1
|
Zhang Y, Zhang C, Peng C, Jia J. Unraveling the crosstalk: circRNAs and the wnt signaling pathway in cancers of the digestive system. Noncoding RNA Res 2024; 9:853-864. [PMID: 38586314 PMCID: PMC10995981 DOI: 10.1016/j.ncrna.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024] Open
Abstract
Circular RNA (circRNA) is a unique type of noncoding RNA molecule characterized by its closed-loop structure. Functionally versatile, circRNAs play pivotal roles in gene expression regulation, protein activity modulation, and participation in cell signaling processes. In the context of cancers of the digestive system, the Wnt signaling pathway holds particular significance. Anomalous activation of the Wnt pathway serves as a primary catalyst for the development of colorectal cancer. Extensive research underscores the notable participation of circRNAs associated with the Wnt pathway in the progression of digestive system tumors. These circRNAs exhibit pronounced dysregulation across esophageal cancer, gastric cancer, liver cancer, colorectal cancer, pancreatic cancer, and cholangiocarcinoma. Furthermore, the altered expression of circRNAs linked to the Wnt pathway correlates with prognostic factors in digestive system tumors. Additionally, circRNAs related to the Wnt pathway showcase potential as diagnostic, therapeutic, and prognostic markers within the realm of digestive system tumors. This comprehensive review outlines the interplay between circRNAs and the Wnt signaling pathway in cancers of the digestive system. It seeks to provide a comprehensive perspective on their association while delving into ongoing research that explores the clinical applications of circRNAs associated with the Wnt pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
3
|
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression. Pathol Res Pract 2024; 255:155132. [PMID: 38335783 DOI: 10.1016/j.prp.2024.155132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Cancer, a complex pathophysiological condition, arises from the abnormal proliferation and survival of cells due to genetic mutations. Dysregulation of cell cycle control, apoptosis, and genomic stability contribute to uncontrolled growth and metastasis. Tumor heterogeneity, microenvironmental influences, and immune evasion further complicate cancer dynamics. The intricate interplay between circular RNAs (circRNAs) and the Wnt/β-Catenin signalling pathway has emerged as a pivotal axis in the landscape of cancer biology. The Wnt/β-Catenin pathway, a critical regulator of cell fate and proliferation, is frequently dysregulated in various cancers. CircRNAs, a class of non-coding RNAs with closed-loop structures, have garnered increasing attention for their diverse regulatory functions. This review systematically explores the intricate crosstalk between circRNAs and the Wnt/β-Catenin pathway, shedding light on their collective impact on cancer initiation and progression. The review explores the diverse mechanisms through which circRNAs modulate the Wnt/β-Catenin pathway, including sponging microRNAs, interacting with RNA-binding proteins, and influencing the expression of key components in the pathway. Furthermore, the review highlights specific circRNAs implicated in various cancer types, elucidating their roles as either oncogenic or tumour-suppressive players in the context of Wnt/β-Catenin signaling. The intricate regulatory networks formed by circRNAs in conjunction with the Wnt/β-Catenin pathway are discussed, providing insights into potential therapeutic targets and diagnostic biomarkers. This comprehensive review delves into the multifaceted roles of circRNAs in orchestrating tumorigenesis through their regulatory influence on the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
4
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
5
|
Abaza T, El-Aziz MKA, Daniel KA, Karousi P, Papatsirou M, Fahmy SA, Hamdy NM, Kontos CK, Youness RA. Emerging Role of Circular RNAs in Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2023; 24:16484. [PMID: 38003674 PMCID: PMC10671287 DOI: 10.3390/ijms242216484] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal malignancy with limited therapeutic options and high recurrence rates. Recently, immunotherapeutic agents such as immune checkpoint inhibitors (ICIs) have emerged as a new paradigm shift in oncology. ICIs, such as programmed cell death protein 1 (PD-1) inhibitors, have provided a new source of hope for patients with advanced HCC. Yet, the eligibility criteria of HCC patients for ICIs are still a missing piece in the puzzle. Circular RNAs (circRNAs) have recently emerged as a new class of non-coding RNAs that play a fundamental role in cancer pathogenesis. Structurally, circRNAs are resistant to exonucleolytic degradation and have a longer half-life than their linear counterparts. Functionally, circRNAs possess the capability to influence various facets of the tumor microenvironment, especially at the HCC tumor-immune synapse. Notably, circRNAs have been observed to control the expression of immune checkpoint molecules within tumor cells, potentially impeding the therapeutic effectiveness of ICIs. Therefore, this renders them potential cancer-immune biomarkers for diagnosis, prognosis, and therapeutic regimen determinants. In this review, the authors shed light on the structure and functional roles of circRNAs and, most importantly, highlight the promising roles of circRNAs in HCC immunomodulation and their potential as promising biomarkers and immunotherapeutic regimen determinants.
