1
|
Li P, Meng X, Lu T, Sun C, Song G. Synergistic Effect of ROS and p38 MAPK in Apoptosis of TM4 Cells Induced by Titanium Dioxide Nanoparticles. J Appl Toxicol 2025. [PMID: 40229128 DOI: 10.1002/jat.4789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
The adverse effects of titanium dioxide nanoparticles (TiO2 NPs) on the integrity of the blood-testis barrier (BTB) are widely recognized. However, the underlying mechanisms remain incompletely understood. The integrity of the BTB is imperative for the preservation of male reproductive health. TM4 cells, which are major component of the BTB, play a critical role in its integrity. The apoptosis of TM4 cells is closely associated with the disruption of the BTB. Therefore, we selected TM4 cells as experimental models to investigate the apoptosis induced by TiO2 NPs and the underlying mechanisms. Cell viability, excessive production of reactive oxygen species (ROS), activation of p38 mitogen-activated protein kinase (MAPK) pathway, and apoptosis-related protein expression levels were determined under various concentrations (50, 100, 150, and 200 μg/mL) of TiO2 NPs exposure. The results indicate that TiO2 NPs induced the overproduction of ROS and activated the p38 MAPK signaling pathway, which subsequently led to apoptosis. The ROS scavenger N-acetylcysteine (NAC) was able to suppress the activation of p38 MAPK pathway induced by TiO2 NPs, while the p38 MAPK inhibitor SB203580 mitigated TiO2 NPs-induced ROS overproduction and subsequent apoptosis, suggesting an interplay between ROS overproduction and p38 MAPK pathway activation. In summary, TiO2 NPs induced mitochondrial apoptosis via the ROS-p38 MAPK axis. A positive feedback regulatory mechanism exists between the two processes, promoting apoptosis in TM4 cells through a synergistic effect.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianjiao Lu
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
- Beidaihe Rest and Recuperation Center of PLA, Qinhuangdao, China
| | - Chenhao Sun
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Lee ZX, Guo H, Looi AD, Bhuvanendran S, Magalingam KB, Lee WL, Radhakrishnan AK. Carotenoids Modulate FoxO-Induced Cell Cycle Awrrest in Human Cancer Cell Lines: A Scoping Review. Food Sci Nutr 2025; 13:e70100. [PMID: 40161411 PMCID: PMC11953061 DOI: 10.1002/fsn3.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Carotenoids, a class of antioxidants, have shown great potential for cancer management. This scoping review aimed to elucidate the anticancer mechanisms of carotenoids by using a protein interactions and pathways approach. A literature search on five databases (Web of Science, PubMed, Ovid Medline, Ovid Embase and Scopus) was carried out, and studies investigating differential protein expression in cancer cell lines treated with carotenoids published in the last 10 years were included in the analysis. Sixty-three research articles were short-listed, and 17 carotenoids were used in these studies. The most studied carotenoids were fucoxanthin, astaxanthin, and crocin. The key cancer cell lines tested in these studies included breast, gastric, and lung cancers. Analysis of the proteins identified from these studies using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) revealed the upregulation of proteins belonging to the pro-apoptotic and FoxO signaling pathways. In contrast, several proteins in the PI3k/Akt and TNF signaling pathways and cell cycle regulation were downregulated, which can explain the observed anticancer effects. The findings from this scoping review suggest that the cell cycle arrest observed in carotenoid-treated cancer cells may work through activation of the FoxO signaling pathway in these cells, highlighting their role as potential anticancer agents. Nonetheless, the lack of evidence on the pharmacology, pharmacokinetics, and physiology of carotenoids necessitates more robust and well-designed clinical trials. Similarly, further investigations into the therapeutic effects of targeting the PI3K/Akt/FoxO axis to induce cell cycle arrest and its translational potential are required to ensure the successful development of effective treatments.
Collapse
Affiliation(s)
- Zi Xin Lee
- School of ScienceMonash University MalaysiaBandar SunwayMalaysia
| | - Hanting Guo
- School of ScienceMonash University MalaysiaBandar SunwayMalaysia
| | - Aaron Deming Looi
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar SunwayMalaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar SunwayMalaysia
| | - Kasthuri Bai Magalingam
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar SunwayMalaysia
| | - Wai Leng Lee
- School of ScienceMonash University MalaysiaBandar SunwayMalaysia
| | - Ammu Kutty Radhakrishnan
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar SunwayMalaysia
| |
Collapse
|
3
|
Shanaida M, Mykhailenko O, Lysiuk R, Hudz N, Balwierz R, Shulhai A, Shapovalova N, Shanaida V, Bjørklund G. Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications. Pharmaceuticals (Basel) 2025; 18:403. [PMID: 40143179 PMCID: PMC11945224 DOI: 10.3390/ph18030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, neuroprotective, and anti-inflammatory properties, contributing to the prevention and treatment of age-related diseases. Objectives: The aim of this study was to comprehensively analyze the pharmacological potential and biological mechanisms of carotenoids associated with age-related disorders and to evaluate their application in nutraceuticals, pharmaceuticals, and cosmeceuticals. Methods: A systematic review of studies published over the past two decades was conducted using the databases PubMed, Scopus, and Web of Science. The selection criteria included clinical, in silico, in vivo, and in vitro studies investigating the pharmacological and therapeutic effects of carotenoids. Results: Carotenoids demonstrate a variety of health benefits, including the prevention of age-related macular degeneration, cancer, cognitive decline, metabolic disorders, and skin aging. Their role in nutraceuticals is well supported by their ability to modulate oxidative stress and inflammatory pathways. In pharmaceuticals, carotenoids show promising results in formulations targeting neurodegenerative diseases and metabolic disorders. In cosmeceuticals, they improve skin health by protecting it against UV radiation and oxidative damage. However, bioavailability, optimal dosages, toxicity, and interactions with other bioactive compounds remain critical factors to maximize therapeutic efficacy and still require careful evaluation by scientists. Conclusions: Carotenoids are promising bioactive compounds for antiaging interventions with potential applications in a variety of fields. Further research is needed to optimize their formulas, improve bioavailability, and confirm their long-term safety and effectiveness, especially in the aging population.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168 Kharkiv, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
- CONEM Ukraine Life Science Research Group, 79010 Lviv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Radosław Balwierz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Arkadii Shulhai
- Department of Public Health and Healthcare Management, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Nataliya Shapovalova
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
4
|
Sereti F, Alexandri M, Papapostolou H, Papadaki A, Kopsahelis N. Recent progress in carotenoid encapsulation: Effects on storage stability, bioaccessibility and bioavailability for advanced innovative food applications. Food Res Int 2025; 203:115861. [PMID: 40022383 DOI: 10.1016/j.foodres.2025.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
The incorporation of bioactive ingredients in food products has attracted considerable interest in recent years because of the numerous health benefits these compounds can offer to the human body. Carotenoids are a group of functional components with notable antioxidant and anti-inflammatory properties. Their addition to food products not only provides coloration but can also deliver certain bioactive effects, leading to both increased shelf life and beneficial health benefits. However, carotenoids are prone to oxidation, as they can be easily degraded from light or heat treatments. To address this, encapsulation has emerged as an effective method to protect carotenoids during their incorporation into foods as well as during storage. This review provides a comprehensive overview of the current state of the art regarding encapsulation methods utilized for carotenoids entrapment. The effect of various techniques- such as microemulsification, freeze- drying, spray- drying, and novel nanoencapsulation methods like electrospinning and formation of solid-liquid nanoparticles- are discussed with respect to their positive and negative impacts on carotenoid antioxidant activity, bioaccessibility, bioavailability and the shelf life of the final product. Depending on the type of carotenoid or its intended application, different methods could be employed, which could significantly enhance the overall biological activities of the final food product. This review critically presents the advantages and limitations of each method and highlights the potential health implications that nanoencapsulation techniques might pose before introducing new encapsulated products to the food market.
Collapse
Affiliation(s)
- Fani Sereti
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece.
| |
Collapse
|
5
|
Chitolina Schetinger L, de Jesus LSB, Bottari NB, Viana AR, Nauderer JN, Silveira MV, Castro M, Nass P, Caetano PA, Morsch V, Jacob-Lopes E, Queiroz Zepka L, Chitolina Schetinger MR. Microalgae-Derived Carotenoid Extract and Biomass Reduce Viability, Induce Oxidative Stress, and Modulate the Purinergic System in Two Melanoma Cell Lines. Life (Basel) 2025; 15:199. [PMID: 40003608 PMCID: PMC11856458 DOI: 10.3390/life15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cutaneous melanoma (CM) is an aggressive and metastatic tumor, resulting in high mortality rates. Despite significant advances in therapeutics, the available treatments still require improvements. Thus, purinergic signaling emerged as a potential pathway to cancer therapy due to its involvement in cell communication, proliferation, differentiation, and apoptosis. In addition, due to safety and acceptable clinical tolerability, carotenoids from microalgae have been investigated as adjuvants in anti-melanoma therapy. Then, this work aimed to investigate the in vitro anti-melanogenic effect of carotenoid extract (CA) and total biomass (BM) of the Scenedesmus obliquus microalgae on two cutaneous melanoma cell lines (A375 and B16F10). Cells were cultivated under ideal conditions and treated with 10, 25, 50, and 100 μM of CA or BM for 24 h. The effects of the compounds on viability, oxidant status, and purinergic signaling were verified. The IC50 cell viability results showed that CA and BM decreased B16F10 viability at 24.29 μM and 74.85 μM, respectively and decreased A375 viability at 73.93 μM and 127.80 μM, respectively. Carotenoid treatment for 24 h in B16F10 and A375 cells increased the release of reactive oxygen species compared to the control. In addition, CA and BM isolated or combined with cisplatin chemotherapy (CIS) modulated the purinergic system in B16F10 and A375 cell lines through P2X7, A2AR, CD39, and 5'-nucleotidase. They led to cell apoptosis and immunoregulation by activating A2A receptors and CD73 inhibition. The results disclose that CA and BM from Scenedesmus obliquus exhibit an anti-melanogenic effect, inhibiting melanoma cell growth.
