1
|
Hu PC, Yao JT, Wang KJ, Ye SZ, Meng XY, Chen HC, Yu R, Ma Q. Research progress on circular RNA in the regulation of drug resistance in genitourinary cancers. Cell Mol Life Sci 2025; 82:158. [PMID: 40232412 PMCID: PMC12000500 DOI: 10.1007/s00018-025-05683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
In recent years, significant progress has been made in the management of genitourinary cancers, primarily due to advancements in surgical techniques, the emergence of targeted therapy and immunotherapy, and the refinement of chemotherapy agents. However, despite the expanding arsenal of treatment modalities, some patients still face challenges associated with drug resistance, which hinders efforts to improve survival rates. Circular RNAs (circRNAs) are covalently closed RNA molecules with a stable structure and a unique ability to form reverse splicing loops. Increasing evidence suggests that abnormal expression of circRNAs is significantly correlated with the occurrence of genitourinay cancers, indicating their potentials as diagnostic and prognostic biomarkers, as well as new targets for treatment. Although research on circRNAs in genitourinary cancers has progressed, it is still in the preliminary stage. This review summarizes the properties and functions of circRNAs, focusing on their molecular and cellular mechanisms involved in mediating cancer-related drug resistance in the genitourinary system, including autophagy, epithelial-mesenchymal transition, and glycolysis, etc. The clinical potential of circRNAs in regulating drug resistance is also carefully discussed.
Collapse
Affiliation(s)
- Peng-Cheng Hu
- Health Science Center, Ningbo University, Ningbo, 315101, Zhejiang, China
| | - Jia-Tao Yao
- Health Science Center, Ningbo University, Ningbo, 315101, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Xiang-Yu Meng
- Translational Research Laboratory for Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Hai-Chao Chen
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, #818 Fenghua Road, Ningbo, 315211, Zhejiang, China.
| | - Qi Ma
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Yi-Huan Genitourinary Cancer Group, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
2
|
Wang Y, Chen X, Chen Y, Sun Q, Wang H. Regulatory effect and mechanism of CircSEC24A in IL-1β-induced osteoarthritis. Arch Physiol Biochem 2025; 131:188-198. [PMID: 39328069 DOI: 10.1080/13813455.2024.2404975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage degeneration and damage. Increasing circular RNAs (circRNAs) have been identified to participate in the pathogenesis of OA. Hsa_circ_0128006 (also known as circSEC24) was reported as an upregulated circRNA in OA tissues, but its biological role and underlying mechanism in OA are still to be discussed. circSEC24A and NAMPT expression levels were upregulated, and miR-515-5p was reduced in OA cartilage tissues and IL-1β-treated CHON-001 cells. The absence of circSEC24A overturned IL-1β-induced suppression of cell viability and promotion of oxidative stress, apoptosis, extracellular matrix (ECM) degradation, and inflammation in CHON-001 cells. Mechanistically, circSEC24A acted as a molecular sponge for miR-515-5p to affect NAMPT expression. CircSEC24A knockdown could attenuate IL-1β-triggered CHON-001 cell injury partly via the miR-515-5p/NAMPT axis, providing new insight into the underlying application of circSEC24A in OA treatment.
Collapse
Affiliation(s)
- Yuanrui Wang
- Department of Orthopaedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiaochao Chen
- Department of Orthopaedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yongfeng Chen
- Department of Orthopaedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qiang Sun
- Department of Orthopaedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Huayi Wang
- Department of Orthopaedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Weidle UH, Birzele F. Prostate Cancer: De-regulated Circular RNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2025; 22:136-165. [PMID: 39993805 PMCID: PMC11880926 DOI: 10.21873/cgp.20494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2025] [Accepted: 12/03/2024] [Indexed: 02/26/2025] Open
Abstract
Therapy resistance, including castration-resistance and metastasis, remains a major hurdle in the treatment of prostate cancer. In order to identify novel therapeutic targets and treatment modalities for prostate cancer, we conducted a comprehensive literature search on PubMed to identify de-regulated circular RNAs that influence treatment efficacy in preclinical prostate cancer-related in vivo models. Our analysis identified 49 circular RNAs associated with various processes, including treatment resistance, transmembrane and secreted proteins, transcription factors, signaling cascades, human antigen R, nuclear receptor binding, ubiquitination, metabolism, epigenetics and other target categories. The identified targets and circular RNAs can be further scrutinized through target validation approaches. Down-regulated circular RNAs are candidates for reconstitution therapy, while up-regulated RNAs can be inhibited using small interfering RNA (siRNA), antisense oligonucleotides (ASO) or clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR-CAS)-related approaches.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
4
|
Zheng X, Song L, Cao C, Sun S. Multiple roles of circular RNAs in prostate cancer: from the biological basis to potential clinical applications. Eur J Med Res 2025; 30:140. [PMID: 40016786 PMCID: PMC11866600 DOI: 10.1186/s40001-025-02382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Prostate cancer is an important health concern affecting men. Circular RNAs (circRNAs) play an important molecular biological role in regulating gene expression due to their unique structure. Studies have revealed the involvement of circRNAs in many human diseases. In prostate cancer, circRNAs can act as oncogenes or tumour suppressor genes and affect cancer cell proliferation, invasion, resistance to chemotherapy and, consequently, disease progression. Accordingly, prostate cancer-related circRNAs are expected to serve as new targets in early clinical diagnosis and targeted therapy, but the various roles of circRNAs in prostate cancer have not been fully elucidated. This article reviews the molecular pathological roles of circRNA in prostate cancer and explores its prospects as a translational medicine in clinical treatment and prognostic evaluation.
