1
|
Wei L, Wang L, Liu YG, Gao LF. Expression significance of biomarker MORC4 in colorectal cancer patients and its relationship with pathological features and prognosis. World J Gastrointest Oncol 2025; 17:102434. [PMID: 40092938 PMCID: PMC11866243 DOI: 10.4251/wjgo.v17.i3.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/08/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant gastrointestinal tumors worldwide, with high incidence and mortality rates. AIM To investigate the expression significance of the chromatin-remodeling protein MORC family CW-type zinc finger 4 (MORC4) as a biomarker in CRC patients, and to explore its relationship with pathological features and prognosis. METHODS A total of 143 CRC specimens and 57 adjacent tissue specimens, surgically removed from our hospital between January 2020 and January 2021, were collected. MORC4 protein expression was assessed using immunohistochemistry after paraffin embedding. The relationship between MORC4 protein expression and clinicopathological characteristics of patients was analyzed. Kaplan-Meier survival curves were plotted to analyze the relationship between MORC4 protein expression and prognosis in CRC patients. RESULTS Compared with adjacent tissues, the expression rate of MORC4 protein in CRC tissues was significantly higher (P < 0.05). No significant difference was observed in the high expression rate of MORC4 protein in CRC tissues among patients of different gender, age, tumor location, tumor diameter, and primary tumor status (P > 0.05). However, significant differences were found in the high expression rate of MORC4 protein in patients with different degrees of differentiation, lymph node metastasis, distant metastasis, tumor-lymph node-metastasis stage, and serum carcinoembryonic antigen levels (P < 0.05). Compared with patients with low MORC4 expression, patients with high MORC4 expression had a worse prognosis (P < 0.05). CONCLUSION The upregulation of MORC4 expression in CRC patients is closely related to disease severity and prognosis, suggesting its potential as an evaluation biomarker, which warrants further investigation.
Collapse
Affiliation(s)
- Li Wei
- Department of General Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Liang Wang
- Department of General Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Ya-Gang Liu
- Department of General Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Li-Fei Gao
- Department of Hepatobiliary and Pancreatic Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| |
Collapse
|
2
|
Song Z, Yu W, Yin X. Identification of telomere-related gene subtypes and prognostic signatures in osteosarcoma. Front Pharmacol 2025; 16:1545913. [PMID: 40070565 PMCID: PMC11893505 DOI: 10.3389/fphar.2025.1545913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Background Osteosarcoma (OS) is the prevalent primary bone cancer, with a high proclivity for local invasion and metastasis. Previous studies have indicated that telomeres are closely related to prognosis of cancer, but the significance of telomere-related features in OS remains uncertain. Thus, the goal of this work is to identified telomere-related subtypes based on the telomere-related genes (TRGs). Methods The data of OS was collected from TARGET and Gene Expression Omnibus databases. Firstly, we identified the subtypes mediated by TRGs in OS. Subsequently, we analyzed the immune characteristics of telomeres-related subtypes in OS. Moreover, we built a telomere-related signature via univariate and LASSO Cox regression analyses, and analyzed the correlation of telomere-related signature with TME. Finally, we analyzed the expression of hub TRGs in OS. Results We discovered that TRGs could distinguish OS patients into two telomeres-related subtypes (C1 and C2). The survival rate of OS patients in C2 was inferior to that of patients in C1. The scores of stromal, immune and ESTIMATES were observably increased, and tumor purity was decreased in C1 subtypes compared to C2 subtypes. Differentially expressed genes between C1 and C2 were highly enriched in immune-related pathways. Moreover, C1 and C2 subtypes had different immune characteristic. Furthermore, a telomere prognostic model including six genes (PDK2, PPARG, MORC4, SP110, TERT and MAP3K5) was established to predict the prognosis of OS patients. High-risk group was correlated with inferior prognosis of OS patients, and risk score model was correlated with TME. Finally, we discovered that expression of PDK2, PPARG, MORC4, SP110, TERT and MAP3K5 was significantly decreased in OS cells. Conclusion In conclusion, our study has uncovered the importance of TRGs in defining distinct subtypes of OS with different survival outcomes and immune contexts. The telomere-related signature we developed may serve as a valuable tool for prognosis prediction and could inform future therapeutic strategies targeting the TME in OS.