Collapse
Affiliation(s)
- Luisa Chitolina Schetinger
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Loren S. B. de Jesus
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Nathieli B. Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas (UFPEL), Pelotas 96010-610, Brazil
| | - Altevir R. Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Jelson N. Nauderer
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Marcylene V. Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Milagros Castro
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Pricila Nass
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Patrícia Acosta Caetano
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Vera Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Eduardo Jacob-Lopes
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Leila Queiroz Zepka
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| |
Collapse
|
6
|
Sahoo BM, Banik BK, Sharma S, Singh B. Current Insights into Therapeutic Potential of Terpenoids as Anticancer Agents. Anticancer Agents Med Chem 2025; 25:339-356. [PMID: 39440731 DOI: 10.2174/0118715206342920241008062115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Cancer is regarded as one of the main causes of death globally. Future predictions indicate that the death rate from cancer will keep rising, which may reach 11.4 million in 2030. Carcinogenesis refers to the phenomenon of transforming a normal cell into a cancer cell. Cancer is characterized by unregulated and uncontrolled cell division due to alterations at the molecular and genetic levels. Gene mutations can speed up the rate of cell division, which leads to cancer. Metastasis entails the dissemination of cancer cells from the primary site to distant regions of the body via the circulatory or lymphatic systems. OBJECTIVE This review is mainly focusing on the anticancer properties of terpenoids. In the case of human beings, several types of cancers can be treated clinically based on the form and phase of the cancer. So, there are different types of treatment regimens available for the management of cancer, such as immunotherapy, hormonal therapy, radiation therapy, and chemotherapy. METHODS Several problems are associated with cancer therapy, including chemoresistance, severe toxicity, relapse, and metastasis. To minimize these complications, natural products like terpenoids seem to be beneficial for the effective management of cancer. RESULTS Experimental results revealed that the anticancer potential of terpenoids is due to activation of apoptosis and stimulation of cell cycle arrest. Some of the terpenoids exhibit anticancer effects by inhibiting angiogenesis and metastasis via the regulation of several signaling pathways intracellularly. Certain terpenoids have been shown to work in concert with anticancer medications (doxorubicin, cisplatin, paclitaxel, and 5-fluorouracil) to provide synergistic effects. These terpenoids have also been shown to be effective against cancer cells that are resistant to several drug therapies. CONCLUSION The current study will focus on signaling pathways and mode of action of several types of terpenoids as anticancer agents. Further, it will provide insights into the ongoing clinical trials and prospective pathways for the advancement of terpenoids as possible anti-cancer agents.
Collapse
Affiliation(s)
- Biswa Mohan Sahoo
- School of Pharmacy and Life Sciences, Centurion University of Technology & Management, Jatni, Bhubaneswar, Khurda, 752050, Odisha, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia
| | - Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar, 301028, Rajasthan, India
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, India
- Department of Pharmacy, S.N. Medical College, Agra, 282002, India
| |
Collapse
|
7
|
Utpal BK, Dehbia Z, Zidan BMRM, Sweilam SH, Singh LP, Arunkumar MS, Sona M, Panigrahy UP, Keerthana R, Mandadi SR, Rab SO, Alshehri MA, Koula D, Suliman M, Nafady MH, Emran TB. Carotenoids as modulators of the PI3K/Akt/mTOR pathway: innovative strategies in cancer therapy. Med Oncol 2024; 42:4. [PMID: 39549201 DOI: 10.1007/s12032-024-02551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Cancer progression is primarily driven by the uncontrolled activation of cellular signaling pathways, with the PI3K/Akt/mTOR (PAMT) pathway playing a central role. This pathway significantly contributes to the proliferation and survival of cancer cells, and its hyperactivity is a major challenge in managing several types of malignancies. This article delves into the promising potential of carotenoids, natural pigments found in abundance in fruits and vegetables, as a novel therapeutic strategy for cancer treatment. By specifically targeting and inhibiting the PAMT pathway, carotenoids may effectively disrupt the growth and survival of cancer cells. The article examines the complex mechanisms underlying these interactions and highlights the obstacles faced in cancer treatment. It proposes a compelling approach to developing therapies that leverage natural products to target this critical pathway, offering a fresh perspective on cancer treatment. Further research is essential to enhance the therapeutic efficacy of these compounds.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - B M Redwan Matin Zidan
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram (Rohtas) Bihar, Jamuhar, 821305, India
| | - M S Arunkumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - M Sona
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, India
| | - R Keerthana
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sandhya Rani Mandadi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Tuljaraopet, Telangana , 502313, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Doukani Koula
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt.
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
8
|
Sameh S, Elissawy AM, Al-Sayed E, Labib RM, Chang HW, Yu SY, Chang FR, Yang SC, Singab ANB. Family Malvaceae: a potential source of secondary metabolites with chemopreventive and anticancer activities supported with in silico pharmacokinetic and pharmacodynamic profiles. Front Pharmacol 2024; 15:1465055. [PMID: 39478959 PMCID: PMC11521888 DOI: 10.3389/fphar.2024.1465055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Cancer is the second most widespread cause of mortality following cardiovascular disorders, and it imposes a heavy global burden. Nowadays, herbal nutraceutical products with a plethora of bioactive metabolites represent a foundation stone for the development of promising chemopreventive and anticancer agents. Certain members of the family Malvaceae have traditionally been employed to relieve tumors. The literature concerning the chemopreventive and anticancer effects of the plant species along with the isolated cytotoxic phytometabolites was reviewed. Based on the findings, comprehensive computational modelling studies were performed to explore the pharmacokinetic and pharmacodynamic profiles of the reported cytotoxic metabolites to present basis for future plant-based anticancer drug discovery. Methods All the available information about the anticancer research in family Malvaceae and its cytotoxic phytometabolites were retrieved from official sources. Extensive search was carried out using the keywords Malvaceae, cancer, cytotoxicity, mechanism and signalling pathway. Pharmacokinetic study was performed on the cytotoxic metabolites using SWISS ADME model. Acute oral toxicity expressed as median lethal dose (LD50) was predicted using Pro Tox 3.0 web tool. The compounds were docked using AutoDock Vina platform against epidermal growth factor receptor (EGFR kinase enzyme) obtained from the Protein Data Bank. Molecular dynamic simulations and MMGBSA calculations were performed using GROMACS 2024.2 and gmx_MMPBSA tool v1.5.2. Results One hundred forty-five articles were eligible in the study. Several tested compounds showed safe pharmacokinetic properties. Also, the molecular docking study showed that the bioactive metabolites possessed agreeable binding affinities to EGFR kinase enzyme. Tiliroside (25), boehmenan (30), boehmenan H (31), and isoquercetin (22) elicited the highest binding affinity toward the enzyme with a score of -10.4, -10.4, -10.2 and -10.1 Kcal/mol compared to the reference drug erlotinib having a binding score equal to -9 Kcal/mol. Additionally, compounds 25 and 31 elicited binding free energies equal to -42.17 and -42.68 Kcal/mol, respectively, comparable to erlotinib. Discussion Overall, the current study presents helpful insights into the pharmacokinetic and pharmacodynamic properties of the reported cytotoxic metabolites belonging to family Malvaceae members. The molecular docking and dynamic simulations results intensify the roles of secondary metabolites from medicinal plants in fighting cancer.