Collapse
Affiliation(s)
- Xianping Zheng
- Intensive Care Unit, Zibo Central Hospital, Zibo, 255024, China
| | - Ling Song
- Department of Emergency, Zibo Central Hospital, No. 54 Gongqingtuan Road, Zhangdian District, Zibo, 255024, China
| | - Ce Cao
- Department of Gastrointestinal Surgery, Zibo Central Hospital, Zibo, 255024, China
| | - Shoutian Sun
- Department of Emergency, Zibo Central Hospital, No. 54 Gongqingtuan Road, Zhangdian District, Zibo, 255024, China.
| |
Collapse
|
5
|
Shahpari M, Hashemi M, Younesirad T, Hasanzadeh A, Mosanne MM, Ahmadifard M. The functional roles of competitive endogenous RNA (ceRNA) networks in apoptosis in human cancers: The circRNA/miRNA/mRNA regulatory axis and cell signaling pathways. Heliyon 2024; 10:e37089. [PMID: 39524849 PMCID: PMC11546195 DOI: 10.1016/j.heliyon.2024.e37089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Circular RNAs are noncoding RNAs with circular conformation mainly due to backsplicing event. CircRNAs can potentially impact cell biological processes by interacting with cell signaling pathways. Numerous circRNAs have been found to be aberrantly expressed in a variety of cancers. These RNAs can act as ceRNA (competitive endogenous RNA) by sponging certain miRNAs to form circRNA/miRNA/mRNA networks. Dysregulation of ceRNA networks may lead to dysfunctions in various cell pathways, which modulate apoptosis-associated genes and ultimately result in cancer progression. Since disruption of apoptosis is one of the leading causes of cancer development, one approach for cancer treatment is to drive cells toward apoptosis. In this review, we present a summary of studies on the role of ceRNA networks in cellular signaling pathways that regulate apoptosis; these networks are suggested to be potential biomarkers for cancer treatment.
Collapse
Affiliation(s)
| | | | - Tayebeh Younesirad
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Aida Hasanzadeh
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad mahdi Mosanne
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohamadreza Ahmadifard
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Xiang Y, Xu Z, Qian R, Wu D, Lin L, Shen J, Zhu P, Chen F, Liu C. Scutellarin Protects against Myocardial Ischemia-reperfusion Injury by Enhancing Aerobic Glycolysis through miR-34c-5p/ALDOA Axis. Int J Appl Basic Med Res 2024; 14:85-93. [PMID: 38912363 PMCID: PMC11189264 DOI: 10.4103/ijabmr.ijabmr_415_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Aerobic glycolysis has recently demonstrated promising potential in mitigating the effects of ischemia-reperfusion (IR) injury. Scutellarin (Scu) possesses various cardioprotective properties that warrant investigation. To mimic IR injury in vitro, this study employed hypoxia/reoxygenation (H/R) injury. Methods and Results First, we conducted an assessment of the protective properties of Scu against HR in H9c2 cells, encompassing inflammation damage, apoptosis injury, and oxidative stress. Then, we verified the effects of Scu on the Warburg effect in H9c2 cells during HR injury. The findings indicated that Scu augmented aerobic glycolysis by upregulating p-PKM2/PKM2 levels. Following, we built a panel of six long noncoding RNAs and seventeen microRNAs that were reported to mediate the Warburg effect. Based on the results, miR-34c-5p was selected for further experiments. Then, we observed Scu could mitigate the HR-induced elevation of miR-34c-5p. Upregulation of miR-34c-5p could weaken the beneficial impacts of Scu in cellular viability, inflammatory damage, oxidative stress, and the facilitation of the Warburg effect. Subsequently, our investigation revealed a decrease in both ALDOA mRNA and protein levels following HR injury, which could be restored by Scu administration. Downregulation of ALDOA or Mimic of miR-34c-5p could reduce these effects induced by Scu. Conclusions Scu provides cardioprotective effects against IR injury by upregulating the Warburg effect via miR-34c-5p/ALDOA.
Collapse
Affiliation(s)
- Yijia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Zhongjiao Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Renyi Qian
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Daying Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Li Lin
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Jiayi Shen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Pengchong Zhu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Fenghui Chen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Chong Liu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| |
Collapse
|
8
|
Feng L, Liu T, Shi J, Wang Y, Yang Y, Xiao W, Bai Y. Circ-UBR4 regulates the proliferation, migration, inflammation, and apoptosis in ox-LDL-induced vascular smooth muscle cells via miR-515-5p/IGF2 axis. Open Med (Wars) 2023; 18:20230751. [PMID: 37693837 PMCID: PMC10487405 DOI: 10.1515/med-2023-0751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/19/2023] [Accepted: 06/19/2023] [Indexed: 09/12/2023] Open
Abstract
The aim of our study is to disclose the role and underlying molecular mechanisms of circular RNA ubiquitin protein ligase E3 component n-recognin 4 (circ-UBR4) in atherosclerosis (AS). Our data showed that circ-UBR4 expression was upregulated in AS patients and oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs) compared with healthy volunteer and untreated VSMCs. In addition, ox-LDL stimulated proliferation, migration, and inflammation but decreased apoptosis in VSMCs, which were overturned by the inhibition of circ-UBR4. miR-515-5p was sponged by circ-UBR4, and its inhibitor reversed the inhibitory effect of circ-UBR4 knockdown on proliferation, migration, and inflammation in ox-LDL-induced VSMCs. Insulin-like growth factor2 (IGF2) was a functional target of miR-515-5p, and overexpression of IGF2 reversed the suppressive effect of miR-515-5p on ox-LDL-stimulated VSMCs proliferation, migration, and inflammation. Collectively, circ-UBR4 knockdown decreased proliferation, migration, and inflammation but stimulated apoptosis in ox-LDL-induced VSMCs by targeting the miR-515-5p/IGF2 axis.
