circRNA) has an important influence on oral squamous cell carcinoma (OSCC) progression as competing endogenous RNAs (ceRNAs). However, the link between ceRNAs and the OSCC immune microenvironment is unknown. The research aimed to find circRNAs implicated in OSCC carcinogenesis and progression and build a circRNA-based ceRNA network to create a reliable OSCC risk prediction model. Methods: The expression profiles of circRNA in OSCC tumors and normal tissues were assessed through RNA sequencing. From the TCGA database, clinicopathological data and expression patterns of microRNAs (miRNAs) and mRNAs were obtained. A network of circRNA-miRNA-mRNA ceRNA was prepared according to these differentially expressed RNAs and was analyzed through functional enrichment. Subsequently, based on the mRNA in the ceRNA network, the influence of the model on prognosis was then evaluated using a risk prediction model. Finally, considering survival, tumor-infiltrating immune cells (TICs), clinicopathological features, immunosuppressive molecules, and chemotherapy efficacy were analyzed. Results: Eleven differentially expressed circRNAs were found in cancer tissues relative to healthy tissues. We established a network of circRNA-miRNA-mRNA ceRNA, and the ceRNA network includes 123 mRNAs, six miRNAs, and four circRNAs. By the assessment of Genomes pathway and Kyoto Encyclopedia of Genes, it is found that in the cellular senescence, PI3K-AKT and mTOR signaling pathway mRNAs were mainly enrichment. An immune-related signature was created utilizing seven immune-related genes in the ceRNA network after univariate and multivariate analysis. The receiver operating characteristic of the nomogram exhibited satisfactory accuracy and predictive potential. According to a Kaplan-Meier analysis, the high-risk group's survival rate was signally lower than the group with low-risk. In addition, risk models were linked to clinicopathological characteristics, TICs, immune checkpoints, and antitumor drug susceptibility. Conclusion: The profiles of circRNAs expression of OSCC tissues differ significantly from normal tissues. Our study established a circRNA-associated ceRNA network associated with OSCC and identified essential prognostic genes. Furthermore, our proposed immune-based signature aims to help research OSCC etiology, prognostic marker screening, and immune response evaluation.
Collapse
Affiliation(s)
- Yaodong He
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Dengcheng Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yunshan Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Junwei Xiang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Ghafouri-Fard S, Poornajaf Y, Hussen BM, Abak A, Shoorei H, Taheri M, Sharifi G. Implication of non-coding RNA-mediated ROCK1 regulation in various diseases. Front Mol Biosci 2022; 9:986722. [PMID: 36177350 PMCID: PMC9513225 DOI: 10.3389/fmolb.2022.986722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Rho Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1) is a protein serine/threonine kinase which is activated upon binding with the GTP-bound form of Rho. This protein can modulate actin-myosin contraction and stability. Moreover, it has a crucial role in the regulation of cell polarity. Therefore, it participates in modulation of cell morphology, regulation of expression of genes, cell proliferation and differentiation, apoptotic processes as well as oncogenic processes. Recent studies have highlighted interactions between ROCK1 and several non-coding RNAs, namely microRNAs, circular RNAs and long non-coding RNAs. Such interactions can be a target of medications. In fact, it seems that the interactions are implicated in therapeutic response to several medications. In the current review, we aimed to explain the impact of these interactions in the pathoetiology of cancers as well as non-malignant disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
10
|
Farooqi AA, Zahid R, Naureen H, Attar R, Gazouli M, Berardi R, Szelachowska J, Matkowski R, Pawlak E. Regulation of ROCK1/2 by long non-coding RNAs and circular RNAs in different cancer types. Oncol Lett 2022; 23:159. [PMID: 35399329 PMCID: PMC8987920 DOI: 10.3892/ol.2022.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Recent breakthroughs in high-throughput technologies have enabled the development of a better understanding of the functionalities of rho-associated protein kinases (ROCKs) under various physiological and pathological conditions. Since their discovery in the late 1990s, ROCKs have attracted the attention of interdisciplinary researchers due to their ability to pleiotropically modulate a myriad of cellular mechanisms. A rapidly growing number of published studies have started to shed light on the mechanisms underlying the regulation of ROCK1 and ROCK2 via long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in different types of cancer. Detailed analyses have suggested that lncRNAs may be characteristically divided into oncogenic and tumor suppressor lncRNAs. Several exciting recent discoveries have also indicated how different lncRNAs and circRNAs modulate ROCK1/2 and mediate multistep cancer onset and progression. The present review chronicles the major advances that have been made in our understanding of the regulatory role of ROCK1/2 in different types of cancer, and how wide-ranging lncRNAs and circRNAs potentiate ROCK-driven signaling by blocking the targeting activities of tumor suppressor microRNAs.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering, Islamabad 54000, Pakistan