Collapse
Affiliation(s)
- Salma Sameh
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Ahmed M. Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Rola M. Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, and PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Yin Yu
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Chyun Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Azmy L, Ibraheem IBM, Alsalamah SA, Alghonaim MI, Zayed A, Abd El-Aleam RH, Mohamad SA, Abdelmohsen UR, Elsayed KNM. Evaluation of Cytotoxicity and Metabolic Profiling of Synechocystis sp. Extract Encapsulated in Nano-Liposomes and Nano-Niosomes Using LC-MS, Complemented by Molecular Docking Studies. BIOLOGY 2024; 13:581. [PMID: 39194519 DOI: 10.3390/biology13080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Liposomes and niosomes can be considered excellent drug delivery systems due to their ability to load all compounds, whether hydrophobic or hydrophilic. In addition, they can reduce the toxicity of the loaded drug without reducing its effectiveness. Synechocystis sp. is a unicellular, freshwater cyanobacteria strain that contains many bioactive compounds that qualify its use in industrial, pharmaceutical, and many other fields. This study investigated the potential of nano-liposomes (L) and nano-niosomes (N) for delivering Synechocystis sp. extract against cancer cell lines. Four different types of nanoparticles were prepared using a dry powder formulation and ethanol extract of Synechocystis sp. in both nanovesicles (N1 and N2, respectively) and liposomes (L1 and L2, respectively). Analysis of the formed vesicles using zeta analysis, SEM morphological analysis, and visual examination confirmed their stability and efficiency. L1 and L2 in this investigation had effective diameters of 419 and 847 nm, respectively, with PDI values of 0.24 and 0.27. Furthermore, the zeta potentials were found to range from -31.6 mV to -43.7 mV. Regarding N1 and N2, their effective diameters were 541 nm and 1051 nm, respectively, with PDI values of 0.31 and 0.35, and zeta potentials reported from -31.6 mV to -22.2 mV, respectively. Metabolic profiling tentatively identified 22 metabolites (1-22) from the ethanolic extract. Its effect against representative human cancers was studied in vitro, specifically against colon (Caco2), ovarian (OVCAR4), and breast (MCF7) cancer cell lines. The results showed the potential activities of the prepared N1, N2, L1, and L2 against the three cell lines, where L1 had cytotoxicity IC50 values of 19.56, 33.52, and 9.24 µg/mL compared to 26.27, 56.23, and 19.61 µg/mL for L2 against Caco2, OVCAR4, and MCF7, respectively. On the other hand, N1 exhibited IC50 values of 9.09, 11.42, and 2.38 µg/mL, while N2 showed values of 15.57, 18.17, and 35.31 µg/mL against Caco2, OVCAR4, and MCF7, respectively. Meanwhile, the formulations showed little effect on normal cell lines (FHC, OCE1, and MCF10a). All of the compounds were evaluated in silico against the epidermal growth factor receptor tyrosine kinase (EGFR). The molecular docking results showed that compound 21 (1-hexadecanoyl-2-(9Z-hexadecenoyl)-3-(6'-sulfo-alpha-D-quinovosyl)-sn-glycerol), followed by compounds 6 (Sulfoquinovosyl monoacylgycerol), 7 (3-Hydroxymyristic acid), 8 (Glycolipid PF2), 12 (Palmitoleic acid), and 19 (Glyceryl monostearate), showed the highest binding affinities. These compounds formed good hydrogen bond interactions with the key amino acid Lys721 as the co-crystallized ligand. These results suggest that nano-liposomes and nano-niosomes loaded with Synechocystis sp. extract hold promise for future cancer treatment development. Further research should focus on clinical trials, stability assessments, and pharmacological profiles to translate this approach into effective anticancer drugs.
Collapse
Affiliation(s)
- Lamya Azmy
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ibraheem B M Ibraheem
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sulaiman A Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed Zayed
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo 11571, Egypt
| | - Soad A Mohamad
- Clinical Pharmacy Department, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia 61111, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
10
|
Wang Y, Xu J, Fu Z, Zhang R, Zhu W, Zhao Q, Wang P, Hu C, Cheng X. The role of reactive oxygen species in gastric cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0182. [PMID: 38982978 DOI: 10.20892/j.issn.2095-3941.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Gastric cancer (GC) ranks fifth in cancer incidence and fourth in cancer-related mortality worldwide. Reactive oxygen species (ROS) are highly oxidative oxygen-derived products that have crucial roles in cell signaling regulation and maintaining internal balance. ROS are closely associated with the occurrence, development, and treatment of GC. This review summarizes recent findings on the sources of ROS and the bidirectional regulatory effects on GC and discusses various treatment modalities for GC that are related to ROS induction. In addition, the regulation of ROS by natural small molecule compounds with the highest potential for development and applications in anti-GC research is summarized. The aim of the review is to accelerate the clinical application of modulating ROS levels as a therapeutic strategy for GC.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhenjie Fu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ruolan Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Weiwei Zhu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Qianyu Zhao
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
11
|
Nag N, Ray T, Tapader R, Gope A, Das R, Mahapatra E, Saha S, Pal A, Prasad P, Pal A. Metallo-protease Peptidase M84 from Bacillusaltitudinis induces ROS-dependent apoptosis in ovarian cancer cells by targeting PAR-1. iScience 2024; 27:109828. [PMID: 38799586 PMCID: PMC11126781 DOI: 10.1016/j.isci.2024.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
We have purified Peptidase M84 from Bacillus altitudinis in an effort to isolate anticancer proteases from environmental microbial isolates. This metallo-protease had no discernible impact on normal cell survival, but it specifically induced apoptosis in ovarian cancer cells. PAR-1, a GPCR which is reported to be overexpressed in ovarian cancer cells, was identified as a target of Peptidase M84. We observed that Peptidase M84 induced PAR-1 overexpression along with activating its downstream signaling effectors NF-κB and MAPK to promote excessive reactive oxygen species (ROS) generation. This evoked apoptotic death of the ovarian cancer cells through the intrinsic route. In in vivo set-up, weekly intraperitoneal administration of Peptidase M84 in syngeneic mice significantly diminished ascites accumulation, increasing murine survival rates by 60%. Collectively, our findings suggested that Peptidase M84 triggered PAR-1-mediated oxidative stress to act as an apoptosis inducer. This established Peptidase M84 as a drug candidate for receptor mediated targeted-therapy of ovarian cancer.
Collapse
Affiliation(s)
- Niraj Nag
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Tanusree Ray
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rima Tapader
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rajdeep Das
- Molecular Cell Biology of Autophagy Lab, The Francis Crick Institute, 1, Midland Road, London NW1 1AT, UK
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Saibal Saha
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Ananda Pal
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital and Medical Center, 3333 Burnet Avenue, Cincinnati 45229-3026, OH, USA
| | - Amit Pal
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| |
Collapse
|
12
|
Chien TM, Yang CW, Yen CH, Yeh BW, Wu WJ, Sheu JH, Chang HW. Excavatolide C/cisplatin combination induces antiproliferation and drives apoptosis and DNA damage in bladder cancer cells. Arch Toxicol 2024; 98:1543-1560. [PMID: 38424264 DOI: 10.1007/s00204-024-03699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Excavatolide C (EXCC), a marine coral-derived compound, exhibits an antiproliferation effect on bladder cancer cells. The present study evaluated the improvement in the antiproliferation ability of EXCC by co-treatment with cisplatin in bladder cancer cells. EXCC/cisplatin (12.5 and 1 μg/mL) showed higher antiproliferation effects on bladder cancer cells than single treatments (EXCC or cisplatin alone) in the 48 h ATP assay. EXCC/cisplatin also enhanced the increase in subG1, annexin V-mediated apoptosis, and activation of poly (ADP-ribose) polymerase (PARP) and several caspases (caspases 3, 8, and 9) compared to the single treatments. Cellular and mitochondrial oxidative stress was enhanced with EXCC/cisplatin compared to the single treatments according to analyses of reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial membrane potential; in addition, cellular antioxidants, such as glutathione (GSH), and the mRNA expressions of antioxidant signaling genes (catalase and NFE2-like bZIP transcription factor 2) were downregulated. EXCC/cisplatin treatment produced more DNA damage than the single treatments, as indicated by γH2AX and 8-hydroxy-2'-deoxyguanosine levels. Moreover, several DNA repair genes for homologous recombination (HR) and non-homologous end joining (NHEJ) were downregulated in EXCC/cisplatin compared to others. The addition of the GSH precursor N-acetylcysteine, which has ROS scavenging activity, attenuated all EXCC/cisplatin-induced changes. Notably, EXCC/cisplatin showed lower antiproliferation, apoptosis, ROS induction, GSH depletion, and γH2AX DNA damage in normal cells than in bladder cancer cells. Therefore, the co-treatment of EXCC/cisplatin reduces the proliferation of bladder cancer cells via oxidative stress-mediated mechanisms with normal cell safety.
Collapse
Affiliation(s)
- Tsu-Ming Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
13
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Lu F, Wu Q, Lei J, Zhou Y, Liu Y, Zhu N, Yu Y, Lin L, Hu M. Zeaxanthin impairs angiogenesis and tumor growth of glioblastoma: An in vitro and in vivo study. Arch Biochem Biophys 2024; 754:109957. [PMID: 38467357 DOI: 10.1016/j.abb.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.