Collapse
Affiliation(s)
- Zhaoguang Song
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Wenyan Yu
- Department of General Family Medicine, Zibo Central Hospital, Zibo, China
| | - Xuqing Yin
- Department of East Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| |
Collapse
|
3
|
Song Q, Liu S, Wu D, Cai A. Multiple programmed cell death patterns predict the prognosis and drug sensitivity in gastric cancer. Front Immunol 2025; 16:1511453. [PMID: 39967665 PMCID: PMC11832517 DOI: 10.3389/fimmu.2025.1511453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor with poor prognosis. The diverse patterns of programmed cell death (PCD) are significantly associated with the pathogenesis and progression of GC, and it has the potential to serve as prognostic and drug sensitivity indicators for GC. Method The sequencing data and clinical characteristics of GC patients were downloaded from The Cancer Genome Atlas and GEO databases. LASSO cox regression method was used to screen feature genes and develop the PCD score (PCDS). Immune cell infiltration, immune checkpoint expression, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and drug sensitivity analysis were used to explore immunotherapy response. By integrating PCDS with clinical characteristics, we constructed and validated a nomogram that demonstrated robust predictive performance. Results We screened nine PCD-related genes (SERPINE1, PLPPR4, CDO1, MID2, NOX4, DYNC1I1, PDK4, MYB, TUBB2A) to create the PCDS. We found that GC patients with high PCDS experienced significantly poorer prognoses, and PCDS was identified as an independent prognostic factor. Furthermore, there was a significant difference in immune profile between high PCDS and low PCDS groups. Additionally, drug sensitivity analysis indicated that patients with a high PCDS may exhibit resistance to immunotherapy and standard adjuvant chemotherapy regimens; however, they may benefit from the FDA-approved drug Dasatinib. Conclusion Overall, we confirmed that the PCDS is a prognostic risk factor and a valuable predictor of immunotherapy response in GC patients, which provides new evidence for the potential application of GC.
Collapse
Affiliation(s)
| | | | | | - Aizhen Cai
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
4
|
Chahine ZM, Gupta M, Lenz T, Hollin T, Abel S, Banks C, Saraf A, Prudhomme J, Bhanvadia S, Florens LA, Le Roch KG. PfMORC protein regulates chromatin accessibility and transcriptional repression in the human malaria parasite, Plasmodium falciparum. eLife 2024; 12:RP92499. [PMID: 39636094 PMCID: PMC11620747 DOI: 10.7554/elife.92499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The environmental challenges the human malaria parasite, Plasmodium falciparum, faces during its progression into its various lifecycle stages warrant the use of effective and highly regulated access to chromatin for transcriptional regulation. Microrchidia (MORC) proteins have been implicated in DNA compaction and gene silencing across plant and animal kingdoms. Accumulating evidence has shed light on the role MORC protein plays as a transcriptional switch in apicomplexan parasites. In this study, using the CRISPR/Cas9 genome editing tool along with complementary molecular and genomics approaches, we demonstrate that PfMORC not only modulates chromatin structure and heterochromatin formation throughout the parasite erythrocytic cycle, but is also essential to the parasite survival. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments suggests that PfMORC binds to not only sub-telomeric regions and genes involved in antigenic variation but may also play a role in modulating stage transition. Protein knockdown experiments followed by chromatin conformation capture (Hi-C) studies indicate that downregulation of PfMORC impairs key histone marks and induces the collapse of the parasite heterochromatin structure leading to its death. All together these findings confirm that PfMORC plays a crucial role in chromatin structure and gene regulation, validating this factor as a strong candidate for novel antimalarial strategies.