Collapse
Affiliation(s)
- Liuliu Feng
- Department of Cardiology, Shidong Hospital, 200438, Shanghai, China
| | - Tianhua Liu
- Department of Cardiology, Shidong Hospital, 200438, Shanghai, China
| | - Jun Shi
- Department of Cardiology, Shidong Hospital, 200438, Shanghai, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital, 200438, Shanghai, China
| | - Yuya Yang
- Department of Cardiology, Shidong Hospital, 200438, Shanghai, China
| | - Wenyin Xiao
- Department of Cardiology, Shidong Hospital, 200438, Shanghai, China
| | - Yanyan Bai
- Department of Cardiology, Shidong Hospital, No. 999 Shiguang Road, Yangpu District, 200438, Shanghai, China
| |
Collapse
|
9
|
Gao K, Li X, Ni J, Wu B, Guo J, Zhang R, Wu G. Non-coding RNAs in enzalutamide resistance of castration-resistant prostate cancer. Cancer Lett 2023; 566:216247. [PMID: 37263338 DOI: 10.1016/j.canlet.2023.216247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Enzalutamide (Enz) is a next-generation androgen receptor (AR) antagonist used to treat castration-resistant prostate cancer (CRPC). Unfortunately, the relapsing nature of CRPC results in the development of Enz resistance in many patients. Non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins, which include microRNAs (miRNA), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs with known and unknown functions. Recently, dysregulation of ncRNAs in CRPC, particularly their regulatory function in drug resistance, has attracted more and more attention. Herein, we introduce the roles of dysregulation of different ncRNAs subclasses in the development of CRPC progression and Enz resistance. Recently determined mechanisms of Enz resistance are discussed, focusing mainly on the role of AR-splice variant-7 (AR-V7), mutations, circRNAs and lncRNAs that act as miRNA sponges. Also, the contributions of epithelial-mesenchymal transition and glucose metabolism to Enz resistance are discussed. We summarize the different mechanisms of miRNAs, lncRNAs, and circRNAs in the progression of CRPC and Enz resistance, and highlight the prospect of future therapeutic strategies against Enz resistance.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/therapeutic use
- RNA, Circular/genetics
- Drug Resistance, Neoplasm/genetics
- Neoplasm Recurrence, Local
- Nitriles
- Androgen Receptor Antagonists/therapeutic use
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Cell Line, Tumor
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaoshun Li
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jianxin Ni
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Bin Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jiaheng Guo
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China; The State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| |
Collapse
|
10
|
Zhang ZH, Wang Y, Zhang Y, Zheng SF, Feng T, Tian X, Abudurexiti M, Wang ZD, Zhu WK, Su JQ, Zhang HL, Shi GH, Wang ZL, Cao DL, Ye DW. The function and mechanisms of action of circular RNAs in Urologic Cancer. Mol Cancer 2023; 22:61. [PMID: 36966306 PMCID: PMC10039696 DOI: 10.1186/s12943-023-01766-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Kidney, bladder, and prostate cancer are the three major tumor types of the urologic system that seriously threaten human health. Circular RNAs (CircRNAs), special non-coding RNAs with a stabile structure and a unique back-splicing loop-forming ability, have received recent scientific attention. CircRNAs are widely distributed within the body, with important biologic functions such as sponges for microRNAs, as RNA binding proteins, and as templates for regulation of transcription and protein translation. The abnormal expression of circRNAs in vivo is significantly associated with the development of urologic tumors. CircRNAs have now emerged as potential biomarkers for the diagnosis and prognosis of urologic tumors, as well as targets for the development of new therapies. Although we have gained a better understanding of circRNA, there are still many questions to be answered. In this review, we summarize the properties of circRNAs and detail their function, focusing on the effects of circRNA on proliferation, metastasis, apoptosis, metabolism, and drug resistance in kidney, bladder, and prostate cancers.
Collapse
Affiliation(s)
- Zi-Hao Zhang
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Yue Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ya Zhang
- Department of Nephrology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Sheng-Feng Zheng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Tao Feng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Xi Tian
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Mierxiati Abudurexiti
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Zhen-Da Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Wen-Kai Zhu
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Jia-Qi Su
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Hai-Liang Zhang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Guo-Hai Shi
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Zi-Liang Wang
- Institute of Cancer Research, Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Da-Long Cao
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China.