Collapse
Affiliation(s)
- Feifei Lu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Qing Wu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Jiaming Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| |
Collapse
|
15
|
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, Georgescu DE, Nica RI. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer. Int J Mol Sci 2024; 25:1848. [PMID: 38339127 PMCID: PMC10856016 DOI: 10.3390/ijms25031848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of death worldwide, with more than 1 million cases diagnosed every year. Helicobacter pylori represents the main risk factor, being responsible for 78% of the cases. Increased amounts of salt, pickled food, red meat, alcohol, smoked food, and refined sugars negatively affect the stomach wall, contributing to GC development. Several gene mutations, including PIK3CA, TP53, ARID1A, CDH1, Ras, Raf, and ERBB3 are encountered in GC pathogenesis, leading to phosphatidylinositol 3-kinase (PI3K) protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-PI3K/AKT/mTOR-and mitogen-activated protein kinase (MAPK) signaling pathway activation and promoting tumoral activity. Helicobacter pylori, growth factors, cytokines, hormones, and oxidative stress also activate both pathways, enhancing GC development. In clinical trials, promising results have come from monoclonal antibodies such as trastuzumab and ramucirumab. Dual inhibitors targeting the PI3K/AKT/mTOR and MAPK signaling pathways were used in vitro studies, also with promising results. The main aim of this review is to present GC incidence and risk factors and the dysregulations of the two protein kinase complexes together with their specific inhibitors.
Collapse
Affiliation(s)
- Diana-Theodora Morgos
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department I of Family Medicine and Clinical Base, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Silviu Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Daniela Gabriela Balan
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Elena-Claudia Coculescu
- Discipline of Oral Pathology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Dragos-Eugen Georgescu
- Department of General Surgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania;
- Department of General Surgery, “Dr. Ion Cantacuzino” Clinical Hospital, 020475 Bucharest, Romania
| | - Remus Iulian Nica
- Central Military Emergency University Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
16
|
Wu T, Sheng Y, Tian Y, Wang C. Vitexin Regulates Heat Shock Protein Expression by Modulating ROS Levels Thereby Protecting against Heat-Stress-Induced Apoptosis. Molecules 2023; 28:7639. [PMID: 38005362 PMCID: PMC10675196 DOI: 10.3390/molecules28227639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Heat stress due to high temperatures can cause heat stroke, pyrexia, heat cramps, heart disease, and respiratory diseases, which seriously affect human health. Vitexin has been shown to alleviate heat stress; however, its mechanism of action remains unclear. Therefore, in this study, we used Caco-2 cells to establish a heat stress model and vitamin C as a positive control to investigate the regulatory effects of vitexin on heat-stress-induced apoptosis and the related mechanisms using Cell Counting Kit-8, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot. The results showed that the mRNA expressions of Hsp27, Hsp70, and Hsp90 induced by heat stress could be effectively inhibited at vitexin concentrations as low as 30 μM. After heat stress prevention and heat stress amelioration in model cells based on this concentration, intracellular reactive oxygen species (ROS) levels and the mRNA level and the protein expression of heat shock proteins (Hsp70 and Hsp90) and apoptotic proteins were reduced. In addition, compared with the heat stress amelioration group, the expression of BCL2 mRNA and its protein (anti-apoptotic protein Bcl-2) increased in the heat stress prevention group, while the expression of BAX, CYCS, CASP3, and PARP1 mRNAs and their proteins (apoptotic proteins Bax, Cytochrome C, cle-Caspase-3, and cle-PARP1) were decreased. In summary, the heat-stress-preventive effect of vitexin was slightly better than its heat-stress-ameliorating effect, and its mechanism may be through the inhibition of intracellular ROS levels and thus the modulation of the expressions of Hsp70 and Hsp90, which in turn protects against heat-stress-induced apoptosis. This study provides a theoretical basis for the prevention and amelioration of heat stress using vitexin.
Collapse
Affiliation(s)
- Tong Wu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
17
|
Sah DK, Arjunan A, Lee B, Jung YD. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants (Basel) 2023; 12:1712. [PMID: 37760015 PMCID: PMC10525271 DOI: 10.3390/antiox12091712] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the stomach's mucosal lining, altering gastric hormone release patterns, and potentially altering gastric function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer. Evidence shows that various molecular alterations are present in gastric cancer and precancerous lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism underlying GC etiology is not fully understood. This review provides an overview of recent research exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the antioxidant supplements that can reduce or even eliminate GC occurrence.
Collapse
Affiliation(s)
| | | | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
18
|
Lee WY, Park HJ. T-2 mycotoxin Induces male germ cell apoptosis by ROS-mediated JNK/p38 MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115323. [PMID: 37541021 DOI: 10.1016/j.ecoenv.2023.115323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
T-2 mycotoxin, a type A trichothecene toxin that, specifically, causes male and female reproductive toxicity. We evaluated T-2 toxin toxicity in testes from neonatal testes after in vitro tissue cultured. Additionally, current study focuses on the molecular mechanism of toxicity and germ cell damage in GC-1 spermatogonial cells. Mouse testicular fragments were subjected to T-2 toxin (0-20 nM) during days 5 of in vitro culture. Testicular germ cell number were reduced and downregulated the expression of corresponding markers depending on the exposure concentration of T-2 toxin; however, Sertoli cell markers and steroidogenic enzyme expression increased when treated with 20 nM T-2 toxin. The cell viability decreased, apoptosis increased, and pro-apoptotic protein expression increased in 5-20 nM T-2 toxin-exposed spermatogonia. Moreover, T-2 toxin generated reactive oxygen species (ROS) and induced mitochondrial dysfunction, indicating that activation of p38 MAPK signaling triggered by ROS is involved in the apoptotic molecular mechanism of T-2 toxin. T-2 toxin induced the phosphorylation of ERK1/2, c-Jun, JNK/SAPK, p38, and p53, and the subsequent inhibition of AKT phosphorylation. The upregulation of genes related to apoptosis and MAPK/JNK signaling was consistently observed in cells exposed to T-2 toxin. These results indicate that T-2 toxin triggers apoptotic cell death in germ cells through the triggering of ROS-mediated JNK/p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk 54874, South Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, South Korea.
| |
Collapse
|
19
|
Lu X, Li W, Wang Q, Wang J, Qin S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules 2023; 28:5364. [PMID: 37513236 PMCID: PMC10385551 DOI: 10.3390/molecules28145364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Natural plant pigments are safe and have low toxicity, with various nutrients and biological activities. However, the extraction, preservation, and application of pigments are limited due to the instability of natural pigments. Therefore, it is necessary to examine the extraction and application processes of natural plant pigments in detail. This review discusses the classification, extraction methods, biological activities, and modification methods that could improve the stability of various pigments from plants, providing a reference for applying natural plant pigments in the industry and the cosmetics, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Xianwen Lu
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| |
Collapse
|
20
|
Ghosh AK, Harper M, Robinson WL. Total Synthesis of Neuroprotective Agents, (+)-Lycibarbarine A and (-)-Lycibarbarine B. J Org Chem 2023; 88:9530-9536. [PMID: 37267592 PMCID: PMC10942745 DOI: 10.1021/acs.joc.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe the convergent total syntheses of lycibarbarines A and B which are potent neuroprotective agents recently isolated from the fruits of Lycium barbarum. The synthesis highlights the construction of a unique spiro oxazine heterocyclic motif imbedded in these natural products. The synthesis is accomplished from the commercially available 8-hydroxyquinaline and 2-deoxy-d-ribose as key starting materials. The synthesis features a Reimer-Tiemann reaction, selective amine alkylation with a keto tosylate derivative, and spiroketalization to form an oxazine core.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Marc Harper
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
21
|
Hu Q, Li Z, Li Y, Deng X, Chen Y, Ma X, Zeng J, Zhao Y. Natural products targeting signaling pathways associated with regulated cell death in gastric cancer: Recent advances and perspectives. Phytother Res 2023. [PMID: 37157181 DOI: 10.1002/ptr.7866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi-phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK-related signaling pathways, p53 signaling pathway, ER stress, Caspase-8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Liang X, Zhao Y, Xu T, Wang W, Sun W, Wang R. Catalpol Alleviates Depression by Inhibiting NLRP3 Inflammasome via TLR4/MAPK/NF-Kb Pathway. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:722-731. [PMID: 37551177 PMCID: PMC10404318 DOI: 10.18502/ijph.v52i4.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 08/09/2023]
Abstract
Background We aimed to explore catalpol and NF-k. The role of antidepressant and anti-inflammatory effects of b inhibitor in depression induced by chronic unpredictable mild stress (CUMS). Methods Under the guidance of Qiqihar Medical University, from January 2020 to January 2021, the weight, sucrose consumption and rest time of mice during swimming were monitored, the neurobehavioral changes of rats under CUMS were used to determine the experimental model; ELISA detection of iNOS, ROS, caspase-1, IL-1 β And IL-18 expression level; Western blotting detection of TLR4, MAPK and NF-κB expression level; LPS-induced cell model. INOS, NLRP3, caspase-1, IL-1 in RT-qPCR and ELISA detection models β And IL-18 expression level; the TLR4, MAPK and NF-κB level were detected by Western blotting. Results CUMS can make rats lose weight, reduce sucrose consumption rate and prolong rest time. Catapol can enhance this effect; In the depression model, ROS, NLRP3, NF-κ B and iNOS were up-regulated Catalpol group MAPK, NF-κ Reduced expression of B and TLR4; ROS, caspase-1, IL-1β, IL-18 and iNOS protein increased. Cell model group TLR4, MAPK and NF-κ. The high protein content of B decreased in catalpol group. Conclusion Catalpol acts as anti-depressant and anti-inflammatory molecule indepression induced by CUMS. Combination of catalpol with NF-κB inhibitor might play a role in the treatment of depression through regulating the neuroinflammation.