| | - Rabbia Zahid
- Institute of Chemistry, University of Punjab, Lahore 43000, Pakistan
| | - Humaira Naureen
- Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 54000, Pakistan
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University 34280, Turkey
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 54634, Greece
| | - Rossana Berardi
- Oncology Clinic-Marche Polytechnic University, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I-GM Lancisi-G Salesi di Ancona, I-60126 Ancona, Italy
| | - Jolanta Szelachowska
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Wroclaw Comprehensive Cancer Centre, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Wroclaw Comprehensive Cancer Centre, 53-413 Wroclaw, Poland
| | - Edyta Pawlak
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-013 Wroclaw, Poland
| |
Collapse
|
11
|
Duan X, Yu X, Li Z. Circular RNA hsa_circ_0001658 regulates apoptosis and autophagy in gastric cancer through microRNA-182/Ras-related protein Rab-10 signaling axis. Bioengineered 2022; 13:2387-2397. [PMID: 35030981 PMCID: PMC8974080 DOI: 10.1080/21655979.2021.2024637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is a tumor with high incidence and lack of early diagnostic markers. The aim of this study was to explore novel regulatory circular RNAs (circRNAs) in GC and their underlying mechanisms. Differentially expressed circRNAs were analyzed using the Gene Expression Omnibus (GEO). mRNA and miRNA expression levels were determined using real-time reverse transcription polymerase chain reaction (RT-qPCR). Protein expression was detected using Western blotting. Cellular functions were evaluated using the cell counting kit-8 (CCK-8) assay and flow cytometry analysis. Immunofluorescence analysis was used to visually identify microtubule-associated protein 1 light chain 3 (LC3) puncta on a per-cell basis. Furthermore, dual-luciferase reporter and RNA pull-down assays were performed to verify the interaction between microRNA (miR)-182 and circ_0001658/Ras-related protein Rab-10 (RAB10). Circ_0001658 was identified to be aberrantly expressed in GC tissues and was demonstrated in GC cell lines (AGS and HGC27) in vitro. MiR-182 bound to circ_0001658 and RAB10. Circ_0001658 and RAB10 were upregulated, whereas miR-182 was suppressed in AGS and HGC27 cells. GC cell viability and autophagy were inhibited and apoptosis was promoted after circ_0001658 knockdown, and the cellular functions were reversed by downregulating miR-182. Moreover, upregulated RAB10 neutralized the effects of miR-182 on cell viability, autophagy, and apoptosis of GC cells. Silencing circ_0001658 restrained cell viability, suppressed autophagy, and promoted apoptosis of GC cells by sponging miR-182 to suppress the expression of RAB10. Therefore, circ_0001658 may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Xinxing Duan
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Xiong Yu
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
CircRNAs as Potential Blood Biomarkers and Key Elements in Regulatory Networks in Gastric Cancer. Int J Mol Sci 2022; 23:ijms23020650. [PMID: 35054834 PMCID: PMC8776217 DOI: 10.3390/ijms23020650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of cancer death in the world. It is a disease that encompasses a variety of molecular alterations, including in non-coding RNAs such as circular RNAs (circRNAs). In the present study, we investigated hsa_circ_0000211, hsa_circ_0000284, hsa_circ_0000524, hsa_circ_0001136 and hsa_circ_0004771 expression profiles using RT-qPCR in 71 gastric tissue samples from GC patients (tumor and tumor-adjacent samples) and volunteers without cancer. In order to investigate the suitability of circRNAs as minimally invasive biomarkers, we also evaluated their expression profile through RT-qPCR in peripheral blood samples from patients with and without GC (n = 41). We also investigated the predicted interactions between circRNA-miRNA-mRNA and circRNA-RBP using the KEGG and Reactome databases. Overall, our results showed that hsa_circ_0000211, hsa_circ_0000284 and hsa_circ_0004771 presented equivalent expression profiles when analyzed by different methods (RNA-Seq and RT-qPCR) and different types of samples (tissue and blood). Further, functional enrichment results identified important signaling pathways related to GC. Thus, our data support the consideration of circRNAs as new, minimally invasive biomarkers capable of aiding in the diagnosis of GC and with great potential to be applied in clinical practice.