Collapse
Affiliation(s)
- Tasneem Abaza
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mostafa K. Abd El-Aziz
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71631, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt;
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Rana A. Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
| |
Collapse
|
6
|
Meng Z, Liu Q, Liu Y, Yang Y, Shao C, Zhang S. Frizzled-3 suppression overcomes multidrug chemoresistance by Wnt/β-catenin signaling pathway inhibition in hepatocellular carcinoma cells. J Chemother 2023; 35:653-661. [PMID: 36843499 DOI: 10.1080/1120009x.2023.2182573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/28/2023]
Abstract
Multidrug resistance (MDR) is a major obstacle to the efficacy of hepatocellular carcinoma (HCC) chemotherapy. Previous studies have identified that low FZD3 predicted decreased survival after intraperitoneal versus intravenous-only chemotherapy in ovarian cancer. This study aimed to identify a potential target in HCC chemotherapy. The FZD3 expression variant in HCC cell lines was detected by RT-qPCR and western blotting. The FZD3 expression in the early recurrent HCC group (RE group) and the non-early recurrent HCC group (non-RE group) was measured by RT-qPCR. Then, the 50% inhibitory concentrations (IC50) in HCC cell lines were studied by MTT assay. TOP/FOP FLASH luciferase assay was performed to measure TCF-binding activities. We found that FZD3 was upregulated in three HCC cell lines, and the FZD3 expression was significantly higher in the RE group than in the non-RE group (P = 0.0344). A positive correlation between FZD3 and MDR1 was observed in HCC tissues (R2 = 0.6368, P = 0.0001). Then, we found that FZD3 knockdown significantly altered Huh-7 cell chemotherapeutic sensitivity to cisplatin [50.43 µM in the FZD3 siRNA (siFZD3) group vs 98.59 µM in the siRNA negative control (siNC) group; P = 0.007] or doxorubicin (7.43 µM in the siFZD3 group vs 14.93 µM in the siNC group; P = 0.017). TOP/FOP FLASH luciferase assay showed FZD3 could inhibit Wnt/β-catenin signaling in HCC cells. Moreover, FZD3 expression knockdown in SNU-449 and Huh-7 cells markedly reduced β-catenin and phosho-β-catenin (S37) protein expression, and Cyclin D1, c-myc and MDR1 were significantly decreased. This is the first study to describe the significantly increased FZD3 expression in patients with early recurrent HCC. FZD3 knockdown led to increased sensitivity to chemotherapy by Wnt/β-catenin signaling inhibition in HCC cell lines. Our study suggests FZD3 as a potential target for reversing chemoresistance in HCC.
Collapse
Affiliation(s)
- Zifan Meng
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanfei Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanming Yang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changfeng Shao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Kang MK, Kim G, Park JG, Jang SY, Lee HW, Tak WY, Kweon YO, Park SY, Lee YR, Hur K. Tissue Circular RNA_0004018 and 0003570 as Novel Prognostic Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma. Genes (Basel) 2023; 14:1963. [PMID: 37895312 PMCID: PMC10606672 DOI: 10.3390/genes14101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The clinical significance of hsa_circ_0004018 and hsa_circ_0003570 in patients with hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) is unclear. We aimed to explore the clinical significance and prognostic utility of these two circular RNAs (circRNAs) in patients with HBV-HCC. Based on 86 paired tissue samples of HCC and adjacent non-HCC, the relative expression profiles of hsa_circ_0004018 and hsa_circ_0003570 were determined using quantitative real-time polymerase chain reactions. The cut-off values were the median expression of each of the two circRNAs in 86 patients with HBV-HCC. The combination group comprised patients with high levels of the two circRNAs. Clinicopathological features, body composition profiles at the L3 level, and survival rates were investigated. The expression of hsa_circ_0004018 and hsa_circ_0003570 was downregulated in HCC tissues compared with non-HCC tissues. High expression levels of hsa_circ_0003570 (hazard ratio (HR), 0.437; p = 0.009) and hsa_circ_0004018 (HR, 0.435; p = 0.005) were inversely independent risk factors for overall and progression-free survival in patients with HBV-HCC, whereas the combination group was also an inversely independent risk factor for overall (HR, 0.399; p = 0.005) and progression-free survival (HR, 0.422; p = 0.003) in patients with HBV-HCC. The combination of hsa_circ_0003570 and hsa_circ_0004018 may be a potential prognostic biomarker for HBV-HCC.
Collapse
Affiliation(s)
- Min-Kyu Kang
- Department of Internal Medicine, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Gyeonghwa Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Jung Gil Park
- Department of Internal Medicine, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Se Young Jang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Hye Won Lee
- Department of Pathology, School of Medicine, Keimyung University, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu 41944, Republic of Korea
| | - Won Young Tak
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Young Oh Kweon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
Moldogazieva NT, Zavadskiy SP, Astakhov DV, Sologova SS, Margaryan AG, Safrygina AA, Smolyarchuk EA. Differentially expressed non-coding RNAs and their regulatory networks in liver cancer. Heliyon 2023; 9:e19223. [PMID: 37662778 PMCID: PMC10474437 DOI: 10.1016/j.heliyon.2023.e19223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