Collapse
Affiliation(s)
- Xuemei Liang
- The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Yuhuan Zhao
- The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Tianjiao Xu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161000, China
| | - Wei Wang
- Mudanjiang Medical College, Mudanjiang 155000, China
| | - Weidong Sun
- The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Rui Wang
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161000, China
| |
Collapse
|
23
|
Cheng B, Wu X, Li R, Tu J, Lin S, Zhang X, Mo X, Xie T. Associations of serum carotenoids with the severity of sunburn and the risk of cancer: A cross-sectional analysis of 1999-2018 NHANES data. Front Nutr 2022; 9:1051351. [PMID: 36606230 PMCID: PMC9810113 DOI: 10.3389/fnut.2022.1051351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Sunburn is a common problem for outdoor workers and casual outdoor walkers. Carotenoids are important elements in normal function of skin tissue and skin metabolism and are critical in the development of some cancers. However, the possible relationships between sunburn sensitivity, carotenoids and the risk of cancers remain unknown. Objectives To explore the associations of serum carotenoids with sunburn severity and the risk of cancers. Methods A cross-sectional study from the National Health and Nutrition Examination Survey from 1999 to 2018 were conducted. The relationship between sunburn and serum carotenoids, cancers were investigated by unconditional or ordinal logistic regression. Mediation analysis was used to explore the effect of carotenoids on the relationship between sunburn and cancers. Results A total of 25,440 US adults from 1999 to 2018 were enrolled in this study. There were significant differences in sex, race and natural hair color between the sunburn and non-sunburn people. The severity of sunburn was significantly associated with serum trans-β-carotene, cis-β-carotene, combined lutein, and vitamin A. The odds ratios of severe reactions were 5.065 (95% CI: 2.266-11.318) in melanoma patients, 5.776 (95% CI: 3.362-9.922) in non-melanoma patients, and 1.880 (95% CI: 1.484-2.380) in non-skin cancers patients. Additionally, serum carotenoids were partially attributable to the effect of sunburn on skin and non-skin cancers. Conclusion Sunburn severity was associated with cancers, and severer sunburn was related with higher risk of cancers. Serum carotenoids were also associated with sunburn severity. Moreover, the relationship between sunburn and cancers was mediated by some serum carotenoids.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Burns and Plastic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Xixin Wu
- Department of Burns and Plastic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China,Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruina Li
- Department of Clinical Pharmacy, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayuan Tu
- School of Nursing and Public Health, Yangzhou University, Yangzhou, China
| | - Sixian Lin
- Department of Burns and Plastic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiangda Zhang
- Department of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Xiaoqiao Mo
- Department of Operating Room, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Xie
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Tian Xie,
| |
Collapse
|
24
|
Yi Z, Jia Q, Lin Y, Wang Y, Cong J, Gu Z, Ling J, Cai G. Mechanism of Elian granules in the treatment of precancerous lesions of gastric cancer in rats through the MAPK signalling pathway based on network pharmacology. PHARMACEUTICAL BIOLOGY 2022; 60:87-95. [PMID: 34962453 PMCID: PMC8725869 DOI: 10.1080/13880209.2021.2017980] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/17/2021] [Accepted: 12/08/2021] [Indexed: 05/26/2023]
Abstract
CONTEXT Elian Granules have been applied in the treatment of precancerous lesions of gastric cancer (PLGC) and achieved good results. However, its exact mechanism remains unclear. OBJECTIVES To explore the mechanism of Elian granules in treating PLGC through the mitogen-activated protein kinase (MAPK) signalling pathway based on network pharmacology. MATERIALS AND METHODS Through network pharmacological methods, the targets of the active component of Elian granules against PLGC were obtained. Subsequently, Specific Pathogen Free (SPF) male Sprague Dawley (SD) rats were randomly divided into normal, model, and Elian granule groups. The N-methyl-N'-nitro-N-nitrosoguanidine comprehensive method was used to establish the PLGC rat model. The model and Elian granule groups were given normal saline and Elian granule aqueous solution (3.24 g/kg/d) intragastric administration, respectively, for 24 weeks. The pathological changes in gastric tissues were observed by hematoxylin-eosin staining. The protein expression of p-JNK and p-p38 was verified by western blotting. RESULTS 394 and 4,395 targets were identified in Elian granules and PLGC, respectively. The 190 common targets were mainly enriched in MAPK signalling pathways. The gastric mucosal epithelium was still intact, the glands were arranged regularly, and no goblet cells or apparent inflammatory cell infiltration were observed in the Elian granule group. The expression of p-JNK and p-p38 protein of the Elian granule group (0.83 ± 0.08; 1.18 ± 0.40) was significantly higher than the model group (0.27 ± 0.14; 0.63 ± 0.14) (p < 0.01; p < 0.05). DISCUSSION AND CONCLUSIONS Elian granules may play a critical role in the treatment of rat PLGC by up-regulating the expression of p-JNK and p-p38 proteins in the MAPK signalling pathway, thus providing a scientific basis for clinical application.
Collapse
Affiliation(s)
- Zhirong Yi
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People’s Republic of China
| | - Qingling Jia
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yili Lin
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yujiao Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun Cong
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhijian Gu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jianghong Ling
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People’s Republic of China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Gan Cai
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
25
|
Li N, Wu JJ, Qi M, Wang ZY, Zhang SN, Li XQ, Chen TT, Wang MF, Zhang LL, Wei W, Sun WY. CP-25 exerts a protective effect against ConA-induced hepatitis via regulating inflammation and immune response. Front Pharmacol 2022; 13:1041671. [DOI: 10.3389/fphar.2022.1041671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis is a complex multifactorial pathological disorder, which can eventually lead to liver failure and even potentially be life threatening. Paeoniflorin-6′-O-benzene sulfonate (CP-25) has proven to have critical anti-inflammatory effects in arthritis. However, the effects of CP-25 in the pathogenesis of hepatitis remains unclear. In this experiment, mice were intragastrically administered with CP-25 (25, 50 and 100 mg/kg), and then ConA (25 mg/kg) was intravenous injected to establish hepatitis model in vivo. CP-25 administration attenuated liver damage and decreased ALT and AST activities in mice with hepatitis. Besides, CP-25 modulated immune responses including down-regulated the proportions of activated CD4+, activated CD8+ T cells, and ratio of Th1/Th2 in ConA-injected mice. Furthermore, ConA-mediated production of reactive oxygen species (ROS), release of inflammatory cytokines including IFN-γ, TNF-α, activation of MAPK pathways and nuclear translocation of nuclear factor-kappaB (NF-κB) were significantly decreased in CP-25 administrated mice. In ConA-stimulated RAW264.7 cells, CP-25 suppressed inflammatory cytokines secretion and reduced ROS level, which were consistent with animal experiments. Otherwise, the data showed that CP-25 restrained phosphorylation of ERK, JNK and p38 MAPK pathways influenced by ROS, accompanied with inhibiting NF-κB nuclear translocation. In conclusion, our findings indicated that CP-25 protected against ConA-induced hepatitis may through modulating immune responses and attenuating ROS-mediated inflammation via the MAPK/NF-κB signaling pathway.