Collapse
|
13
|
Wang Y, Liu X, Wang L, Zhang Z, Li Z, Li M. Circ_PGPEP1 Serves as a Sponge of miR-1297 to Promote Gastric Cancer Progression via Regulating E2F3. Dig Dis Sci 2021; 66:4302-4313. [PMID: 33386518 DOI: 10.1007/s10620-020-06783-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Circular RNA (circRNA) is a special kind of noncoding RNA that plays a vital function in the progression of gastric cancer (GC). However, the role of a new circRNA, circ_PGPEP1, in GC is unclear. AIMS Exploring the role and mechanism of circ_PGPEP1 in GC progression. METHODS The expression levels of circ_PGPEP1, miR-1297, and E2F transcription factor 3 (E2F3) were determined using quantitative real-time PCR. Flow cytometry, colony formation assay, MTT assay, and transwell assay were used to evaluate cell cycle, apoptosis, proliferation, migration, and invasion. The protein levels of apoptosis-related markers and E2F3 were measured by western blot analysis. The interaction between circ_PGPEP1 and miR-1297 or miR-1297 and E2F3 was confirmed by dual-luciferase reporter assay. In addition, animal experiments were performed to assess the effect of circ_PGPEP1 on GC tumor growth in vivo. RESULTS Circ_PGPEP1 was a highly expressed circRNA in GC. Loss-of-function experiment indicated that circ_PGPEP1 silencing could induce cell cycle arrest and apoptosis, while inhibit proliferation, migration, and invasion in GC cells. MiR-1297 could be sponged by circ_PGPEP1, and its expression was downregulated in GC. MiR-1297 inhibitor could reverse the negatively regulation of circ_PGPEP1 knockdown on GC progression. Furthermore, we also found that E2F3 could be targeted by miR-1297, and its expression was positively regulated by circ_PGPEP1. Overexpression of E2F3 could invert the inhibitory effect of miR-1297 on GC progression. Animal experiments suggested that silenced circ_PGPEP1 could reduce GC tumor growth. CONCLUSION Our research showed that circ_PGPEP1 might serve as a potential biomarker for GC.
Collapse
Affiliation(s)
- Yingxin Wang
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China
| | - Xia Liu
- Department of Forensic Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Liwei Wang
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China
| | - Zhenduo Zhang
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China
| | - Zhong Li
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China
| | - Ming Li
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
14
|
Lu Y, Li K, Gao Y, Liang W, Wang X, Chen L. CircRNAs in gastric cancer: current research and potential clinical implications. FEBS Lett 2021; 595:2644-2654. [PMID: 34561854 DOI: 10.1002/1873-3468.14196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) has a dismal prognosis and is also one of the most commonly diagnosed malignancies worldwide. circRNAs are covalently closed circular RNA molecules without 5'-cap and a 3'-tail, currently listed among the broad noncoding RNA family. circRNAs participate in a variety of pathophysiological processes relevant to human diseases, especially malignancies, including GC. Compelling evidence has shown that circRNAs can function by sponging miRNAs, interacting with RNA binding proteins, and encoding proteins or peptides. Yet, our current understanding of these RNA circles remains very limited. Here, we overview the biogenesis, characteristics, functions, and degradation of circRNAs. Moreover, we give an account of the circRNAs that have been linked with GC, describing their functions and mechanisms of action in the context of GC. Next, we discuss the potential value of circRNAs as diagnostic or prognostic GC biomarkers and summarize future prospects, important questions, and challenges of circRNA-based therapeutics.