The vast majority of human transcriptome is represented by various types of small RNAs with little or no protein-coding capability referred to as non-coding RNAs (ncRNAs). Functional ncRNAs include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which are expressed at very low, but stable and reproducible levels in a variety of cell types. ncRNAs regulate gene expression due to miRNA capability of complementary base pairing with mRNAs, whereas lncRNAs and circRNAs can sponge miRNAs off their target mRNAs to act as competitive endogenous RNAs (ceRNAs). Each miRNA can target multiple mRNAs and a single mRNA can interact with several miRNAs, thereby creating miRNA-mRNA, lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks. Over the past few years, a variety of differentially expressed miRNAs, lncRNAs, and circRNAs (DEMs, DELs, and DECs, respectively) have been linked to cancer pathogenesis. They can exert both oncogenic and tumor suppressor roles. In this review, we discuss the recent advancements in uncovering the roles of DEMs, DELs, and DECs and their networks in aberrant cell signaling, cell cycle, transcription, angiogenesis, and apoptosis, as well as tumor microenvironment remodeling and metabolic reprogramming during hepatocarcinogenesis. We highlight the potential and challenges in the use of differentially expressed ncRNAs as biomarkers for liver cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Sergey P. Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Dmitry V. Astakhov
- Department of Biochemistry, Institute of Biodesign and Complex Systems Modelling, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Susanna S. Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Arus G. Margaryan
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Anastasiya A. Safrygina
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Elena A. Smolyarchuk
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| |
Collapse
|
9
|
Mafi A, Rismanchi H, Malek Mohammadi M, Hedayati N, Ghorbanhosseini SS, Hosseini SA, Gholinezhad Y, Mousavi Dehmordi R, Ghezelbash B, Zarepour F, Taghavi SP, Asemi Z, Alimohammadi M, Mirzaei H. A spotlight on the interplay between Wnt/β-catenin signaling and circular RNAs in hepatocellular carcinoma progression. Front Oncol 2023; 13:1224138. [PMID: 37546393 PMCID: PMC10403753 DOI: 10.3389/fonc.2023.1224138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to multifocal development and distant metastasis resulting from late diagnosis. Consequently, new approaches to HCC diagnosis and treatment are required to reduce mortality rates. A large body of evidence suggests that non-coding RNAs (ncRNAs) are important in cancer initiation and progression. Cancer cells release many of these ncRNAs into the blood or urine, enabling their use as a diagnostic tool. Circular RNAs (CircRNAs) are as a members of the ncRNAs that regulate cancer cell expansion, migration, metastasis, and chemoresistance through different mechanisms such as the Wnt/β-catenin Signaling pathway. The Wnt/β-catenin pathway plays prominent roles in several biological processes including organogenesis, stem cell regeneration, and cell survival. Aberrant signaling of both pathways mentioned above could affect the progression and metastasis of many cancers, including HCC. Based on several studies investigated in the current review, circRNAs have an effect on HCC formation and progression by sponging miRNAs and RNA-binding proteins (RBPs) and regulating the Wnt/β-catenin signaling pathway. Therefore, circRNAs/miRNAs or RBPs/Wnt/β-catenin signaling pathway could be considered promising prognostic and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Hosseini
- Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Taheriazam A, Bayanzadeh SD, Heydari Farahani M, Mojtabavi S, Zandieh MA, Gholami S, Heydargoy MH, Jamali Hondori M, Kangarloo Z, Behroozaghdam M, Khorrami R, Sheikh Beig Goharrizi MA, Salimimoghadam S, Rashidi M, Hushmandi K, Entezari M, Hashemi M. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur J Pharmacol 2023; 951:175781. [PMID: 37179043 DOI: 10.1016/j.ejphar.2023.175781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/β-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of β-catenin to nucleus. Interaction of ncRNAs with Wnt/β-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/β-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e Kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Heydargoy
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Microbiology, Shahr-e Ghods Branch, Azad Islamic University, Tehran, Iran
| | - Maryam Jamali Hondori
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Kangarloo
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Ji C, Chen L, Yuan M, Xie W, Sheng X, Yin Q. KDM1A drives hepatoblastoma progression by activating the Wnt/β-catenin pathway through inhibition of DKK3 transcription. Tissue Cell 2023; 81:101989. [PMID: 36642006 DOI: 10.1016/j.tice.2022.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
This study is to explore the mechanism of KDM1A-regulated hepatoblastoma (HB) development. Cancerous and paracancer tissues of 30 HB patients were collected for detection of KDM1A and DKK3 expression. HuH-6 and HepG2 cells were subjected to assays of cellular activities after treatment with sh-KDM1A, sh-DKK3, and/or XAV-939 (an inhibitor of the Wnt/β-catenin pathway). Chromatin immunoprecipitation was used to determine the interaction of KDM1A with DKK3. Nude mice were injected with HuH-6 cells in which KDM1A was knocked down. KDM1A was highly expressed and DKK3 was lowly expressed in HB patients. Knockdown of KDM1A reduced the proliferative and invasive capabilities of HepG2 and HuH-6 cells and accelerated the cell apoptosis; these influences were nullified by knockdown of DKK3. KDM1A inhibited DKK3 transcription by reducing H3 methylation. XAV-939 treatment inhibited the development of HepG2 and HuH-6 cells in which KDM1A and DKK3 were both knocked down. Knockdown of KDM1A reduced the tumor mass, inactivated the Wnt/β-catenin signaling, and increased the expression of DKK3 in nude mice. KDM1A stimulates HB development by activating the Wnt/β-catenin pathway through inhibition of DKK3 transcription.
Collapse
Affiliation(s)
- Chunyi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Lijian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Miaoxian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Weixin Xie
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Xinyi Sheng
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China.