Collapse
Affiliation(s)
- Zeinab M Chahine
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Charles Banks
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Anita Saraf
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Suhani Bhanvadia
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | | | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| |
Collapse
|
5
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
6
|
Chahine Z, Gupta M, Lenz T, Hollin T, Abel S, Banks CAS, Saraf A, Prudhomme J, Bhanvadia S, Florens L, Le Roch KG. PfMORC protein regulates chromatin accessibility and transcriptional repression in the human malaria parasite, Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557253. [PMID: 37745554 PMCID: PMC10515874 DOI: 10.1101/2023.09.11.557253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The environmental challenges the human malaria parasite, Plasmodium falciparum, faces during its progression into its various lifecycle stages warrant the use of effective and highly regulated access to chromatin for transcriptional regulation. Microrchidia (MORC) proteins have been implicated in DNA compaction and gene silencing across plant and animal kingdoms. Accumulating evidence has shed light into the role MORC protein plays as a transcriptional switch in apicomplexan parasites. In this study, using CRISPR/Cas9 genome editing tool along with complementary molecular and genomics approaches, we demonstrate that PfMORC not only modulates chromatin structure and heterochromatin formation throughout the parasite erythrocytic cycle, but is also essential to the parasite survival. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments suggest that PfMORC binds to not only sub-telomeric regions and genes involved in antigenic variation but may also play a role in modulating stage transition. Protein knockdown experiments followed by chromatin conformation capture (Hi-C) studies indicate that downregulation of PfMORC impairs key histone marks and induces the collapse of the parasite heterochromatin structure leading to its death. All together these findings confirm that PfMORC plays a crucial role in chromatin structure and gene regulation, validating this factor as a strong candidate for novel antimalarial strategies.
Collapse
Affiliation(s)
- Z Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - M Gupta
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - T Lenz
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - T Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - S Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - CAS Banks
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - A Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - J Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - S Bhanvadia
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - L Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - KG Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| |
Collapse
|
7
|
Mohapatra B, Pakala SB. Emerging roles of the chromatin remodeler MORC2 in cancer metabolism. Med Oncol 2024; 41:221. [PMID: 39117768 DOI: 10.1007/s12032-024-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Cancer is characterized by metabolic reprogramming in cancer cells, which is crucial for tumorigenesis. The highly deregulated chromatin remodeler MORC2 contributes to cell proliferation, invasion, migration, DNA repair, and chemoresistance. MORC2 also plays a key role in metabolic reprogramming, including lipogenesis, glucose, and glutamine metabolism. A recent study showed that MORC2-regulated glucose metabolism affects the expression of E-cadherin, a crucial protein in the epithelial-to-mesenchymal transition. This review discusses recent developments in MORC2 regulated cancer cell metabolism and its role in cancer progression.
Collapse
Affiliation(s)
- Bibhukalyan Mohapatra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Suresh B Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
8
|
Shi L, Fang X, Du L, Yang J, Xue J, Yue X, Xie D, Hui Y, Meng K. An E3 ligase TRIM1 promotes colorectal cancer progression via K63-linked ubiquitination and activation of HIF1α. Oncogenesis 2024; 13:16. [PMID: 38769340 PMCID: PMC11106307 DOI: 10.1038/s41389-024-00517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Accumulating studies have shown that E3 ligases play crucial roles in regulating cellular biological processes and signaling pathways during carcinogenesis via ubiquitination. Tripartite-motif (TRIM) ubiquitin E3 ligases consist of over 70 members. However, the clinical significance and their contributions to tumorigenesis remain largely unknown. In this study, we analyzed the RNA-sequencing expression of TRIM E3 ligases in colorectal cancer (CRC) and identified 10 differentially expressed genes, among which TRIM1 expression predicted poor prognosis of CRC patients. We demonstrated that TRIM1 expression is positively associated with CRC pathological stages, and higher expression is positively correlated with infiltrating levels of immune cells and immunotherapy biomarkers. TRIM1 expression promotes the proliferation and migration of colorectal cancer cells in vitro and in vivo. Transcriptional analysis showed that TRIM1 is responsible for metabolism promotion and immune suppression. Mechanistically, we found that TRIM1 binds HIF1α and mediates its K63-linked ubiquitination, which is required for HIF1α nuclear translocation and subsequent activation. Ubiquitination occurs at Lys214 in the loop between the two PAS domains of HIF1α, and mutation of Lys214 severely disturbs the function of HIF1α. Besides, HIF1α ubiquitination enhances its binding with proteins involved in cellular trafficking and nucleocytoplasmic transport pathway. Collectively, our results indicate TRIM1's role in predicting prognosis and reveal how TRIM1 functions to upregulate HIF1α expression and promote tumor cell proliferation.