Collapse
Affiliation(s)
- Yixun Lu
- Medical School of Chinese PLA, Beijing, China
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kai Li
- Medical School of Chinese PLA, Beijing, China
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yunhe Gao
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenquan Liang
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinxin Wang
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Chen
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Shi Z, Wang K, Xing Y, Yang X. CircNRIP1 Encapsulated by Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Aggravates Osteosarcoma by Modulating the miR-532-3p/AKT3/PI3K/AKT Axis. Front Oncol 2021; 11:658139. [PMID: 34660257 PMCID: PMC8511523 DOI: 10.3389/fonc.2021.658139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that extracellular vesicle (EV)-encapsulated circRNAs have the potential diagnostic and prognostic values for malignancies. However, the role of circNRIP1 in osteosarcoma remains unclear. We herein investigated the therapeutic potential of circNRIP1 delivered by bone marrow mesenchymal stem cell–derived EVs (BMSC-EVs) in osteosarcoma. The expression of circNRIP1 was examined in the clinical tissue samples of osteosarcoma patients, after which the downstream genes of circNRIP1 were bioinformatically predicted. Gain- and loss-of function assays were then performed in osteosarcoma cells with manipulation of circNRIP1 and miR-532-3p expression. EVs isolated from BMSCs were characterized and co-cultured with osteosarcoma cells to examine their effects on cell phenotypes, as reflected by CCK-8 and Transwell assays. Further, a mouse model of tumor xenografts was established for in vivo substantiation. circNRIP1 was upregulated in osteosarcoma tissues and cells. Overexpression of circNRIP1 promoted the proliferative, migratory, and invasive potential of osteosarcoma cells. Co-culture data showed that BMSC-EVs could transfer circNRIP1 into osteosarcoma cells where it competitively bound to miR-532-3p and weakened miR-532-3p’s binding ability to AKT3. By this mechanism, the PI3K/AKT signaling pathway was activated and the malignant characteristics of osteosarcoma cells were stimulated. In vivo experimental results unveiled that circNRIP1-overexpressing BMSC-EVs in nude mice resulted in enhanced tumor growth. In conclusion, the BMSC-EV-enclosed circNRIP1 revealed a new molecular mechanism in the pathogenesis of osteosarcoma, which might provide a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Zuowei Shi
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Kaifu Wang
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Yufei Xing
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Yang
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Liu F, Li R, Zhang R, He M, Zhang Y. Knockdown of circNRIP1 sensitizes colorectal cancer to 5‑FU via sponging miR‑532‑3p. Oncol Rep 2021; 46:218. [PMID: 34396434 PMCID: PMC8377465 DOI: 10.3892/or.2021.8169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to investigate the influence of circular RNA nuclear receptor‑interacting protein 1 (circNRIP1) on the chemotherapeutic effect of 5‑fluorouracil (5‑FU) in colorectal cancer (CRC) and reveal its potential molecular mechanisms. The effects of circNRIP1 on cell proliferation, migration and invasion, and apoptosis were evaluated using Cell Counting Kit‑8, Transwell and flow cytometric assays, respectively. A dual‑luciferase reporter assay was performed to verify the potential interaction between circNRIP1 and microRNA (miR)‑532‑3p. The results of the present study indicated that circNRIP1 was upregulated in CRC and its increased expression was associated with CRC progression. Furthermore, overexpression of circNRIP1 promoted CRC cell proliferation, invasion and migration, while it inhibited apoptosis. Knockdown of circNRIP1 significantly enhanced the 5‑FU‑induced inhibition of the viability of HCT116 and SW480 cells. Bioinformatics analysis predicted that miR‑532‑3p was a direct target of circNRIP1, which was further confirmed by a dual‑luciferase reporter assay. miR‑532‑3p silencing reversed the effects of circNRIP1 knockdown on the sensitivity of 5‑FU in the chemotherapy of CRC. The results suggested that circNRIP1 and miR‑532‑3p may be utilized to improve the diagnosis of CRC and serve as diagnostic markers. In conclusion, overexpression of circNRIP1 promoted the progression of CRC, while circNRIP1 silencing sensitized CRC cells to 5‑FU via sponging miR‑532‑3p.
Collapse
Affiliation(s)
- Fanfan Liu
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Ruijia Li
- Department of Pharmacy, The Eighth Hospital of Xi'an, Xi'an, Shanxi 710061, P.R. China
| | - Rui Zhang
- Department of Critical Care Medicine, Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Meng He
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Yueli Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
17
|
Fan X, Wang Y. Circular RNA circSPATA6 Inhibits the Progression of Oral Squamous Cell Carcinoma Cells by Regulating TRAF6 via miR-182. Cancer Manag Res 2021; 13:1817-1829. [PMID: 33654430 PMCID: PMC7910102 DOI: 10.2147/cmar.s292074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) has become a widely concerned social problem. Circular RNA spermatogenesis-associated protein 6 (circSPATA6) exhibited low expression in OSCC tissues, yet the regulatory mechanism of circSPATA6 remains vague. Methods Levels of circSPATA6, linear SPATA6, microRNA-182 (miR-182), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Migration, invasion, cell cycle arrest, and apoptosis were assessed by Wound-healing, Matrigel invasion, and Flow cytometry assays. The binding relationship between miR-182 and circSPATA6 or TRAF6 was predicted by circRNA interactome or DIANA TOOL and then proved by the dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. TRAF6 protein level was measured by Western blot assay. The biological role of circSPATA6 on OSCC tumor growth was analyzed by xenograft tumor model in vivo. Exosomes were isolated and detected by differential centrifugation and a transmission electron microscope. Results CircSPATA6 and TRAF6 were declined, and miR-182 was elevated in OSCC cells. Functionally, circSPATA6 impeded migration and invasion, and facilitated cell cycle arrest and apoptosis of OSCC cells. Mechanistically, circSPATA6 could modulate TRAF6 expression through sponging miR-182. Moreover, circSPATA6 blocked tumor growth in the OSCC mice model. Exosomal circSPATA6 retarded the growth of OSCC cells. Conclusion CircSPATA6 curbed migration and invasion, and expedited cell cycle arrest and apoptosis in OSCC cells partly through regulating the miR-182/TRAF6 axis. These findings hinted at an underlying circRNA-targeted therapy for OSCC.