| |
Collapse
|
13
|
Liu Z, Yang F, Xiao Z, Liu Y. Review of novel functions and implications of circular RNAs in hepatocellular carcinoma. Front Oncol 2023; 13:1093063. [PMID: 36890830 PMCID: PMC9986438 DOI: 10.3389/fonc.2023.1093063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent malignancies, with high incidence and mortality. As the majority of HCC patients are diagnosed at an advanced stage and die of recurrence and metastasis, its pathology and new biomarkers are needed. Circular RNAs (circRNAs) are a large subclass of long non-coding RNAs (lncRNAs) with covalently closed loop structures and abundant, conserved, stable, tissue-specific expression in mammalian cells. CircRNAs exert multiple functions in HCC initiation, growth and progression, serving as promising biomarkers for diagnosis, prognosis and therapeutic targets for this disease. This review briefly describes the biogenesis and biological functions of circRNAs and elucidates the roles of circRNAs in the development and progression of HCC, especially regarding epithelial-mesenchymal transition (EMT), drug resistance and interactions with epigenetic modifications. In addition, this review highlights the implications of circRNAs as potential biomarkers and therapeutic targets for HCC. We hope to provide novel insight into the roles of circRNAs in HCC.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Combination of Traditional Chinese Medicine and Western Medicine, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Fangming Yang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhun Xiao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuexuan Liu
- Department of Combination of Traditional Chinese Medicine and Western Medicine, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
14
|
Tümen D, Heumann P, Gülow K, Demirci CN, Cosma LS, Müller M, Kandulski A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022; 10:3202. [PMID: 36551958 PMCID: PMC9775527 DOI: 10.3390/biomedicines10123202] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer with high lethality and low five-year survival rates leading to a substantial worldwide burden for healthcare systems. HCC initiation and progression are favored by different etiological risk factors including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, non-/and alcoholic fatty liver disease (N/AFLD), and tobacco smoking. In molecular pathogenesis, endogenous alteration in genetics (TP53, TERT, CTNNB1, etc.), epigenetics (DNA-methylation, miRNA, lncRNA, etc.), and dysregulation of key signaling pathways (Wnt/β-catenin, JAK/STAT, etc.) strongly contribute to the development of HCC. The multitude and complexity of different pathomechanisms also reflect the difficulties in tailored medical therapy of HCC. Treatment options for HCC are strictly dependent on tumor staging and liver function, which are structured by the updated Barcelona Clinic Liver Cancer classification system. Surgical resection, local ablative techniques, and liver transplantation are valid and curative therapeutic options for early tumor stages. For multifocal and metastatic diseases, systemic therapy is recommended. While Sorafenib had been the standalone HCC first-line therapy for decades, recent developments had led to the approval of new treatment options as first-line as well as second-line treatment. Anti-PD-L1 directed combination therapies either with anti-VEGF directed agents or with anti-CTLA-4 active substances have been implemented as the new treatment standard in the first-line setting. However, data from clinical trials indicate different responses on specific therapeutic regimens depending on the underlying pathogenesis of hepatocellular cancer. Therefore, histopathological examinations have been re-emphasized by current international clinical guidelines in addition to the standardized radiological diagnosis using contrast-enhanced cross-sectional imaging. In this review, we emphasize the current knowledge on molecular pathogenesis of hepatocellular carcinoma. On this occasion, the treatment sequences for early and advanced tumor stages according to the recently updated Barcelona Clinic Liver Cancer classification system and the current algorithm of systemic therapy (first-, second-, and third-line treatment) are summarized. Furthermore, we discuss novel precautional and pre-therapeutic approaches including therapeutic vaccination, adoptive cell transfer, locoregional therapy enhancement, and non-coding RNA-based therapy as promising treatment options. These novel treatments may prolong overall survival rates in regard with quality of life and liver function as mainstay of HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21:144. [PMID: 35836256 PMCID: PMC9281132 DOI: 10.1186/s12943-022-01616-7] [Citation(s) in RCA: 423] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
16
|
Niu ZS, Wang WH. Circular RNAs in hepatocellular carcinoma: Recent advances. World J Gastrointest Oncol 2022; 14:1067-1085. [PMID: 35949213 PMCID: PMC9244981 DOI: 10.4251/wjgo.v14.i6.1067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) have covalently closed loop structures at both ends, exhibiting characteristics dissimilar to those of linear RNAs. Emerging evidence suggests that aberrantly expressed circRNAs play crucial roles in hepatocellular carcinoma (HCC) by affecting the proliferation, apoptosis and invasive capacity of HCC cells. Certain circRNAs may be used as biomarkers to diagnose and predict the prognosis of HCC. Therefore, circRNAs are expected to become novel biomarkers and therapeutic targets for HCC. Herein, we briefly review the characteristics and biological functions of circRNAs, focusing on their roles in HCC to provide new insights for the early diagnosis and targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
17
|
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer 2022; 21:108. [PMID: 35513849 PMCID: PMC9074313 DOI: 10.1186/s12943-022-01582-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.
Collapse
Affiliation(s)
- Chen Xue
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Ganglei Li
- grid.13402.340000 0004 1759 700XDepartment of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Qiuxian Zheng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Xinyu Gu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Zhengyi Bao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Juan Lu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| |
Collapse
|
18
|
Wang P, Zhang Y, Deng L, Qu Z, Guo P, Liu L, Yu Z, Wang P, Liu N. The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell Int 2022; 22:141. [PMID: 35361205 PMCID: PMC8973545 DOI: 10.1186/s12935-022-02559-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNA (circRNA), a new type of endogenous non-coding RNA, is abundantly present in eukaryotic cells, and characterized as stable high conservation and tissue specific expression. It has been generated increasing attention because of their close association with the progress of diseases. The liver is the vital organ of humans, while it is prone to acute and chronic diseases due to the influence of multiple pathogenic factors. Moreover, hepatocellular carcinoma (HCC) is the one of most common cancer and the leading cause of cancer death worldwide. Overwhelming evidences indicate that some circRNAs are differentially expressed in liver diseases, such as, HCC, chronic hepatitis B, hepatic steatosis and hepatoblastoma tissues, etc. Additionally, these circRNAs are related to proliferation, invasion, migration, angiogenesis, apoptosis, and metastasis of cell in liver diseases and act as oncogenic agents or suppressors, and linked to clinical manifestations. In this review, we briefly summarize the biogenesis, characterization and biological functions, recent detection and identification technologies of circRNA, and regulation network mechanism of circRNA in liver diseases, and discuss their potential values as biomarkers or therapeutic targets for liver diseases, especially on HCC.