Collapse
Affiliation(s)
- Liuliu Shi
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xianglan Fang
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lijie Du
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jin Yang
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Xue
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaokai Yue
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Duoshuang Xie
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Yuanjian Hui
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of General Surgery, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Kun Meng
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan, China.
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
9
|
Li Y, Wang Z, Yang J, Sun Y, He Y, Wang Y, Chen X, Liang Y, Zhang N, Wang X, Zhao W, Hu G, Yang Q. CircTRIM1 encodes TRIM1-269aa to promote chemoresistance and metastasis of TNBC via enhancing CaM-dependent MARCKS translocation and PI3K/AKT/mTOR activation. Mol Cancer 2024; 23:102. [PMID: 38755678 PMCID: PMC11097450 DOI: 10.1186/s12943-024-02019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.
Collapse
Affiliation(s)
- Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zekun Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jingwen Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuhan Sun
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yinqiao He
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuping Wang
- School of Basic Medicine, Jining Medical College, Jining, Shandong, 272067, China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
10
|
Ma Y, Li J, Zhao X, Ji C, Hu W, Ma Y, Qu F, Sun Y, Zhang X. Multi-omics cluster defines the subtypes of CRC with distinct prognosis and tumor microenvironment. Eur J Med Res 2024; 29:207. [PMID: 38549156 PMCID: PMC10976740 DOI: 10.1186/s40001-024-01805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a complex malignancy characterized by diverse molecular profiles, clinical outcomes, and limited precision in prognostic markers. Addressing these challenges, this study utilized multi-omics data to define consensus molecular subtypes in CRC and elucidate their association with clinical outcomes and underlying biological processes. METHODS Consensus molecular subtypes were obtained by applying ten integrated multi-omics clustering algorithms to analyze TCGA-CRC multi-omics data, including mRNA, lncRNA, miRNA, DNA methylation CpG sites, and somatic mutation data. The association of subtypes with prognoses, enrichment functions, immune status, and genomic alterations were further analyzed. Next, we conducted univariate Cox and Lasso regression analyses to investigate the potential prognostic application of biomarkers associated with multi-omics subtypes derived from weighted gene co-expression network analysis (WGCNA). The function of one of the biomarkers MID2 was validated in CRC cell lines. RESULTS Two CRC subtypes linked to distinct clinical outcomes were identified in TCGA-CRC cohort and validated with three external datasets. The CS1 subtype exhibited a poor prognosis and was characterized by higher tumor-related Hallmark pathway activity and lower metabolism pathway activity. In addition, the CS1 was predicted to have less immunotherapy responder and exhibited more genomic alteration compared to CS2. Then a prognostic model comprising five genes was established, with patients in the high-risk group showing substantial concordance with the CS1 subtype, and those in the low-risk group with the CS2 subtype. The gene MID2, included in the prognostic model, was found to be correlated with epithelial-mesenchymal transition (EMT) pathway and distinct DNA methylation patterns. Knockdown of MID2 in CRC cells resulted in reduced colony formation, migration, and invasion capacities. CONCLUSION The integrative multi-omics subtypes proposed potential biomarkers for CRC and provided valuable knowledge for precision oncology.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Jing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Chao Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Weibin Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - YanFang Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Fengyi Qu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
11
|