Collapse
|
26
|
Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179943. [PMID: 36077338 PMCID: PMC9456420 DOI: 10.3390/ijms23179943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the great advancements made in cancer treatment, there are still many unsatisfied aspects, such as the wide palette of side effects and the drug resistance. There is an obvious increasing scientific attention towards nature and what it can offer the human race. Natural products can be used to treat many diseases, of which some plant products are currently used to treat cancer. Plants produce secondary metabolites for their signaling mechanisms and natural defense. A variety of plant-derived products have shown promising anticancer properties in vitro and in vivo. Rather than recreating the natural production environment, ongoing studies are currently setting various strategies to significantly manipulate the quantity of anticancer molecules in plants. This review focuses on the recently studied secondary metabolite agents that have shown promising anticancer activity, outlining their potential mechanisms of action and pathways.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Elena Victoria Manea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Oana Stefana Popescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-334-30-25
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| |
Collapse
|
27
|
Zhao Y, Zhang H, Hao D, Wang J, Zhu R, Liu W, Liu C. Selenium regulates the mitogen-activated protein kinase pathway to protect broilers from hexavalent chromium-induced kidney dysfunction and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113629. [PMID: 35576799 DOI: 10.1016/j.ecoenv.2022.113629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/27/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr (VI)] is a common environmental pollutant. Although selenium (Se) can antagonize the toxicity of Cr (VI), the specific underlying mechanism has not been identified. To investigate this mechanism, we used potassium dichromate (K2Cr2O7) and selenium-rich yeast (SeY) to construct single Cr (VI)- and combined Se/Cr (VI)-exposed broiler models during a 42-day period. Broilers were randomly assigned to the control (C), SeY (Se), SeY + Cr (VI) (Se/Cr), and Cr (VI) (Cr) groups. The antagonistic mechanisms of Se and Cr (VI) were evaluated using histopathological evaluation, serum and tissue biochemical tests, real-time fluorescence quantitative polymerase chain reaction, and western blotting. The results suggested that Se alleviated the morphological and structural damage to renal tubules and glomeruli, while reducing the organ index, creatinine levels, and blood urea nitrogen levels in the kidneys of Cr (VI)-exposed broilers. Furthermore, Cr (VI) reduced the levels of superoxide dismutase and glutathione, and increased the levels of malondialdehyde, in broiler kidney tissues. However, Se alleviated Cr (VI)-induced oxidative stress by increasing the levels of superoxide dismutase and glutathione, and decreasing the levels of malondialdehyde, within a certain range. Compared to the C group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly increased, whereas those of ERK, p-ERK, and p-ERK/ERK decreased, in the Cr group. Compared to the Cr group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly decreased, whereas those of ERK, p-ERK, and p-ERK/ERK increased, in the Se/Cr group. Furthermore, the levels of p53, c-Myc, Bax, Cyt-c, caspase-9, and caspase-3 significantly increased, and those of Bcl-2 and Bcl-2/Bax significantly decreased, following Cr (VI) exposure, while Se restored the expression of these genes. In conclusion, our findings suggest that SeY can protect against Cr (VI)-induced dysfunction and apoptosis by regulating the mitogen-activated protein kinase pathway activated by oxidative stress in broiler kidney tissues.
Collapse
Affiliation(s)
- Yanbing Zhao
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Huan Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Dezheng Hao
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jingqiu Wang
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ruixin Zhu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Weina Liu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ci Liu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
28
|
Exploring Molecular Mechanisms of Aloe barbadmsis Miller on Diphenoxylate-Induced Constipation in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6225758. [PMID: 35571728 PMCID: PMC9106447 DOI: 10.1155/2022/6225758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Aloe barbadensis Miller (Aloe) known as a common succulent perennial herb had been traditionally used in constipation for more than 1,000 years. Aloe contained anthraquinones and other active compounds which had laxative effect and could modulate constipation. However, the therapeutic effects and mechanisms of aloe in constipation were still unclear. To explore the therapeutic effects and mechanisms of aloe in treating constipation, we employed network pharmacology, molecular docking, and mice experiments in this study. Our network pharmacology indicated that beta-carotene, sitosterol, campest-5-en-3beta-ol, CLR, arachidonic acid, aloe-emodin, quercetin, and barbaloin were the main active ingredients of aloe in treating constipation. Besides, the MAPK signaling pathway was the principal pathway utilized by aloe in treating constipation. Molecular docking results revealed that beta-carotene and sitosterol were acting as interference factors in attenuating inflammation by binding to an accessory protein of ERK, JNK, AKT, and NF-κB p65. Otherwise, in vivo experiments, we used diphenoxylate-induced constipation mice model to explore the therapeutic effects and mechanisms of aloe. Results showed that aloe modulated the constipation mice by reducing the discharge time of first melena, improving the fecal conditions, increasing the gastric intestinal charcoal transit ratio, and improving the intestinal secretion in small intestine. Besides, aloe played an important regulation in promoting intestinal motility sufficiency and the levels of neurotransmitters balance with 5-HT, SP, and VIP on constipation mice. Moreover, aloe significantly inhibited the mRNA and proteins expressions of ERK, JNK, AKT and NF-κB p65 in colon. Our study proved that aloe could reverse diphenoxylate-induced changes relating to the intestinal motility, intestinal moisture, and inhibition of the MAPK (ERK, JNK)/AKT/NF-κB p65 inflammatory pathway. Our study provided experimental evidences of the laxative effect of aloe, which was beneficial to the further research and development of aloe.
Collapse
|
29
|
Research progress of Lycium barbarum L. as functional food: phytochemical composition and health benefits. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Hai R, You Q, Wu F, Qiu G, Yang Q, Shu L, Xie L, Zhou X. Semaphorin 3D inhibits proliferation and migration of papillary thyroid carcinoma by regulating MAPK/ERK signaling pathway. Mol Biol Rep 2022; 49:3793-3802. [PMID: 35190928 DOI: 10.1007/s11033-022-07220-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Semaphorin 3D (SEMA3D) plays an important role in the occurrence and development of multifarious cancers. However, the relationship between SEMA3D and papillary thyroid carcinoma (PTC) remains unclear. This study aimed to investigate the functions and mechanism of SEMA3D in papillary thyroid carcinoma (PTC). METHODS The expression of SEMA3D in PTC tissues and cell lines was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blotting and immunohistochemistry (IHC) were used to detect the expression of the related proteins. CCK-8 and colony formation assays and Transwell assays were used to evaluate cell proliferation and migration, respectively. A xenograft model was induced to further verify the effect of SEMA3D in vivo. RESULTS In this study, we found that SEMA3D was downregulated in PTC tissues and PTC cell lines (TPC-1 and BCPAP). The expression level of SEMA3D was significantly related to age (P < 0.01), extrathyroidal extension (P < 0.01), TNM stage (P < 0.01) and lymph node metastasis (P < 0.01). In vitro experiments showed that overexpression of SEMA3D inhibited the proliferation and migration of TPC-1 and BCPAP cells and that upregulated SEMA3D inhibited the phosphorylation of ERK and the expression of the phenotype-related proteins PCNA and MMP2. In addition, SEMA3D overexpression inhibited tumour growth in vivo. CONCLUSION In this study, we found that SEMA3D is significantly downregulated in PTC tissues. SEMA3D inhibits the proliferation and migration of PTC cells and suppresses tumour growth in vivo, possibly partially through the MAPK/ERK signalling pathway, suggesting that SEMA3D may be a reliable molecular marker for the diagnosis and treatment of PTC.
Collapse
Affiliation(s)
- Rui Hai
- Department of Breast, Thyroid and Vessel Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qian You
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Fei Wu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Guochun Qiu
- Department of Breast, Thyroid and Vessel Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qian Yang
- Department of Oncology, The Leshan People's Hospital, Leshan, 614000, China
| | - Liang Shu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Linjun Xie
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiangyu Zhou
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
31
|
Starska-Kowarska K. Dietary Carotenoids in Head and Neck Cancer-Molecular and Clinical Implications. Nutrients 2022; 14:nu14030531. [PMID: 35276890 PMCID: PMC8838110 DOI: 10.3390/nu14030531] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Head and neck cancer (HNC) is one of the most common cancers in the world according to GLOBCAN. In 2018, it was reported that HNC accounts for approximately 3% of all human cancers (51,540 new cases) and is the cause of nearly 1.5% of all cancer deaths (10,030 deaths). Despite great advances in treatment, HNC is indicated as a leading cause of death worldwide. In addition to having a positive impact on general health, a diet rich in carotenoids can regulate stages in the course of carcinogenesis; indeed, strong epidemiological associations exist between dietary carotenoids and HNS, and it is presumed that diets with carotenoids can even reduce cancer risk. They have also been proposed as potential chemotherapeutic agents and substances used in chemoprevention of HNC. The present review discusses the links between dietary carotenoids and HNC. It examines the prospective anticancer effect of dietary carotenoids against intracellular cell signalling and mechanisms, oxidative stress regulation, as well as their impact on apoptosis, cell cycle progression, cell proliferation, angiogenesis, metastasis, and chemoprevention; it also provides an overview of the limited preclinical and clinical research published in this arena. Recent epidemiological, key opinion-forming systematic reviews, cross-sectional, longitudinal, prospective, and interventional studies based on in vitro and animal models of HNC also indicate that high carotenoid content obtained from daily supplementation has positive effects on the initiation, promotion, and progression of HNC. This article presents these results according to their increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
32
|
Hu Y, Cui Q, Ma D, Jin W, Li Y, Zhang J, Xu Y. Key Targets and Molecular Mechanisms of Active Volatile Components of Rabdosia rubescens in Gastric Cancer Cells. Curr Comput Aided Drug Des 2022; 18:493-505. [PMID: 36200190 PMCID: PMC9986972 DOI: 10.2174/1573409918666221003091312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To examine the effect and mechanism of volatile components of Rabdosia rubescens on gastric cancer. METHODS Gas chromatography-mass spectrometry was used to detect and identify the volatile components of R. rubescens. The network pharmacology method was used to analyze the targets of volatile components of R. rubescens in gastric cancer and to reveal their molecular mechanisms. The effects of volatile components of R. rubescens on gastric cancer cells were verified by biological experiments. RESULTS Thirteen volatile components of R. rubescens were selected as pharmacologically active components. The 13 active components had 83 targets in gastric cancer, and a Traditional Chinese Medicine-component-targets gastric cancer network was successfully constructed. Five core targets were obtained: TNF, IL1B, MMP9, PTGS2 and CECL8. The volatile components inhibited the proliferation of gastric cancer cells in a concentration-dependent manner and promoted the apoptosis of gastric cancer cells. The volatile components reduced the levels of TNF, IL1B, MPP9, and PTGS2 in a concentration-dependent manner. CONCLUSION Our study demonstrates the effects of volatile components in R. rubescens on gastric cancer and provides preliminary findings on their mechanisms of action.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Qingli Cui
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Dongyang Ma
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Wenwen Jin
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingyue Li
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Youqi Xu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, China
| |
Collapse
|
33
|
|
34
|
Sasaki D, Kusamori K, Takayama Y, Itakura S, Todo H, Nishikawa M. Development of nanoparticles derived from corn as mass producible bionanoparticles with anticancer activity. Sci Rep 2021; 11:22818. [PMID: 34819568 PMCID: PMC8613273 DOI: 10.1038/s41598-021-02241-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Recent studies showed that plant-derived nanoparticles (NPs) can be easily produced in high yields and have potential applications as therapeutic agents or delivery carriers for bioactive molecules. In this study, we selected corn as it is inexpensive to grow and mass-produced globally. Super sweet corn was homogenized in water to obtain corn juice, which was then centrifuged, filtered through a 0.45-μm-pore size syringe filter, and ultracentrifuged to obtain NPs derived from corn, or corn-derived NPs (cNPs). cNPs obtained were approximately 80 nm in diameter and negatively charged (- 17 mV). cNPs were taken up by various types of cells, including colon26 tumor cells and RAW264.7 macrophage-like cells, with selective reduction of the proliferation of colon26 cells. Moreover, cNPs induced tumor necrosis factor-α release from RAW264.7 cells. cNPs and RAW264.7 in combination significantly suppressed the proliferation of colon26/fluc cells. Daily intratumoral injections of cNPs significantly suppressed the growth of subcutaneous colon26 tumors in mice, with no significant body weight loss. These results indicate excellent anti-tumor activity of cNPs.