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
11
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Suo M, Lin Z, Guo D, Zhang A. Hsa_circ_0056686, derived from cancer-associated fibroblasts, promotes cell proliferation and suppresses apoptosis in uterine leiomyoma through inhibiting endoplasmic reticulum stress. PLoS One 2022; 17:e0266374. [PMID: 35390056 PMCID: PMC8989227 DOI: 10.1371/journal.pone.0266374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Abnormal expression of circular RNAs (circRNAs) in cancer-associated fibroblasts (CAFs) is involved in the tumor-promoting ability of CAFs. Hsa_ circ_ 0056686 has been reported to affect leiomyoma size. The purpose of this study is to investigate the regulatory role of hsa_circ_0056686 in CAFs on uterine leiomyoma (ULM). The primary CAFs and corresponding normal fibroblasts (NFs) were isolated from the tumor zones of ULM tissues and adjacent, respectively. Hsa_circ_0056686 level was higher in CAFs than NFs, and also higher in ULM tissues than in adjacent tissues. CAFs-CM significantly increased the proliferation and migration and inhibited apoptosis of ULM cells, as confirmed by CCK-8, transwell, and flow cytometry assays. Moreover, conditioned medium (CM) from CAFs transfected with hsa_circ_0056686 shRNA (CAFssh-circ_0056686-CM) abolished CAFs-mediated proliferation, migration and apoptosis of ULM cells. CAFs-CM suppressed the expression of endoplasmic reticulum stress (ERS) marker proteins and induced the expression of extracellular matrix (ECM) marker proteins, thus suppressing ERS and increasing ECM accumulation, which could be declined by CAFssh-circ_0056686-CM. Meanwhile, knockdown of hsa_circ_0056686 reversed the inhibitory effects of CAFs-CM on brefeldin A-induced cell apoptosis. Luciferase gene reporter and RNA pull-down assays indicated that miR-515-5p directly bound with hsa_circ_0056686. MiR-515-5p overexpression restored the hsa_circ_0056686-shRNA-mediated malignant biological behaviors of ULM cells. Hsa_circ_0056686 contributed to tumor-promoting effects of CAFs in ULM, manifested by promoting ULM cell proliferation and migration and reducing ERS-induced apoptosis through sponging miR-515-5p.
Collapse
Affiliation(s)
- Meifang Suo
- Department of Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| | - Zhichen Lin
- Department of Burns, the 990th Hospital of the Joint Staff of the People’s Liberation Army, Zhumadian, China
| | - Dongfang Guo
- Department of Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| | - Airong Zhang
- Department of Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
- * E-mail:
| |
Collapse
|
13
|
Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E, Bendifallah S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Plasma Micro-RNA Expression. Diagnostics (Basel) 2022; 12:175. [PMID: 35054341 PMCID: PMC8774370 DOI: 10.3390/diagnostics12010175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective "ENDO-miRNA" study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/β-catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/β-catenin, PI3K/Akt, and NF-KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | | | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France;
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
14
|
Luo G, Li G, Wan Z, Zhang Y, Liu D, Guo Y. circITGA7 Acts as a miR-370-3p Sponge to Suppress the Proliferation of Prostate Cancer. JOURNAL OF ONCOLOGY 2021; 2021:8060389. [PMID: 35003259 PMCID: PMC8741341 DOI: 10.1155/2021/8060389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) refers to one of the most common tumors in male's genitourinary system. Emerging research has confirmed that circRNAs play an important role in the occurrence and development of tumors. However, the correlation between circular RNA circITGA7 and PCa still remains unclear. Here, the role of circITGA7 in PCa was explored and the underlying mechanism was investigated as well. The circRNA expression profiles in PCa and the paracancerous tissues were established by high-throughput sequencing. The expression levels of circITGA7 in PCa tissues and cells were detected by qRT-PCR. Cell Counting Kit-8, colony formation, EdU, and flow cytometry assays were used to detect the effects of circITGA7 on PCa cell proliferation. To further explore the underlying mechanisms, bioinformatics analysis on downstream target genes was carried out. RNA immunoprecipitation and dual-luciferase reporter assays were used to verify the direct relationship between miR-370-3p and circITGA7 or P21CIP1. The present results demonstrated that circITGA7 was downregulated in PCa tissues and cells. Gain- or loss-of-function assays showed that circITGA7 inhibited the proliferation of PCa cells in vivo and in vitro. Mechanically, circITGA7 served as a sponge for miR-370-3p, and miR-370-3p could target P21CIP1 in PCa cells. The inhibition of cell proliferation induced by circITGA7 could be reversed by transfecting miR-370-3p mimic. Collectively, our data indicated that circITGA7 played an important role in inhibiting tumor proliferation in PCa and might be a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Luo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Guohao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Zhihua Wan
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Yuanjie Zhang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Dong Liu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yonglian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| |
Collapse
|
15
|
Ren X, Cheng J, Zhu M, Chen X, Jiang M, Hu X, Lu Y. Circular RNA circ_0062019 exerts oncogenic properties in prostate cancer via mediating miR-1253/NRBP1 axis. Andrologia 2021; 54:e14343. [PMID: 34866220 DOI: 10.1111/and.14343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) participate in the progression of various cancers. However, the function of circ_0062019 in prostate cancer (PCa) remains unclear. In this study, CCK-8, colony formation, transwell, tube formation and flow cytometry assays were applied to assess cell proliferation, motility, angiogenesis, cell cycle distribution and apoptosis. The binding association between miR-1253 and circ_0062019 or NRBP1 was verified through dual-luciferase reporter assay and RIP assay. Xenograft assay was conducted to evaluate tumour formation in vivo. As a result, circ_0062019 and NRBP1 were increased, but miR-1253 was decreased in PCa. Depletion of circ_0062019 curbed cell proliferation, migration, invasion, angiogenesis and EMT and induced apoptosis in PCa cells. Circ_0062019 facilitated the malignancy of PCa cells via sequestering miR-1253. Simultaneously, miR-1253 hindered PCa cell progression via regulating NRBP1. Ccirc_0062019 silencing suppressed tumour growth in vivo. Taken together, circ_0062019 expedited PCa progression through mediating miR-1253/NRBP1 pathway.