Collapse
Affiliation(s)
- Xinhua Fan
- Department of Stomatology, Inner Mongolia Baotou Steel Hospital, Baotou City, Inner Mongolia, People's Republic of China
| | - Ying Wang
- Department of Stomatology, Inner Mongolia Baotou Steel Hospital, Baotou City, Inner Mongolia, People's Republic of China
| |
Collapse
|
18
|
Yuan Y, Zhou X, Kang Y, Kuang H, Peng Q, Zhang B, Liu X, Zhang M. Circ-CCS is identified as a cancer-promoting circRNA in lung cancer partly by regulating the miR-383/E2F7 axis. Life Sci 2020; 267:118955. [PMID: 33359669 DOI: 10.1016/j.lfs.2020.118955] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Increasing biomolecules have been found to be involved in the lung cancer development. This study will perform the function and mechanism analyses of a novel circular RNA copper chaperone for superoxide dismutase (circ-CCS) in lung cancer. METHODS Circ-CCS, microRNA-383 (miR-383) and E2F transcription factor 7 (E2F7) were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was detected using Cell Counting Kit-8 (CCK-8). Clonal ability was measured by colony formation assay. Cell apoptosis was determined via flow cytometry. Cell migration and invasion were assessed by transwell assay. Detection of protein was completed using western blot. Xenograft assay was used for the functional analysis of circ-CCS in vivo. The binding between targets was proved by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. E2F7 protein level was also examined by Immunohistochemistry (IHC) analysis in human tissues. RESULTS Circ-CCS was upregulated in lung cancer and could predict poor prognosis. Downregulation of circ-CCS inhibited lung cancer cell growth and metastasis while promoted apoptosis in vitro, and suppressed tumorigenesis of lung cancer in vivo. Circ-CCS had sponge effect on miR-383 and the function of si-circ-CCS was achieved by upregulating miR-383. E2F7 was a target gene of miR-383 and its downregulation was responsible for the anti-cancerous role of miR-383 in lung cancer. Circ-CCS could elevate E2F7 expression via interacting with miR-383. CONCLUSION Circ-CCS was shown to facilitate lung cancer progression via the miR-383/E2F7 axis, exhibiting the pivotal value of circ-CCS in diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Yanli Yuan
- Department of Respiratory and Critical Care Ward 3, Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Xiaolei Zhou
- Department of Respiratory and Critical Care Ward 3, Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Yan Kang
- Department Two of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongping Kuang
- Department of Respiratory and Critical Care Ward 3, Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Qiang Peng
- Department of Respiratory and Critical Care Ward 3, Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Bo Zhang
- Department of Respiratory and Critical Care Ward 3, Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Xinxin Liu
- Department of Respiratory and Critical Care Ward 3, Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Manlin Zhang
- Department of Respiratory and Critical Care Ward 3, Henan Provincial Chest Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
Zhao X, Wang Y, Yu Q, Yu P, Zheng Q, Yang X, Gao D. Circular RNAs in gastrointestinal cancer: Current knowledge, biomarkers and targeted therapy (Review). Int J Mol Med 2020; 46:1611-1632. [PMID: 33000182 PMCID: PMC7521476 DOI: 10.3892/ijmm.2020.4731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of endogenous non‑coding RNAs that are connected at the 3' and 5' ends by exon or intron cyclization, which forms a covalently closed loop. They are stable, well conserved, exhibit specific expression in mammalian cells and can function as microRNA (miRNA or miR) sponges to regulate the target genes of miRNAs, which influences biological processes. Such as tumor proliferation, invasion, metastasis, apoptosis and tumor stage. circRNAs represent promising candidates for clinical diagnosis and treatment. In the present review, the biogenesis, classification and functions of circRNAs in tumors are briefly summarized and discussed. In addition, the participation of circRNAs in signal transduction pathways regulating gastrointestinal cancer cellular functions is highlighted.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yue Wang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Yu
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiaoyu Zheng
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|