Collapse
Affiliation(s)
- Daisuke Sasaki
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Kosuke Kusamori
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Yukiya Takayama
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Shoko Itakura
- grid.411949.00000 0004 1770 2033Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 Japan
| | - Hiroaki Todo
- grid.411949.00000 0004 1770 2033Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
35
|
Lee M, Yang C, Park S, Song G, Lim W. Fraxetin induces cell death in colon cancer cells via mitochondria dysfunction and enhances therapeutic effects in 5-fluorouracil resistant cells. J Cell Biochem 2021; 123:469-480. [PMID: 34816480 DOI: 10.1002/jcb.30187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023]
Abstract
Fraxetin is a natural compound extracted from Fraxinus spp. and has various functions such as antibacterial, antioxidant, neuroprotective, and antifibrotic effects. Although studies have reported its anticancer properties in lung and breast cancer, little is known about colon cancer, the most frequent type of cancer. Thus, we used two colon cancer cell lines, HT29 and HCT116 cells, to investigate whether fraxetin could inhibit the capabilities acquired during tumor development. In this study, fraxetin suppressed cell viability and induced apoptotic cell death in HT29 and HCT116 cells. Furthermore, fraxetin regulated the expression of proteins involved in apoptosis in HT29 and HCT116 cells. Additionally, fraxetin induced reactive oxygen species levels and calcium influx with loss of mitochondrial membrane potential (ΔΨm) and endoplasmic reticulum stress. Moreover, fraxetin induced G2/M arrest and modulated the intracellular signaling pathway, including AKT, ERK1/2, JNK, and P38. Nevertheless, we found no cause-effect correlation between the antiproliferative action of fraxetin and modulation of the phosphorylation state of signaling proteins. Fraxetin-induced inhibitory effect on colon cancer cell viability was synergistic with 5-fluorouracil (5-FU) or irinotecan even in 5-FU resistant-HCT116 cells. Collectively, our results suggest that fraxetin can be effectively used as a therapeutic agent for targeting colon cancer, although it is necessary to further elucidate the relationship between the hallmark capabilities that fraxetin inhibits and the intracellular regulatory mechanism.
Collapse
Affiliation(s)
- Minkyeong Lee
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| | - Changwon Yang
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Russo GL, Moccia S, Russo M, Spagnuolo C. Redox regulation by carotenoids: Evidence and conflicts for their application in cancer. Biochem Pharmacol 2021; 194:114838. [PMID: 34774845 DOI: 10.1016/j.bcp.2021.114838] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022]
Abstract
Carotenoids have been constantly investigated since the early fifty for their chemical, biochemical and biological properties being presence in foods. Among the more than 1100 carotenoids synthesized by plants and microorganisms, approximately 50 are present in the human diet, and about 20 can be detected in human blood and tissues. Review articles that discuss the anticancer and cancer preventing activity of phytochemicals have often in common the difficulty to find a coherency between the results deriving from experimental studies and the controversial or weak clinical indications arising from epidemiological and interventional studies. In this scenario, the class of carotenoids does not represent an exception. In fact, according with World Cancer Research Fund, strong evidence exists that high-dose supplementation of β-carotene increases the risk of lung cancer, while for other types of cancer, the protective or harmful effects of food-containing carotenoids or carotenoid supplements have been considered limited, suggestive or unlikely. The analysis of the mechanistic evidence is complicated by the double nature of carotenoids being molecules acting either as antioxidant or pro-oxidant compounds. The present review analyzes the ambiguity and the unexpected results deriving from the epidemiological and interventional studies and discusses how the effects of carotenoids on cancer risk can be explained by understanding their capacity to modulate the cellular antioxidant response, depending on the concentration applied and the cellular metabolism. In the final part, a new global approach is proposed to study the contribution of carotenoids, but also of other phytochemicals, to disease prevention, including cancer.
Collapse
Affiliation(s)
- Gian Luigi Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy.
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Maria Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Carmela Spagnuolo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| |
Collapse
|
37
|
Wei J, Ding Y, Liu X, Liu Q, Lu Y, He S, Yuan B, Zhang J. Eupafolin induces apoptosis and autophagy of breast cancer cells through PI3K/AKT, MAPKs and NF-κB signaling pathways. Sci Rep 2021; 11:21478. [PMID: 34728712 PMCID: PMC8563970 DOI: 10.1038/s41598-021-00945-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022] Open
Abstract
Eupafolin is a flavonoid that can be extracted from common sage. Previous studies have reported that Eupafolin has antioxidant, anti-inflammatory and anti-tumor properties. However, no studies have investigated the role of Eupafolin in breast cancer. Herein, we investigated the effect of Eupafolin on two human breast cancer cell lines, as well as its potential mechanism of action. Next, the data showed that proliferation, migration and invasion ability of breast cancer cells that were treated with Eupafolin was significantly reduced, while the apoptosis rate was significantly increased. In addition, Eupafolin treatment caused breast cancer cell proliferation to be blocked in the S phase. Moreover, Eupafolin significantly induced autophagy in breast cancer cells, with an increase in the expression of LC3B-II. PI3K/AKT, MAPKs and NF-κB pathways were significantly inhibited by Eupafolin treatment. Additionally, 3-MA (a blocker of autophagosome formation) significantly reduced Eupafolin-induced activation of LC3B-II in breast cancer cells. Furthermore, Eupafolin displayed good in vitro anti-angiogenic activity. Additionally, anti-breast cancer activity of Eupafolin was found to be partially mediated by Cav-1. Moreover, Eupafolin treatment significantly weakened carcinogenesis of MCF-7 cells in nude mice. Therefore, this data provides novel directions on the use of Eupafolin for treatment of breast cancer.
Collapse
Affiliation(s)
- Jiahui Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Xinmiao Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Qing Liu
- The Second Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Yiran Lu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China.
| |
Collapse
|
38
|
Fatima N, Baqri SSR, Alsulimani A, Fagoonee S, Slama P, Kesari KK, Roychoudhury S, Haque S. Phytochemicals from Indian Ethnomedicines: Promising Prospects for the Management of Oxidative Stress and Cancer. Antioxidants (Basel) 2021; 10:1606. [PMID: 34679741 PMCID: PMC8533600 DOI: 10.3390/antiox10101606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 01/02/2023] Open
Abstract
Oxygen is indispensable for most organisms on the earth because of its role in respiration. However, it is also associated with several unwanted effects which may sometimes prove fatal in the long run. Such effects are more evident in cells exposed to strong oxidants containing reactive oxygen species (ROS). The adverse outcomes of oxidative metabolism are referred to as oxidative stress, which is a staple theme in contemporary medical research. Oxidative stress leads to plasma membrane disruption through lipid peroxidation and has several other deleterious effects. A large body of literature suggests the involvement of ROS in cancer, ageing, and several other health hazards of the modern world. Plant-based cures for these conditions are desperately sought after as supposedly safer alternatives to mainstream medicines. Phytochemicals, which constitute a diverse group of plant-based substances with varying roles in oxidative reactions of the body, are implicated in the treatment of cancer, aging, and all other ROS-induced anomalies. This review presents a summary of important phytochemicals extracted from medicinal plants which are a part of Indian ethnomedicine and Ayurveda and describes their possible therapeutic significance.