Collapse
Affiliation(s)
- Xiaojun Ren
- Department of Pathology, Karamay Central Hospital, Karamay, China
| | - Jiyan Cheng
- Morphology Laboratory, Southwest Medical University, Luzhou, China
| | - Min Zhu
- Department of Pathology, Karamay Central Hospital, Karamay, China
| | - Xiao Chen
- Department of Urology, Karamay Central Hospital, Karamay, China
| | - Min Jiang
- Department of Pathology, Karamay Central Hospital, Karamay, China
| | - Xinmei Hu
- Department of Pathology, Karamay Central Hospital, Karamay, China
| | - Yanan Lu
- Department of Dermatology, Karamay Central Hospital, Karamay, China
| |
Collapse
|
16
|
Liu X, Tong Y, Xia D, Peng E, Yang X, Liu H, Ye T, Wang X, He Y, Ye Z, Chen Z, Tang K. Circular RNAs in prostate cancer: Biogenesis,biological functions, and clinical significance. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1130-1147. [PMID: 34820150 PMCID: PMC8585584 DOI: 10.1016/j.omtn.2021.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules that play important regulatory roles in various tumors. Prostate cancer (PCa) is one of the most common malignant tumors in the world, with high morbidity and mortality. In recent years, more and more circRNAs have been found to be abnormally expressed and involved in the occurrence and development of PCa, including cell proliferation, apoptosis, invasion, migration, metastasis, chemotherapy resistance, and radiotherapy resistance. Most of the circRNAs regulate biological behaviors of cancer through a competitive endogenous RNA (ceRNA) regulatory mechanism, and some can exert their functions by binding to proteins. circRNAs are also associated with many clinicopathological features of PCa, including tumor grade, lymph node metastasis, and distant metastasis. In addition, circRNAs are potential diagnostic and prognostic biomarkers for PCa. Considering their critical regulatory roles in the progression of PCa, circRNAs would be the potential therapeutic targets. In this paper, the current research status of circRNAs in PCa is briefly reviewed.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hailang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinguang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Xing Z, Li S, Liu Z, Zhang C, Bai Z. CircSERPINA3 regulates SERPINA3-mediated apoptosis, autophagy and aerobic glycolysis of prostate cancer cells by competitively binding to MiR-653-5p and recruiting BUD13. J Transl Med 2021; 19:492. [PMID: 34861864 PMCID: PMC8642898 DOI: 10.1186/s12967-021-03063-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) belongs to an epithelial malignancy that occurs in the prostate gland and is the most common malignancy of the male genitourinary system. Referring to related literature, circSERPINA3 has been reported to be up-regulated in PCa. However, its biological function remains unclear. PURPOSE This study aimed to reveal the specific role and relevant molecular mechanism of circSERPINA3 in PCa. METHODS RT-qPCR was used to examine gene expression and functional analyses were conducted to verify the effect of circSERPINA3 on cell apoptosis, autophagy and aerobic glycolysis in PCa cells. Mechanism assays were applied to evaluate the relationship among circSERPINA3/miR-653-5p/SERPINA3/BUD13. RESULTS CircSERPINA3 was verified to be up-regulated in PCa cells and to inhibit cell apoptosis while promoting aerobic glycolysis and autophagy in PCa cells. CircSERPINA3 and SERPINA3 were also testified to bind to miR-653-5p through a line of mechanism experiments. Moreover, it was discovered that circSERPINA3 could stabilize SERPINA3 mRNA via recruiting BUD13. Additionally, SERPINA3 was verified to inhibit cell apoptosis, while promoting aerobic glycolysis and autophagy in PCa cells. CONCLUSIONS Our study suggested that circSERPINA3 regulated apoptosis, autophagy and aerobic glycolysis of PCa cells by competitively binding to miR-653-5p and recruiting BUD13.