Zhang S, Guo A, Wang H, Liu J, Dong C, Ren J, Wang G. Oncogenic MORC2 in cancer development and beyond. Genes Dis 2024; 11:861-873. [PMID: 37692502 PMCID: PMC10491978 DOI: 10.1016/j.gendis.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Microrchidia CW-type zinc finger 2 (MORC2) is a member of the MORC superfamily of nuclear proteins. Growing evidence has shown that MORC2 not only participates in gene transcription and chromatin remodeling but also plays a key in human disease and tumor development by regulating the expression of downstream oncogenes or tumor suppressors. The present review provides an updated overview of MORC2 in the aspect of cancer hallmark and therapeutic resistance and summarizes its upstream regulators and downstream target genes. This systematic review may provide a favorable theoretical basis for emerging players of MORC2 in tumor development and new insight into the potential clinical application of basic science discoveries in the future.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ayao Guo
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huan Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Jia Liu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Junyi Ren
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
12
|
Chen J, Zhou L, Yang Z, Zhao S, Li W, Zhang Y, Xia P. The Molecular and Function Characterization of Porcine MID2. Animals (Basel) 2023; 13:2853. [PMID: 37760252 PMCID: PMC10526110 DOI: 10.3390/ani13182853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Midline2 (MID2/TRIM1) is a member of the tripartite motif-containing (TRIM) family, which is involved in a wide range of cellular processes. However, fundamental studies on porcine MID2 (pMID2) are still lacking. In this study, we identified and characterized the full length MID2 gene of pig (Sus scrofa). The sequence alignment analysis results showed that pMID2 had an N-terminal RING zinc-finger domain, BBC domain, and C-terminal COS box, FN3 motif, and PRY-SPRY domain that were conserved and similar to those of other vertebrates. Furthermore, pMID2 had the highest expression levels in porcine lung and spleen. Serial deletion and site-directed mutagenesis showed that the putative nuclear factor-κB (NF-κB) binding site may be an essential transcription factor for regulating the transcription expression of pMID2. Furthermore, the immunofluorescence assay indicated that pMID2 presented in the cell membrane and cytoplasm. To further study the functions of pMID2, we identified and determined its potential ability to perceive poly (I:C) and IFN-α stimulation. Stimulation experiments showed pMID2 enhanced poly (I:C)-/IFN-α-induced JAK-STAT signaling pathway, indicating that pMID2 might participate in the immune responses. In conclusion, we systematically and comprehensively analyzed the characterizations and functions of pMID2, which provide valuable information to explore the pMID2 functions in innate immunity. Our findings not only enrich the current knowledge of MID2 in IFN signaling regulation but also offer the basis for future research of pig MID2 gene.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (J.C.); (L.Z.); (Z.Y.)
| | - Likun Zhou
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (J.C.); (L.Z.); (Z.Y.)
| | - Zhuosong Yang
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (J.C.); (L.Z.); (Z.Y.)
| | - Shijie Zhao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (W.L.)
| | - Wen Li
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (W.L.)
| | - Yina Zhang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (W.L.)
| | - Pingan Xia
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (W.L.)
| |
Collapse
|
13
|
Cheraghi-shavi T, Jalal R, Minuchehr Z. TGM2, HMGA2, FXYD3, and LGALS4 genes as biomarkers in acquired oxaliplatin resistance of human colorectal cancer: A systems biology approach. PLoS One 2023; 18:e0289535. [PMID: 37535601 PMCID: PMC10399784 DOI: 10.1371/journal.pone.0289535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Acquired resistance to oxaliplatin is considered as the primary reason for failure in colorectal cancer (CRC) therapy. Identifying the underlying resistance mechanisms may improve CRC treatment. The present study aims to identify the key genes involved in acquired oxaliplatin-resistant in CRC by confirming the oxaliplatin resistance index (OX-RI). To this aim, two public microarray datasets regarding oxaliplatin-resistant CRC cells with different OX-RI, GSE42387, and GSE76092 were downloaded from GEO database to identify differentially expressed genes (DEGs). The results indicated that the OX-RI affects the gene expression pattern significantly. Then, 54 common DEGs in both datasets including 18 up- and 36 down-regulated genes were identified. Protein-protein interaction (PPI) analysis revealed 13 up- (MAGEA6, TGM2, MAGEA4, SCHIP1, ECI2, CD33, AKAP12, MAGEA12, CALD1, WFDC2, VSNL1, HMGA2, and MAGEA2B) and 12 down-regulated (PDZK1IP1, FXYD3, ALDH2, CEACAM6, QPRT, GRB10, TM4SF4, LGALS4, ALDH3A1, USH1C, KCNE3, and CA12) hub genes. In the next step, two novel up-regulated hub genes including ECI2 and SCHIP1 were identified to be related to oxaliplatin resistance. Functional enrichment and pathway analysis indicated that metabolic pathways, proliferation, and epithelial-mesenchymal transition may play dominant roles in CRC progression and oxaliplatin resistance. In the next procedure, two in vitro oxaliplatin-resistant sub-lines including HCT116/OX-R4.3 and HCT116/OX-R10 cells with OX-IR 3.93 and 10.06 were established, respectively. The results indicated the up-regulation of TGM2 and HMGA2 in HCT116/OX-R10 cells with high OX-RI and down-regulation of FXYD3, LGALS4, and ECI2 in both cell types. Based on the results, TGM2, HMGA2, FXYD3, and LGALS4 genes are related to oxaliplatin-resistant CRC and may serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Tayebeh Cheraghi-shavi