Collapse
Affiliation(s)
- Panpan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Yunhuan Zhang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Lugang Deng
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China. .,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China. .,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
19
|
Cao X, Guo J, Mochizuki H, Xu D, Zhang T, Han H, Ma T, Qi M, He J. Circular RNA circ_0070441 regulates MPP +-triggered neurotoxic effect in SH-SY5Y cells via miR-626/IRS2 axis. Metab Brain Dis 2022; 37:513-524. [PMID: 34748128 DOI: 10.1007/s11011-021-00869-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) was suggested to play crucial regulatory roles in various human diseases, including Parkinson's disease (PD). This research aimed to investigate the function and potential mechanism of circ_0070441 in PD. MPP+ (1-methyl-4-phenylpyridinium)-treated SH-SY5Y cells was used as an in vitro cellular PD model. The expressions of circ_0070441, microRNA (miR)-626 and insulin receptor substrate 2 (IRS2) were measured by quantitative real-time polymerase chain reaction (RT-qPCR) or western blot. Cell Counting Kit-8 (CCK-8) assay, Cytotoxicity Detection Kit (Lactate Dehydrogenase), flow cytometry and Caspase-3 Assay Kit were used to detect cell viability, LDH release, cell apoptosis and caspase-3 activity, respectively. The levels of inflammation-related factors were detected by enzyme-linked immunosorbent assay (ELISA). The correlation among circ_0070441, miR-626 and IRS2 were confirmed by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. The levels of circ_0070441 and IRS2 were increased while miR-626 expression was decreased in MPP+-treated SH-SY5Y cells in dose- and time-dependent manners. Depletion of circ_0070441 alleviated MPP+-triggered neuronal damage by regulating cell apoptosis and inflammation. Circ_0070441 acted as a sponge for miR-626, and IRS2 was a target of miR-626. Besides, the neuroprotective effects of circ_0070441 knockdown or miR-626 overexpression were partly overturned by the suppression of miR-626 or IRS2 overexpression. Moreover, circ_0070441 upregulated IRS2 expression by interacting with miR-626. In summary, circ_0070441 aggravated MPP+-triggered neurotoxic effect in SH-SY5Y cells by regulating miR-626/IRS2 axis.
Collapse
Affiliation(s)
- Xuqing Cao
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Zhengyuan North Street, Jinfeng District, Yinchuan, 750002, China.
| | - Jiangtao Guo
- Department of Rheumatogy and Immunology, People's Hospital of Ningxia Hui Autonomous Region, 750002, Yinchuan, China
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 550-0004, Osaka, Japan
| | - Dong Xu
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Zhengyuan North Street, Jinfeng District, Yinchuan, 750002, China
| | - Tao Zhang
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Zhengyuan North Street, Jinfeng District, Yinchuan, 750002, China
| | - Haiping Han
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Zhengyuan North Street, Jinfeng District, Yinchuan, 750002, China
| | - Tingjie Ma
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Zhengyuan North Street, Jinfeng District, Yinchuan, 750002, China
| | - Mingshan Qi
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Zhengyuan North Street, Jinfeng District, Yinchuan, 750002, China
| | - Jing He
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Zhengyuan North Street, Jinfeng District, Yinchuan, 750002, China
| |
Collapse
|
20
|
Ma M, Yang X, Han F, Wang H. Circ_0092291 attenuates angiotensin II-induced cell damages in human aortic vascular smooth muscle cells via mediating the miR-626/COL4A1 signal axis. J Physiol Biochem 2022; 78:245-256. [PMID: 34997455 DOI: 10.1007/s13105-021-00859-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a potentially fatal vascular disease, and the dysregulated circular RNAs (circRNAs) play key roles in AAA progression. Circ_0092291 was downregulated in AAA patients, but its function in AAA remains unclear. This research was performed for the functional analysis of circ_0092291 and its mechanism exploration with mircoRNA-626 (miR-626) and collagen type IV alpha1 chain (COL4A1) in AAA. Human aortic vascular smooth muscle cells (T/G HA-VSMC) were treated with angiotensin II (Ang II). Levels of circ_0092291, miR-626, and COL4A1 were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Inflammatory cytokines were examined by enzyme-linked immunosorbent assay (ELISA). Cell apoptosis was measured using caspase3 activity assay and flow cytometry. Angiopoiesis was assessed via tube formation assay. The protein analysis was conducted by western blot. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP), and RNA pull-down assays were used to validate the molecular binding. Circ_0092291 downregulation was found in AAA samples and Ang II-treated cells. Inflammatory response and cell apoptosis were reduced while angiopoiesis and ECM level were facilitated after overexpression of circ_0092291 in Ang II-treated T/G HA-VSMC cells. MiR-626 was a miRNA target for circ_0092291, and miR-626 inhibition protected T/G HA-VSMC from Ang II-induced cell injury. Moreover, the regulation of circ_0092291 was achieved by serving as a miR-626 sponge in Ang II-treated cells. COL4A1 was affirmed as a target for miR-626 and circ_0092291 resulted in the level change of COL4A1 by sponging miR-626. Additionally, miR-626 downregulation inhibited the cell damages caused by Ang II through increasing the level of COL4A1 and the function of circ_0092291 was attributed to the upregulation of COL4A1. The evidence indicated that circ_0092291 could suppress the Ang II-induced cell dysfunction by targeting the miR-626/COL4A1 signaling axis. Circ_0092291 might improve the diagnosis and treatment of AAA.Key Points.Biological mechanism, Apoptosis, Molecular target.