Collapse
Affiliation(s)
- Zengshu Xing
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China.
| | - Sailian Li
- Department of Gastroenterology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China
| | - Zhenxiang Liu
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China
| | - Chong Zhang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China
| | - Zhiming Bai
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China
| |
Collapse
|
18
|
Taheri M, Najafi S, Basiri A, Hussen BM, Baniahmad A, Jamali E, Ghafouri-Fard S. The Role and Clinical Potentials of Circular RNAs in Prostate Cancer. Front Oncol 2021; 11:781414. [PMID: 34804984 PMCID: PMC8604184 DOI: 10.3389/fonc.2021.781414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Globally, prostate cancer (PCa) is the second most commonly diagnosed cancer in men globally. Early diagnosis may help in promoting survival in the affected patients. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) which have been found to show extensive dysregulation in a handful of human diseases including cancers. Progressions in RNA identification techniques have provided a vast number of circRNAs exhibiting either up-regulation or down-regulation in PCa tissues compared to normal adjacent tissues. The mechanism of action is not clear for most of dysregulated circRNAs. Among them, function of a number of newly identified dysregulated circRNAs have been assessed in PCa cells. Increase in cell proliferation, migration, invasion, and metastasis have been reported for up-regulated circRNAs which suggest their role as oncogenes. On the other hand, down-regulated circRNAs have shown tumor suppressing actions in experimental studies. Furthermore, in a majority of studies, circRNAs have been found to sponge microRNAs (miRNAs), negatively regulating expression or activity of the downstream miRNAs. Additionally, they have been identified in interaction with regulatory proteins. This axis consequently regulates a signaling pathway, a tumor suppressor, or an oncogene. Easy, quick, and reliable detection of circRNAs in human body fluids also suggests their potentials as biomarker candidates for diagnosis and prediction of prognosis in PCa patients. In this review, we have discussed the role and potentials of a number of dysregulated circRNAs in PCa.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Shi P, Li Y, Guo Q. Circular RNA circPIP5K1A contributes to cancer stemness of osteosarcoma by miR-515-5p/YAP axis. J Transl Med 2021; 19:464. [PMID: 34774083 PMCID: PMC8590363 DOI: 10.1186/s12967-021-03124-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Osteosarcoma is a common type of bone tumors and frequently occurs in children and adolescents. Cancer stem cells (CSCs) are a unique sub-type of self-renewal cancer cells and the stemness of cancer cells are involved in the spread, recurrence, metastasis, and even therapeutic resistance. However, the regulation mechanisms of CSCs in osteosarcoma are poorly understood. Circular RNA (circRNA) is a unique sort of non-coding RNAs and widely participate in the modulation of cancer progression. Methods In this study, we identified the critical function of circular RNA circPIP5K1A in stemness of osteosarcoma cells. Results CircPIP5K1A expression was significantly enhanced in clinical osteosarcoma tissues compared with the adjacent normal tissues. The depletion of circPIP5K1A by siRNA repressed osteosarcoma cell viabilities and induced osteosarcoma cell apoptosis. The suppression of circPIP5K1A attenuated the capabilities of invasion and migration of osteosarcoma cells. The circPIP5K1A knockdown increased E-Cadherin expression and decreased Vimentin expression in osteosarcoma cells. The sphere formation abilities of osteosarcoma cells were repressed by the depletion of circPIP5K1A. The CD133+CD44+ cell population of osteosarcoma cells was reduced by circPIP5K1A knockdown. The expression of ALDH1 and Nanog was decreased by the inhibition of circPIP5K1A in osteosarcoma cells. Mechanically, circPIP5K1A enhanced YAP expression by targeting miR-515-5p. MiR-515-5p inhibited stemness of osteosarcoma cells. The CSCs properties of osteosarcoma cells were repressed by circPIP5K1A knockdown or miR-515-5p mimic, while miR-515-5p inhibitor or YAP overexpression reversed circPIP5K1A knockdown-induced repression. Tumor xenograft analysis in nude mice demonstrated that the depletion of circPIP5K1A represses osteosarcoma cell growth in vivo. Conclusion In conclusion, we identified that circular RNA circPIP5K1A contributed to cancer stemness of osteosarcoma by miR-515-5p/YAP axis. Targeting circPIP5K1A may be considered as a potential therapeutic strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Pengxu Shi
- Department of Bone Surgery, The People's Hospital of Liaoning Province, No. 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
| | - Yueting Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, People's Republic of China
| | - Qingsheng Guo
- Department of Bone Surgery, The People's Hospital of Liaoning Province, No. 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
| |
Collapse
|
20
|
Chen S, Zhou L, Ran R, Huang J, Zheng Y, Xing M, Cai Y. Circ_0016760 accelerates non-small-cell lung cancer progression through miR-646/AKT3 signaling in vivo and in vitro. Thorac Cancer 2021; 12:3223-3235. [PMID: 34658165 PMCID: PMC8636202 DOI: 10.1111/1759-7714.14191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Currently, the prognosis of non-small-cell lung cancer (NSCLC) patients remains dismal due to recurrence and metastasis. The purpose of our study was to explore the role of circular RNA_0016760 (circ_0016760) in NSCLC progression and its associated mechanism. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was implemented to measure the expression of circ_0016760, microRNA-646 (miR-646) and AK strain thymoma serine/threonine kinase 3 (AKT3). The protein level of AKT3 was examined by Western blot assay. Cell Counting Kit 8 assay, transwell assays, and flow cytometry were conducted to analyze cell proliferation, metastasis, and apoptosis. Dual-luciferase reporter assay was used to confirm the interactions that were predicted by bioinformatics software (Circular RNA Interactome and TargetScan). A xenograft tumor model was built to investigate the role of circ_0016760 in vivo. RESULTS Circ_0016760 and AKT3 were highly expressed in NSCLC tissue specimens and cell lines. Circ_0016760 interference suppressed cell proliferation, migration, and invasion and promoted the apoptosis of NSCLC cells. Circ_0016760 interacted with miR-646 and negatively regulated its expression. MiR-646 silencing partly counteracted circ_0016760 knockdown-mediated influences in NSCLC cells. MiR-646 bound to the AKT3 3' untranslated region in NSCLC cells, and miR-646 overexpression-induced effects in NSCLC cells were partly overturned by the addition of AKT3 overexpression plasmid. Circ_0016760 silencing reduced the expression of AKT3 through enhancing miR-646 expression. Circ_0016760 knockdown suppressed NSCLC tumor growth in vivo. CONCLUSION Circ_0016760 played an oncogenic role to promote the proliferation, migration, and invasion and restrained the apoptosis of NSCLC cells via miR-646/AKT3 signaling.