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Razieh Jalal
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
- Institute of Biotechnology, Novel Diagnostics and Therapeutics Research Group, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zarrin Minuchehr
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
14
|
Liang Y, Wu D, Qu Q, Li Z, Yin H. MORC4 plays a tumor-promoting role in colorectal cancer via regulating PCGF1/CDKN1A axis in vitro and in vivo. Cancer Gene Ther 2023:10.1038/s41417-023-00605-2. [PMID: 36932196 DOI: 10.1038/s41417-023-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
MORC family CW-type zinc finger 4 (MORC4) possessing nuclear matrix binding domains has been observed to be involved in multiple cancer development. By digging three gene expression omnibus (GEO) gene microarrays (GSE110223, GSE110224 and GSE24514), we found that MORC4 was overexpressed in colorectal cancer (CRC) samples (log2 Fold change >1, p < 0.05). We aimed to investigate the role of MORC4 in CRC malignant behaviors, with an emphasis on polycomb group ring finger 1 (PCGF1)/cyclin-dependent kinase inhibitor 1A (CDKN1A) axis. Firstly, we confirmed MORC4 as an upregulated gene in 60 pairs of frozen CRC and adjacent normal samples. MORC4 overexpression increased proliferation and metastasis, and decreased apoptosis in SW480 and HT29 cells, which was diminished by the knockdown of PCGF1, a transcriptional repressor of CDKN1A (a potent cyclin-dependent kinase inhibitor). MORC4 was further identified as a novel molecule that interacted with PCGF1 via coimmunoprecipitation. MORC4 itself did not substantially suppress CDKN1A transcriptional activity, but it augmented PCGF1's effect on CDKN1A. Additionally, MORC4 acted as the substrate of HECT, C2, and WW domain-containing E3 ubiquitin protein ligase 2 (HECW2) and was degraded through ubiquitin-proteasome system. Collectively, our work suggested that MORC4 accelerated CRC progression via governing PCGF1/CDKN1A signaling.
Collapse
Affiliation(s)
- Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Qiao Qu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
15
|
Construction of a TTN Mutation-Based Prognostic Model for Evaluating Immune Microenvironment, Cancer Stemness, and Outcomes of Colorectal Cancer Patients. Stem Cells Int 2023; 2023:6079957. [PMID: 36895786 PMCID: PMC9990748 DOI: 10.1155/2023/6079957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 02/23/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the commonest cancers worldwide. As conventional biomarkers cannot clearly define the heterogeneity of CRC, it is essential to establish novel prognostic models. Methods For the training set, data pertaining to mutations, gene expression profiles, and clinical parameters were obtained from the Cancer Genome Atlas. Consensus clustering analysis was used to identify the CRC immune subtypes. CIBERSORT was used to analyze the immune heterogeneity across different CRC subgroups. Least absolute shrinkage and selection operator regression was used to identify the genes for constructing the immune feature-based prognostic model and to determine their coefficients. Result A gene prognostic model was then constructed to predict patient outcomes; the model was then externally validated using data from the Gene Expression Omnibus. As a high-frequency somatic mutation, the titin (TTN) mutation has been identified as a risk factor for CRC. Our results demonstrated that TTN mutations have the potential to modulate the tumor microenvironment, converting it into the immunosuppressive type. In this study, we identified the immune subtypes of CRC. Based on the identified subtypes, 25 genes were selected for prognostic model construction; a prediction model was also constructed, and its prediction accuracy was tested using the validation dataset. The potential of the model in predicting immunotherapy responsiveness was then explored. Conclusion TTN-mutant and TTN-wild-type CRC demonstrated different microenvironment features and prognosis. Our model provides a robust immune-related gene prognostic tool and a series of gene signatures for evaluating the immune features, cancer stemness, and prognosis of CRC.