Collapse
Affiliation(s)
- Ming Ma
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, No. 29 Shuangta East Street, Taiyuan, 030012, Shanxi Province, China.
| | - Xiaofei Yang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, No. 29 Shuangta East Street, Taiyuan, 030012, Shanxi Province, China
| | - Feng Han
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, No. 29 Shuangta East Street, Taiyuan, 030012, Shanxi Province, China
| | - Haidong Wang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, No. 29 Shuangta East Street, Taiyuan, 030012, Shanxi Province, China
| |
Collapse
|
21
|
Wang Y, Zhou XY, Lu XY, Chen KD, Yao HP. Involvement of the circular RNA/microRNA/glucose-6-phosphate dehydrogenase axis in the pathological mechanism of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2021; 20:530-534. [PMID: 34548225 DOI: 10.1016/j.hbpd.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with high mortality. The incidence of HCC is increasing in China. Abnormal activation of glucose-6-phosphate dehydrogenase (G6PD) exists in all malignant tumors, including HCC, and is closely related to the development of HCC. In addition, the differential expression of non-coding RNAs is closely related to the development of HCC. This systematic review focuses on the relationship between G6PD, HCC, and non-coding RNA, which form the basis for the circRNA/miRNA/G6PD axis in HCC. The circular RNA (circRNA)/microRNA (miRNA)/G6PD axis is involved in development of HCC. We proposed that non-coding RNA molecules of the circRNA/miRNA/G6PD axis may be novel biomarkers for the pathological diagnosis, prognosis, and targeted therapy of HCC.
Collapse
Affiliation(s)
- Ying Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xin-Yi Zhou
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiang-Yun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ke-Da Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
22
|
Deldar Abad Paskeh M, Mirzaei S, Ashrafizadeh M, Zarrabi A, Sethi G. Wnt/β-Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. J Hepatocell Carcinoma 2021; 8:1415-1444. [PMID: 34858888 PMCID: PMC8630469 DOI: 10.2147/jhc.s336858] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Liver cancers cause a high rate of death worldwide and hepatocellular carcinoma (HCC) is considered as the most common primary liver cancer. HCC remains a challenging disease to treat. Wnt/β-catenin signaling pathway is considered a tumor-promoting factor in various cancers; hence, the present review focused on the role of Wnt signaling in HCC, and its association with progression and therapy response based on pre-clinical and clinical evidence. The nuclear translocation of β-catenin enhances expression level of genes such as c-Myc and MMPs in increasing cancer progression. The mutation of CTNNB1 gene encoding β-catenin and its overexpression can lead to HCC progression. β-catenin signaling enhances cancer stem cell features of HCC and promotes their growth rate. Furthermore, β-catenin prevents apoptosis in HCC cells and increases their migration via triggering EMT and upregulating MMP levels. It is suggested that β-catenin signaling participates in mediating drug resistance and immuno-resistance in HCC. Upstream mediators including ncRNAs can regulate β-catenin signaling in HCC. Anti-cancer agents inhibit β-catenin signaling and mediate its proteasomal degradation in HCC therapy. Furthermore, clinical studies have revealed the role of β-catenin and its gene mutation (CTNBB1) in HCC progression. Based on these subjects, future experiments can focus on developing novel therapeutics targeting Wnt/β-catenin signaling in HCC therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
23
|
Wu Y, Zhang M, Bi X, Hao L, Liu R, Zhang H. ESR1 mediated circ_0004018 suppresses angiogenesis in hepatocellular carcinoma via recruiting FUS and stabilizing TIMP2 expression. Exp Cell Res 2021; 408:112804. [PMID: 34487732 DOI: 10.1016/j.yexcr.2021.112804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Angiogenesis has been certified to account for tumor pathobiology. Circular RNAs (circRNAs) have been demonstrated to be involved in angiogenesis-related diseases, including hepatocellular carcinoma (HCC). Nevertheless, the regulatory roles of most circRNAs remain obscure. This study aims to uncover the function of hsa_circ_0004018 on angiogenesis in HCC. Firstly, quantitative real-time RT-PCR (RT-qPCR) analyzed that circ_0004018 was definitely down-regulated in HCC. Western blot analysis was conducted to detect the protein level of fused protein in sarcoma (FUS) and TIMP metallopeptidase inhibitor 2 (TIMP2). Functional assays were carried out to assess the impacts of circ_0004018 on HCC. From the experimental results, we found that overexpression of circ_0004018 significantly inhibited angiogenesis in HCC. The regulatory mechanism of circ_0004018 in HCC was determined by chromatin immunoprecipitation (ChIP), luciferase reporter assays and RNA immunoprecipitation (RIP) assay. Therefore, we proved that estrogen receptor 1 (ESR1) mediated circ_0004018 regulated TIMP2 by recruiting FUS. A series of rescue assays verified that circ_0004018 participated in angiogenesis in HCC via modulating TIMP2. In summary, this paper disclosed that ESR1 activated circ_0004018 inhibited angiogenesis in HCC via binding to FUS and stabilizing TIMP2 expression.
Collapse
Affiliation(s)
- Yanli Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China
| | - Mingsheng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China
| | - Xiaojun Bi
- Department of Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China
| | - Li Hao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China
| | - Rong Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430022, Hubei, PR China
| | - Haiyan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
24
|
Wang H, Zhang Q, Cui W, Li W, Zhang J. Circ_0004018 suppresses cell proliferation and migration in hepatocellular carcinoma via miR-1197/PTEN/PI3K/AKT signaling pathway. Cell Cycle 2021; 20:2125-2136. [PMID: 34570663 DOI: 10.1080/15384101.2021.1962633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common type of primary liver cancer. Circular RNAs (circRNAs) have been demonstrated to be a crucial player in multiple cancers. However, a large number of circRNAs remain to be explored. Our study focused on investigating hsa_circ_0004018 in HCC. Firstly, we conducted quantitative reverse transcription PCR (RT-qPCR) to find that circ_0004018 was down-regulated in HCC cells. Western blot analysis was performed to detect the protein levels of phosphatase and tensin homologue (PTEN) and related factors of PI3K/AKT signaling pathway. From the results of functional assays, we found that overexpression of circ_0004018 significantly inhibited the proliferative and migratory capacities of HCC cells. The regulatory mechanism of circ_0004018 in HCC was determined by RNA immunoprecipitation (RIP), RNA pull-down, and luciferase reporter assays, thereby we knew that circ_0004018 regulated PTEN by sequestering microRNA-1197 (miR-1197) to modulate PI3K/AKT signaling pathway. Finally, rescue assays verified that circ_0004018 participated in modulation of cell proliferation and migration in HCC via sponging miR-1197 and regulating PTEN. In conclusion, circ_0004018 suppresses the proliferation and migration of HCC cells via sponging miR-1197 to inactivate the PTEN/PI3K/AKT signaling pathway.Abbreviations: HCC: Hepatocellular carcinoma; circRNAs: Circular RNAs; PTEN: Phosphatase and tensin homologue; miR-1197: microRNA-1197; ceRNA: competitive endogenous RNA; ATCC: American Type Culture Collection; EMEM: Eagle's Minimum Essential Medium; RT-qPCR: Quantitative real-time PCR; EdU: 5-ethynyl-20-deoxyuridine; FISH: Fluorescent in situ hybridization; RIP: RNA immunoprecipitation; 3'-UTR: 3'-untranslated region; Wt: wild-type; Mut; mutant type; gDNA: genomic DNA; Act D: Actinomycin D; PI3K: phosphatidylinositol-3-kinase; AKT: protein kinase; lncRNAs: long non-coding RNAs.