Collapse
Affiliation(s)
- Shan Chen
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Long Zhou
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Ruizhi Ran
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Jinqi Huang
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yong Zheng
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Maohui Xing
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yanli Cai
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
21
|
Wang G, Zhao H, Duan X, Ren Z. CircRNA pappalysin 1 facilitates prostate cancer development through miR-515-5p/FKBP1A axis. Andrologia 2021; 53:e14227. [PMID: 34469009 DOI: 10.1111/and.14227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
The role of circular RNA (circRNA) pappalysin 1 (circ-PAPPA; hsa_circ_0088233) in prostate cancer (PCa) cells was explored in the current study. Circ-PAPPA abundance was markedly enhanced in PCa. Circ-PAPPA interference restrained cell viability, proliferation, motility and glycolysis while elevated the apoptosis rate of PCa cells. Circ-PAPPA negatively regulated microRNA-515-5p (miR-515-5p) abundance. MiR-515-5p silencing largely diminished circ-PAPPA knockdown-mediated effects in PCa cells. MiR-515-5p directly bound to FKBP prolyl isomerase 1A (FKBP1A). MiR-515-5p overexpression-mediated impacts were partly counteracted by FKBP1A overexpression. Circ-PAPPA silencing reduced FKBP1A protein level partly by elevating miR-515-5p expression. Circ-PAPPA knockdown significantly restrained the tumour growth in vivo. Circ-PAPPA elevated the malignant phenotypes of PCa cells by sequestering miR-515-5p to induce the expression of FKBP1A.
Collapse
Affiliation(s)
- Guangwen Wang
- Department of Urology, The People Hospital of Guangrao County, Guangrao, China
| | - Haiyang Zhao
- Department of Urology, The People Hospital of Guangrao County, Guangrao, China
| | - Xiaohong Duan
- Department of Respiratory Medicine, The People Hospital of Guangrao County, Guangrao, China
| | - Zhiqiang Ren
- Department of Urology, The People Hospital of Guangrao County, Guangrao, China
| |
Collapse
|
22
|
Curcumin Antagonizes Glucose Fluctuation-Induced Renal Injury by Inhibiting Aerobic Glycolysis via the miR-489/LDHA Pathway. Mediators Inflamm 2021; 2021:6104529. [PMID: 34456629 PMCID: PMC8387199 DOI: 10.1155/2021/6104529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
It has been considered that glucose fluctuation (GF) plays a role in renal injury and is related to diabetic nephropathy (DN) development. But the mechanism is still unclear. Aerobic glycolysis has become a topical issue in DN in recent years. There is an internal connection between GF, aerobic glycolysis, and DN. Curcumin (Cur) is a principal curcuminoid of turmeric and possesses specific protective properties in kidney functions. Cur also participates in the regulation of aerobic glycolysis switch. In this study, we first measured the levels of aerobic glycolysis and evaluated Cur's inhibitory ability in a cell model of HEK-293 under the condition of oscillating high glucose. The results indicated that GF exacerbated inflammation injury, oxidative stress, and apoptosis in HEK-293 cell, while Cur alleviated this cytotoxicity induced by GF. We found that GF increased aerobic glycolysis in HEK-293 cells and Cur presented a dose-dependent weakening effect to this exacerbation. Next, we built a panel of 17 miRNAs and 8 lncRNAs that were previously reported to mediate the Warburg effect. Our RT-qPCR results indicated that GF reduced the miR-489 content in the HEK-293 cell model and Cur could prevent this downregulation. Then, we planned to explore the character of miR-489 in Cur-triggered attenuation of the Warburg effect under GF condition. Our findings presented that Cur prevented GF-triggered aerobic glycolysis by upregulating miR-489 in HEK-293 cells. Next, we choose the miR-489/LDHA axis for further investigation. We confirmed that Cur prevented GF-triggered aerobic glycolysis via the miR-489/LDHA axis in HEK-293 cells. In conclusion, this study presented that Cur prevented GF-triggered renal injury by restraining aerobic glycolysis via the miR-489/LDHA axis in the HEK-293 cell model.