Collapse
|
16
|
Chutani N, Singh AK, Kadumuri RV, Pakala SB, Chavali S. Structural and Functional Attributes of Microrchidia Family of Chromatin Remodelers. J Mol Biol 2022; 434:167664. [PMID: 35659506 DOI: 10.1016/j.jmb.2022.167664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Chromatin remodelers affect the spatio-temporal dynamics of global gene-expression by structurally modulating and/or reorganizing the chromatin. Microrchidia (MORC) family is a relatively new addition to the four well studied families of chromatin remodeling proteins. In this review, we discuss the current understanding of the structural aspects of human MORCs as well as their epigenetic functions. From a molecular and systems-level perspective, we explore their participation in phase-separated structures, possible influence on various biological processes through protein-protein interactions, and potential extra-nuclear roles. We describe how dysregulation/dysfunction of MORCs can lead to various pathological conditions. We conclude by emphasizing the importance of undertaking integrated efforts to obtain a holistic understanding of the various biological roles of MORCs.
Collapse
Affiliation(s)
- Namita Chutani
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India. https://twitter.com/ChutaniNamita
| | - Anjali Kumari Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India. https://twitter.com/anjali_k_s
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India
| | - Suresh B Pakala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India.
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India.
| |
Collapse
|
17
|
MORC protein family-related signature within human disease and cancer. Cell Death Dis 2021; 12:1112. [PMID: 34839357 PMCID: PMC8627505 DOI: 10.1038/s41419-021-04393-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
The microrchidia (MORC) family of proteins is a highly conserved nuclear protein superfamily, whose members contain common domain structures (GHKL-ATPase, CW-type zinc finger and coiled-coil domain) yet exhibit diverse biological functions. Despite the advancing research in previous decades, much of which focuses on their role as epigenetic regulators and in chromatin remodeling, relatively little is known about the role of MORCs in tumorigenesis and pathogenesis. MORCs were first identified as epigenetic regulators and chromatin remodelers in germ cell development. Currently, MORCs are regarded as disease genes that are involved in various human disorders and oncogenes in cancer progression and are expected to be the important biomarkers for diagnosis and treatment. A new paradigm of expanded MORC family function has raised questions regarding the regulation of MORCs and their biological role at the subcellular level. Here, we systematically review the progress of researching MORC members with respect to their domain architectures, diverse biological functions, and distribution characteristics and discuss the emerging roles of the aberrant expression or mutation of MORC family members in human disorders and cancer development. Furthermore, the illustration of related mechanisms of the MORC family has made MORCs promising targets for developing diagnostic tools and therapeutic treatments for human diseases, including cancers.
Collapse
|
18
|
Wang Y, Cheng Z, Xu J, Lai M, Liu L, Zuo M, Dang L. Fat mass and obesity-associated protein (FTO) mediates signal transducer and activator of transcription 3 (STAT3)-drived resistance of breast cancer to doxorubicin. Bioengineered 2021; 12:1874-1889. [PMID: 34076564 PMCID: PMC8806322 DOI: 10.1080/21655979.2021.1924544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Excessive activation of signal transducer and activator of transcription 3 (STAT3) is implicated in breast cancer (BC) chemoresistance, but its underlying mechanism is not fully understood. There are STAT3 binding sites in fat mass and obesity-associated protein (FTO) promoter region, thus STAT3 may regulate the transcription of FTO. This study aimed to investigate the correlation between FTO and STAT3 in BC chemoresistance. Herein, FTO and STAT3 were highly expressed in doxorubicin-resistant BC (BC-DoxR) cells. CHIP assay verified the binding between STAT3 and FTO promoter in BC-DoxR cells. Dual luciferase reporter assay showed that FTO promoter activity was inhibited by S3I-201 (STAT3 inhibitor) but enhanced by epidermal growth factor (EGF, STAT3 activator) in BC-DoxR and BC cells. FTO mRNA and protein expression were suppressed by S3I-201 in BC-DoxR cells and EGF-stimulated BC cells. Notably, FTO regulated total N6-methyladenosine (m6A) levels in BC-DoxR and BC cells but could not affect STAT3 mRNA expression, indicating that FTO was not involved in the m6A modification of STAT3. However, FTO could activate STAT3 signaling in BC-DoxR and BC cells. Besides, FTO knockdown inhibited the doxorubicin resistance of BC-DoxR cells, while FTO overexpression enhanced the doxorubicin resistance and weakened the doxorubicin sensitivity of BC cells. Moreover, decreased doxorubicin resistance by STAT3 knockdown was abolished by FTO overexpression and decreased doxorubicin sensitivity by STAT3 overexpression was reversed by FTO knockdown, indicating that FTO was implicated in STAT3-mediated doxorubicin resistance and impairment of doxorubicin sensitivity of BC cells. Altogether, our findings provide a mechanism underlying BC doxorubicin resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhiqiang Cheng