Collapse
Affiliation(s)
- He Wang
- Department of Interventional, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qiao Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Wenyu Cui
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Jimei Zhang
- Biology College, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
25
|
Xiao E, Zhang D, Zhan W, Yin H, Ma L, Wei J, Kang Y, Mao Z. circNFIX facilitates hepatocellular carcinoma progression by targeting miR-3064-5p/HMGA2 to enhance glutaminolysis. Am J Transl Res 2021; 13:8697-8710. [PMID: 34539988 PMCID: PMC8430108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is acknowledged to be a fatal malignant cancer around the world. Circular RNAs (circRNAs) function as crucial regulators in the pathological procession of HCC. Here, we elucidated the biological function of a novel circRNA, circNFIX, in HCC tumorigenesis. qRT-PCR was performed to determine the expressions of circNFIX, miR-3064-5p, and HMGA2. circNFIX stability was evaluated after treatment with ribonuclease R. The growth and invasion of HCC cells were assessed by CCK8 and transwell assays. Protein levels were measured by Western blotting. The levels of glutaminolysis metabolites were evaluated by commercial kits. Dual-luciferase report assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay were performed for validating the interaction between miR-3064-5p and circNFIX/HMGA2. Tumor growth in vivo was detected using xenograft assay. Our results showed that circNFIX was remarkably up-regulated in HCC and was associated with a poor survival. Knockdown of circNFIX repressed proliferation, invasion and glutaminolysis of HCC cells. Moreover, circNFIX directly sponged miR-3064-5p to release HMGA2 expression, and thus conferred the malignant development of HCC. In conclusion, circNFIX serves as a competing endogenous RNA to accelerate HCC progression via regulating miR-3064-5p/HMGA2 axis, suggesting a therapeutic strategy for HCC intervention.
Collapse
Affiliation(s)
- Erhui Xiao
- Department of Infectious Diseases, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of He'nan University Zhengzhou, He'nan Province, China
| | - Dongmei Zhang
- Department of Infectious Diseases, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of He'nan University Zhengzhou, He'nan Province, China
| | - Weili Zhan
- Department of Infectious Diseases, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of He'nan University Zhengzhou, He'nan Province, China
| | - Hui Yin
- Department of Infectious Diseases, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of He'nan University Zhengzhou, He'nan Province, China
| | - Li Ma
- Department of Infectious Diseases, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of He'nan University Zhengzhou, He'nan Province, China
| | - Junfeng Wei
- Department of Infectious Diseases, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of He'nan University Zhengzhou, He'nan Province, China
| | - Yi Kang
- Department of Infectious Diseases, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of He'nan University Zhengzhou, He'nan Province, China
| | - Zhongshan Mao
- Department of Infectious Diseases, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of He'nan University Zhengzhou, He'nan Province, China
| |
Collapse
|
26
|
Liao R, Liu L, Zhou J, Wei X, Huang P. Current Molecular Biology and Therapeutic Strategy Status and Prospects for circRNAs in HBV-Associated Hepatocellular Carcinoma. Front Oncol 2021; 11:697747. [PMID: 34277444 PMCID: PMC8284075 DOI: 10.3389/fonc.2021.697747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are newly classified noncoding RNA (ncRNA) members with a covalently closed continuous loop structure that are involved in immune responses against hepatitis B virus (HBV) infections and play important biological roles in the occurrence and pathogenesis of HCC progression. The roles of circRNAs in HBV-associated HCC (HBV-HCC) have gained increasing attention. Substantial evidence has revealed that both tissue and circulating circRNAs may serve as potential biomarkers for diagnostic, prognostic and therapeutic purposes. So far, at least four circRNA/miRNA regulatory axes such as circRNA_101764/miR-181, circRNA_100338/miR-141-3p, circ-ARL3/miR-1305, circ-ATP5H/miR-138-5p, and several circulating circRNAs were reported to be associated with HBV-HCC development. Notably, TGF/SMAD, JAK/STAT, Notch and Wnt/β-catenin signaling pathways may play pivotal roles in this HBV-driven HCC via several circRNAs. Moreover, in non-HBV HCC patients or HCC patients partially infected by HBV, numerous circRNAs have been identified to be important regulators impacting the malignant biological behavior of HCC. Furthermore, the role of circRNAs in HCC drug resistance has become a focus of research with the aim of reversing chemoresistance and immune resistance. Herein, we review the molecular biology of circRNAs in HBV-HCC and their potential in therapeutic strategies.