Collapse
|
23
|
Mao G, Zhou B, Xu W, Jiao N, Wu Z, Li J, Liu Y. Hsa_circ_0040809 regulates colorectal cancer development by upregulating methyltransferase DNMT1 via targeting miR-515-5p. J Gene Med 2021; 23:e3388. [PMID: 34438465 DOI: 10.1002/jgm.3388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/29/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are key regulators in the progression of various cancers. Abnormal DNA methylation patterns feature prominently in the regulation of the expression of tumor-related genes. This study is aimed at investigating the molecular mechanism of circ_0040809 affecting colorectal cancer (CRC) progression by regulating DNA methyltransferase 1 (DNMT1). METHODS circ_0040809 was selected from the circRNA microarray datasets (GSE142837 and GSE138589). Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to examine the expression of circ_0040809, miR-515-5p, and DNMT1 mRNA in paired cancerous and paracancerous tissues of 40 CRC patients, as well as in cell lines. Western blotting was conducted for detecting DNMT1 protein expression in CRC cells. Cell proliferation, migration, and apoptosis were assessed through CCK-8, Transwell, and flow cytometry assays. Bioinformatics and dual-luciferase gene assay were conducted to predict and verify, respectively, the targeted relationships between circ_0040809 and miR-515-5p, as well as between miR-515-5p and DNMT1 mRNA. RESULTS In CRC tissues and cells, circ_0040809 and DNMT1 expression are markedly increased, whereas miR-515-5p expression is decreased. Also, high circ_0040809 expression is significantly linked to shorter overall survival. Cell function compensation experiments reveal that circ_0040809 silencing inhibits CRC cell proliferation and migration and promotes apoptosis, while circ_0040809 overexpression has the opposite effects. Mechanistically, circ_0040809 competitively binds to miR-515-5p to elevate DNMT1 expression. Rescue assay reveals that overexpressed miR-515-5p partly counteracts the tumor-facilitating impact of circ_0040809. CONCLUSIONS circ_0040809 facilitates CRC cell proliferation and migration, and inhibits apoptosis, through modulating miR-515-5p/DNMT1 axis. Our study implies that targeting circ_0040809 may be a therapy strategy for CRC treatment.
Collapse
Affiliation(s)
- Guoliang Mao
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Bing Zhou
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Wuqin Xu
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Nanlin Jiao
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, Anhui, China
| | - Jiajia Li
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Yinhua Liu
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| |
Collapse
|
24
|
Chao F, Wang S, Zhang C, Han D, Xu G, Chen G. The Emerging Role of Circular RNAs in Prostate Cancer: A Systematic Review. Front Cell Dev Biol 2021; 9:681163. [PMID: 34386491 PMCID: PMC8353182 DOI: 10.3389/fcell.2021.681163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors that threaten the health of men. It is urgent to explore new molecular targets and develop new drugs for the treatment of prostate cancer. Circular RNAs (circRNAs) are aberrantly expressed in various malignant tumors. The dysregulated circRNAs are involved in the metastasis, tumor growth, drug resistance, and immunosuppression of malignant tumors. The present review systematically summarized publications concerning the biological implications of circRNAs in prostate cancer. The PubMed and Web of Science databases were used to retrieve publications concerning circRNAs and prostate cancer until June 16, 2021. The following keywords were used in the literature search: (circRNA OR circular RNA) AND prostate cancer. 73 publications were enrolled in the present systematic review to summarize the role of circRNAs in prostate cancer. The dysregulated and functional circRNAs were involved in the cell cycle, proliferation, migration, invasion, metastasis, drug resistance and radiosensitivity of prostate cancer. In addition, circRNAs could function through EVs and serve as prognostic and diagnostic biomarkers. Certain circRNAs were correlated with clinicopathological features of prostate cancer. A comprehensive review of the molecular mechanism of the tumorigenesis and progression of prostate cancer may contribute to the development of new therapies of prostate cancer in the future.
Collapse
Affiliation(s)
- Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Ji X, Sun W, Lv C, Huang J, Zhang H. Circular RNAs Regulate Glucose Metabolism in Cancer Cells. Onco Targets Ther 2021; 14:4005-4021. [PMID: 34239306 PMCID: PMC8259938 DOI: 10.2147/ott.s316597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) were originally thought to result from RNA splicing errors. However, it has been shown that circRNAs can regulate cancer onset and progression in various ways. They can regulate cancer cell proliferation, differentiation, invasion, and metastasis. Moreover, they modulate glucose metabolism in cancer cells through different mechanisms such as directly regulating glycolytic enzymes and glucose transporter (GLUT) or indirectly regulating signal transduction pathways. In this review, we elucidate on the role of circRNAs in regulating glucose metabolism in cancer cells, which partly explains the pathogenesis of malignant tumors, and provides new therapeutic targets or new diagnostic and prognostic markers for human cancers.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| |
Collapse
|
26
|
Zhang C, Yang Q, Li W, Kang Y, Zhou F, Chang D. Roles of circRNAs in prostate cancer: Expression, mechanism, application and potential. Int J Biochem Cell Biol 2021; 134:105968. [PMID: 33731309 DOI: 10.1016/j.biocel.2021.105968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022]
Abstract
Circular RNA (circRNA) is a member of the non-coding RNA family that is formed by trans-splicing. Because of its unique structure and characteristics, it has extraordinary value for the diagnosis, treatment, and prognosis of diseases, particularly for tumors. Study of the role of circRNAs in the occurrence and development of prostate cancer has made considerable progress, but many areas remain that require further exploration and improvement. This article describes research into sequencing expression profiles, expression regulation, potential value as biomarkers, mechanism in the occurrence and development, therapy resistance, relationship with clinicopathological features, and prognostic value of circRNAs in prostate cancer from the past few years.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Qi Yang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Weiping Li
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Yindong Kang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Fenghai Zhou
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou, 730050, China
| | - Dehui Chang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China.
| |
Collapse
|