Collapse
Affiliation(s)
- Nishat Fatima
- Department of Chemistry, Shia PG College, Lucknow 226003, India;
| | | | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, 10124 Turin, Italy;
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland; or
| | | | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Faculty of Medicine, Bursa Uludağ University, Görükle Campus, Nilüfer, Bursa 16059, Turkey
| |
Collapse
|
39
|
Zafar J, Aqeel A, Shah FI, Ehsan N, Gohar UF, Moga MA, Festila D, Ciurea C, Irimie M, Chicea R. Biochemical and Immunological implications of Lutein and Zeaxanthin. Int J Mol Sci 2021; 22:10910. [PMID: 34681572 PMCID: PMC8535525 DOI: 10.3390/ijms222010910] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout history, nature has been acknowledged for being a primordial source of various bioactive molecules in which human macular carotenoids are gaining significant attention. Among 750 natural carotenoids, lutein, zeaxanthin and their oxidative metabolites are selectively accumulated in the macular region of living beings. Due to their vast applications in food, feed, pharmaceutical and nutraceuticals industries, the global market of lutein and zeaxanthin is continuously expanding but chemical synthesis, extraction and purification of these compounds from their natural repertoire e.g., plants, is somewhat costly and technically challenging. In this regard microbial as well as microalgal carotenoids are considered as an attractive alternative to aforementioned challenges. Through the techniques of genetic engineering and gene-editing tools like CRISPR/Cas9, the overproduction of lutein and zeaxanthin in microorganisms can be achieved but the commercial scale applications of such procedures needs to be done. Moreover, these carotenoids are highly unstable and susceptible to thermal and oxidative degradation. Therefore, esterification of these xanthophylls and microencapsulation with appropriate wall materials can increase their shelf-life and enhance their application in food industry. With their potent antioxidant activities, these carotenoids are emerging as molecules of vital importance in chronic degenerative, malignancies and antiviral diseases. Therefore, more research needs to be done to further expand the applications of lutein and zeaxanthin.
Collapse
Affiliation(s)
- Javaria Zafar
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Naureen Ehsan
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Marius Alexandru Moga
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Dana Festila
- Radiology and Maxilo Facial Surgery Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Radu Chicea
- Faculty of Medicine, “Lucian Blaga” University, 550169 Sibiu, Romania;
| |
Collapse
|
40
|
Kim S, Lee H, Lim JW, Kim H. Astaxanthin induces NADPH oxidase activation and receptor‑interacting protein kinase 1‑mediated necroptosis in gastric cancer AGS cells. Mol Med Rep 2021; 24:837. [PMID: 34608499 PMCID: PMC8503742 DOI: 10.3892/mmr.2021.12477] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Astaxanthin (ASX), a red-colored xanthophyll carotenoid, functions as an antioxidant or pro-oxidant. ASX displays anticancer effects by reducing or increasing oxidative stress. Reactive oxygen species (ROS) promote cancer cell death by necroptosis mediated by receptor-interacting protein kinase 1 (RIP1) and RIP3. NADPH oxidase is a major source of ROS that may promote necroptosis in some cancer cells. The present study aimed to investigate whether ASX induces necroptosis by increasing NADPH oxidase activity and ROS levels in gastric cancer AGS cells. AGS cells were treated with ASX with or without ML171 (NADPH oxidase 1 specific inhibitor), N-acetyl cysteine (NAC; antioxidant), z-VAD (pan-caspase inhibitor) or Necrostatin-1 (Nec-1; a specific inhibitor of RIP1). As a result, ASX increased NADPH oxidase activity, ROS levels and cell death, and these effects were suppressed by ML171 and NAC. Furthermore, ASX induced RIP1 and RIP3 activation, ultimately inducing mixed lineage kinase domain-like protein (MLKL) activation, lactate dehydrogenase (LDH) release and cell death. Moreover, the ASX-induced decrease in cell viability was reversed by Nec-1 treatment and RIP1 siRNA transfection, but not by z-VAD. ASX did not increase the ratio of apoptotic Bax/anti-apoptotic Bcl-2, the number of Annexin V-positive cells, or caspase-9 activation, which are apoptosis indices. In conclusion, ASX induced necroptotic cell death by increasing NADPH oxidase activity, ROS levels, LDH release and the number of propidium iodide-positive cells, as well as activating necroptosis-regulating proteins, RIP1/RIP3/MLKL, in gastric cancer AGS cells. The results of this study demonstrated the necroptotic effect of ASX on gastric cancer AGS cells, which required NADPH oxidase activation and RIP1/RIP3/MLKL signaling in vitro.
Collapse
Affiliation(s)
- Sori Kim
- Department of Food and Nutrition, Brain Korea 21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hanbit Lee
- Department of Food and Nutrition, Brain Korea 21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
41
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
42
|
Sano CD, D'Anna C, Scurria A, Lino C, Pagliaro M, Ciriminna R, Pace E. Mesoporous silica particles functionalized with newly extracted fish oil (Omeg@Silica) inhibit lung cancer cell growth. Nanomedicine (Lond) 2021; 16:2061-2074. [PMID: 34533057 DOI: 10.2217/nnm-2021-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To assess whether Omeg@Silica microparticles - fish oil from anchovy fillet leftovers (AnchoisOil) encapsulated within mesoporous silica particles - are effective in promoting antitumor effects in lung cancer cells. Methods: Three human non-small-cell lung cancer cell lines (A549, Colo 699 and SK-MES-1) were used. Cells were treated with AnchoisOil dispersed in ethanol (10 and 15 μg/ml) or encapsulated in silica and further formulated in aqueous ethanol. Cell cycle, reactive oxygen species, mitochondrial stress and long-term proliferation were assessed. Results & conclusion: Omeg@Silica microparticles were more effective than fish oil in increasing reactive oxygen species and mitochondrial damage, and in altering the cell cycle and reducing cell proliferation, in lung cancer cells. These in vitro antitumor effects of Omeg@Silica support its investigation in lung cancer therapy.
Collapse
Affiliation(s)
- Caterina Di Sano
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Claudia D'Anna
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Claudia Lino
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Elisabetta Pace
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| |
Collapse
|
43
|
Owumi SE, Akomolafe AP, Imosemi IO, Odunola OA, Oyelere AK. N-acetyl cysteine co-treatment abates perfluorooctanoic acid-induced reproductive toxicity in male rats. Andrologia 2021; 53:e14037. [PMID: 33724529 DOI: 10.1111/and.14037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Perfluorooctanoic acid is a synthetic perfluoroalkyl-persistent in the environment and toxic to humans. N-acetylcysteine is a pro-drug of both amino acid l-cysteine and glutathione-a non-enzymatic antioxidant. N-acetylcysteine serves as an antidote for paracetamol poisoning and alleviates cellular oxidative and inflammatory stressors. We investigated N-acetylcysteine role against reproductive toxicity in male Wistar rats (weight: 140-220 g; 10 weeks old) posed by perfluorooctanoic acid exposure. Randomised rat cohorts were dosed both with perfluorooctanoic acid (5 mg/kg; p.o) or co-dosed with N-acetylcysteine (25 and 50 mg/kg p.o) for 28 days. Sperm physiognomies, biomarkers of testicular function and reproductive hormones, oxidative stress and inflammation were evaluated. Co-treatment with N-acetylcysteine significantly (p < .05) reversed perfluorooctanoic acid-mediated decreases in reproductive enzyme activities, and adverse effect on testosterone, luteinising and follicle-stimulating hormone concentrations. N-acetylcysteine treatment alone, improved sperm motility, count and viability, and reduced total sperm abnormalities. Co-treatment with N-acetylcysteine mitigated perfluorooctanoic acid-induced alterations in sperm function parameters. N-acetylcysteine abated (p < .05) perfluorooctanoic acid-induced oxidative stress in experimental rats testes and epididymis, and generally improved antioxidant enzyme activities and cellular thiol levels. Furthermore, N-acetylcysteine suppressed inflammatory responses and remedied perfluorooctanoic acid-mediated histological injuries in rat. Cooperatively, N-acetylcysteine enhanced reproductive function in perfluorooctanoic acid dosed rats, by lessening oxidative and nitrative stressors and mitigated inflammatory responses in the examined organ.
Collapse
Affiliation(s)
- Solomon E Owumi
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ayomide P Akomolafe
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
44
|
Zeaxanthin-Rich Extract from Superfood Lycium barbarum Selectively Modulates the Cellular Adhesion and MAPK Signaling in Melanoma versus Normal Skin Cells In Vitro. Molecules 2021; 26:molecules26020333. [PMID: 33440679 PMCID: PMC7827977 DOI: 10.3390/molecules26020333] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.
Collapse
|