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jing Xu
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Meina Lai
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Liming Liu
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Min Zuo
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lin Dang
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
19
|
Moghbeli M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 2021; 26:13. [PMID: 33827418 PMCID: PMC8028791 DOI: 10.1186/s11658-021-00257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer, as one of the main causes of human deaths, is currently a significant global health challenge. Since the majority of cancer-related deaths are associated with late diagnosis, it is necessary to develop minimally invasive early detection markers to manage and reduce mortality rates. MicroRNAs (miRNAs), as highly conserved non-coding RNAs, target the specific mRNAs which are involved in regulation of various fundamental cellular processes such as cell proliferation, death, and signaling pathways. MiRNAs can also be regulated by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). They are highly stable in body fluids and have tumor-specific expression profiles, which suggest their suitability as efficient non-invasive diagnostic and prognostic tumor markers. Aberrant expression of miR-338 has been widely reported in different cancers. It regulates cell proliferation, migration, angiogenesis, and apoptosis in tumor cells. Main body In the present review, we have summarized all miR-338 interactions with other non-coding RNAs (ncRNAs) and associated signaling pathways to clarify the role of miR-338 during tumor progression. Conclusions It was concluded that miR-338 mainly functions as a tumor suppressor in different cancers. There were also significant associations between miR-338 and other ncRNAs in tumor cells. Moreover, miR-338 has a pivotal role during tumor progression using the regulation of WNT, MAPK, and PI3K/AKT signaling pathways. This review highlights miR-338 as a pivotal ncRNA in biology of tumor cells.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, Husmandi K, Zabolian A, Shahinozzaman M, Aref AR, Hamblin MR, Nabavi N, Crea F, Wang Y, Ahn KS. Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett 2021; 508:104-114. [PMID: 33766750 DOI: 10.1016/j.canlet.2021.03.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is the main treatment used for cancer patients failing surgery. Doxorubicin (DOX) is a well-known chemotherapeutic agent capable of suppressing proliferation in cancer cells and triggering apoptosis via inhibiting topoisomerase II activity and producing DNA breaks. This activity of DOX restrains mitosis and cell cycle progression. However, frequent application of DOX results in the emergence of resistance in the cancer cells. It seems that genetic and epigenetic factors can provide DOX resistance of cancer cells. Long non-coding RNAs (lncRNAs) are a subcategory of non-coding RNAs with role in the regulation of several cellular processes such as proliferation, migration, differentiation and apoptosis. LncRNA dysregulation has been associated with chemoresistance, and this profile occurs upon DOX treatment of cancer. In the present review, we focus on the role of lncRNAs in mediating DOX resistance and discuss the molecular pathways and mechanisms. LncRNAs can drive DOX resistance via activating pathways such as NF-κB, PI3K/Akt, Wnt, and FOXC2. Some lncRNAs can activate protective autophagy in response to the stress caused by DOX, which mediates resistance. In contrast, there are other lncRNAs involved in the sensitivity of cancer cells to DOX, such as GAS5, PTCSC3 and FENDRR. Some anti-tumor agents such as polydatin can regulate the expression of lncRNAs, enhancing DOX sensitivity. Overall, lncRNAs are potential players in DOX resistance, and their identification and targeting are of importance in chemosensitivity. Furthermore, these findings can be translated into clinical for treatment of cancer patients.
Collapse
Affiliation(s)
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Husmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|