Collapse
Affiliation(s)
- Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery, The People’s Rongchang Hospital, Chongqing, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Cui SH, Hu XD, Yan Y. Wnt/β-catenin signaling pathway participates in the effect of miR-626 on oral squamous cell carcinoma by targeting RASSF4. J Oral Pathol Med 2021; 50:1005-1017. [PMID: 34121238 DOI: 10.1111/jop.13216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND The role of miR-626 in oral squamous cell carcinoma (OSCC) was investigated by targeting RASSF4. METHODS The miR-626 and RASSF4 expression was detected in normal oral mucosa or OSCC tissues and OSCC or normal cells. The methylation status of RASSF4 was analyzed using methylation-specific polymerase chain reaction (PCR). The cytoplasmic/nuclear ratios (C/N ratios) targeted by miR-626 were examined using microarray, followed by a dual-luciferase reporter assay. The subcellular localization of RASSF4 and miR-626 in OSCC cells was determined using RNA fluorescence in situ hybridization (FISH) and immunocytochemistry (ICC), respectively. Ca9-22 and HSC2 cells were divided into mock, inhibitor NC, miR-626 inhibitor, scramble, RASSF4 and miR-626 mimic + RASSF4 groups, and then CCK-8, Annexin V-FITC/PI, wound healing, Transwell, qRT-PCR and western blotting assays were performed. RESULTS OSCC tissues and cells had increased miR-626 expression and decreased RASSF4 expression. Patients with RASSF4 methylation had lower RASSF4 expression than those without methylation. In addition, a negative correlation between miR-626 and RASSF4 was found in OSCC tissues, both of which were correlated with the pathological grade, pathological stage, lymph node metastasis and patient prognosis. MiR-626 targeted RASSF4 in OSCC cells. Overexpressed RASSF4 inhibited the proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of OSCC cells, promoted cell apoptosis, and blocked the Wnt/β-Catenin pathway, which was reversed by miR-626 overexpression. CONCLUSIONS Inhibiting miR-626 can regulate the biological characteristics of OSCC cells, including proliferation, invasion, migration, EMT and apoptosis, by targeting RASSF4, which may be related to the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Sheng-Hai Cui
- Department of Oral and Maxillofacial Surgery, Yantai Stomatological Hospital, Yantai, China
| | - Xiao-Di Hu
- Department of Stomatology, Yantaishan Hospital, Yantai, China
| | - Yan Yan
- Department of Stomatology, Yantaishan Hospital, Yantai, China
| |
Collapse
|
28
|
Liu Q, Cao G, Wan Y, Xu C, He Y, Li G. Hsa_circ_0001073 targets miR-626/LIFR axis to inhibit lung cancer progression. ENVIRONMENTAL TOXICOLOGY 2021; 36:1052-1060. [PMID: 33475233 DOI: 10.1002/tox.23104] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Circular RNAs (circRNAs) are associated with lung cancer progression. However, it is unclear whether and how circRNA hsa_circ_0001073 (circ_0001073) are involved in lung cancer progression. circ_0001073, microRNA (miR)-626, and leukemia inhibitory factor receptor (LIFR) abundances were determined via quantitative reverse transcription polymerase chain reaction or western blot. Cell viability, invasion, and apoptosis were analyzed by cell counting kit-8, transwell analysis and flow cytometry, respectively. The target correlation was tested by dual-luciferase reporter analysis or RNA immunoprecipitation. Results showed that circ_0001073 abundance was down-regulated in lung cancer cells. circ_0001073 constrained cell viability and invasion and facilitated apoptosis in lung cancer cells. miR-626 was targeted via circ_0001073, and circ_0001073 inhibited lung cancer progression via reducing miR-626 expression. LIFR was targeted via miR-626, and miR-626 knockdown constrained cell viability and invasion and facilitated apoptosis in lung cancer cells via up-regulating LIFR. circ_0001073 increased LIFR expression via miR-626 in lung cancer cells. In conclusion, circ_0001073 represses lung cancer progression via miR-626/LIFR axis, indicating the potential value of circ_0001073 in lung cancer treatment.
Collapse
Affiliation(s)
- Qun Liu
- Medical Ward 20, Lianshui County People's Hospital, Huai'an, China
| | - Gang Cao
- Department of Respiratory Medicine, Hongze District People's Hospital, Huai'an, China
| | - Yufeng Wan
- Department of Respiratory and Critical Care Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Chuanqin Xu
- Department of Respiratory and Critical Care Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yuanqiang He
- Department of Respiratory and Critical Care Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Gang Li
- Department of Respiratory and Critical Care Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
29
|
Farooqi AA, Naureen H, Attar R. Regulation of cell signaling pathways by circular RNAs and microRNAs in different cancers: Spotlight on Wnt/β-catenin, JAK/STAT, TGF/SMAD, SHH/GLI, NOTCH and Hippo pathways. Semin Cell Dev Biol 2021; 124:72-81. [PMID: 33863643 DOI: 10.1016/j.semcdb.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Groundbreaking discoveries in molecular oncology have leveraged our understanding altogether to a new level. Mapping of plethora of cell signaling pathways has enabled researchers to drill down deep into the intermeshed regulatory networks which crosstalk to promote carcinogenesis and metastasis. More importantly, discovery of non-coding RNAs has added new layers of complexity to already complicated nature of cell signaling pathways. The discovery of circular RNAs (circRNAs) has opened the door to an ever-widening understanding of cellular processes that are controlled or influenced by circRNAs. In this review, we have summarized most recent advancements in our understanding related to interplay between circular RNAs and microRNAs for the regulation of NOTCH, Wnt/β-catenin, Hippo, SHH/GLI, JAK/STAT and TGF/SMAD pathways in different cancers.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Humaira Naureen
- Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| |
Collapse
|