1
|
Yi X, Tang B, Mo Q, Tang Y, Fu W, Zhang L, Xie L. Identification of Immune Characteristics of 2 Subtypes of Breast Cancer by Combining Polyamine Metabolism-related Genes to Help With Immunotherapy. J Immunother 2025:00002371-990000000-00139. [PMID: 40302111 DOI: 10.1097/cji.0000000000000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/20/2025] [Indexed: 05/01/2025]
Abstract
This project aims to explore the clustering value of polyamine metabolism-related genes (PMRGs) in breast cancer (BC) to assist treatment. ConsensusClusterPlus R package was employed to cluster BC patients based on the expression of PMRGs. Using the edgeR R package, we analyzed differentially expressed genes (DEGs) of different molecular clusters. Core genes were screened and enriched by the PPI network. Univariate COX was applied to determine genes tightly linked with survival. ConsensusClusterPlus R package was employed to cluster PMRGs. Differences in immune infiltration and expression of immune checkpoints between 2 subgroups were analyzed. Response to immunotherapy was assessed based on the expression level of immunophenoscore (IPS). Drug sensitivity of different PMRG clusters was assessed by pRRophitic R package. We clustered BC patients into 2 different subtypes with different survival rates and biological functions based on the expression of 16 PMRGs. Application of univariate COX analysis identified genes greatly associated with survival and divided BC patients into 2 different PMRG clusters. Patients in the 2 clusters exhibited differences in overall survival rate and immune cell infiltration levels, with multiple immune cells displaying higher immune levels in PMRG cluster 2. PMRG cluster 2 demonstrated higher expression of HLA and IC as well as IPS. Cluster 1 exhibited higher sensitivity to (5Z)-7-Oxozeaenol, 5-Fluorouracil, and 681640, while cluster 2 exhibited higher sensitivity to A-443654 and A-770041. We identified 2 clusters of PMRG with significant differences in the immune microenvironment in BC and predicted potential drugs, aiming to find new directions for clinical treatment of BC.
Collapse
Affiliation(s)
- Xiuwen Yi
- Department of Medical Oncology, Hengyang Medical School
- Department of Medical Oncology, The First Affiliated Hospital of University of South China
| | | | | | | | - Wei Fu
- Department of Orthopedics, The First People's Hospital of Hengyang, Hengyang
| | - Lingling Zhang
- School of Medical Health Management, Hunan Vocational College of Foreign Languages, Changsha, Hunan, China
| | - Liming Xie
- Department of Medical Oncology, The First Affiliated Hospital of University of South China
| |
Collapse
|
2
|
Lin S, Xu Z, Liu Y, Yang G, Qi X, Huang Y, Zhou M, Jiang X. Engineered Macrophage Membrane-Camouflaged Nanodecoys Reshape the Infectious Microenvironment for Efficient Periodontitis Treatment. ACS NANO 2025; 19:15345-15362. [PMID: 40228155 DOI: 10.1021/acsnano.4c14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
A vicious cycle between microbiota dysbiosis and hyperactivated inflammation, hardly disrupted by conventional therapies, remains a significant clinical challenge for periodontitis treatment. Herein, by cloaking a cascade catalysis system in an engineered macrophage membrane, a nanodecoy-based strategy, with targeted bacteria-killing and immunomodulatory abilities, is proposed for reshaping the hostile periodontitis microenvironment. Specifically, recombinant human antimicrobial peptide, LL-37, is anchored to a Toll-like receptor-enriched macrophage membrane via genetic engineering, which facilitates the specific bacteria elimination and efficient tissue retention of the nanodecoys. Moreover, the cascade catalysis system integrates L-amino acid oxidase (LAAO) with hollowed manganese dioxide (hMnO2) by reciprocal elevation of the catalytic efficiency of hMnO2 and LAAO, leading to accelerated O2 generation under a hypoxic microenvironment and disrupted metabolism of periodontopathogenic bacteria. Notably, the nanodecoys trigger the nuclear translocation of NF-E2-related factor-2 (NRF2) to reduce oxidative stress response and rewire the polarization of macrophages, thereby boosting the osteogenic differentiation of osteoblasts. Furthermore, the alveolar bone regeneration therapeutically benefits from the nanodecoys in vivo. Altogether, these results highlight the attractive functions of engineered macrophage membrane-cloaked nanodecoys for effective periodontitis treatment.
Collapse
Affiliation(s)
- Sihan Lin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Zeqian Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Yulan Liu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Xuanyu Qi
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Yijia Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
- Shanghai Stomatological Hospital, Fudan University, Shanghai 201102, People's Republic of China
| |
Collapse
|
3
|
Hua Q, Li Z, Weng Y, Wu Y, Zheng L. Myeloid cells: key players in tumor microenvironments. Front Med 2025; 19:265-296. [PMID: 40048137 DOI: 10.1007/s11684-025-1124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 05/04/2025]
Abstract
Cancer is the result of evolving crosstalk between neoplastic cell and its immune microenvironment. In recent years, immune therapeutics targeting T lymphocytes, such as immune checkpoint blockade (ICB) and CAR-T, have made significant progress in cancer treatment and validated targeting immune cells as a promising approach to fight human cancers. However, responsiveness to the current immune therapeutic agents is limited to only a small proportion of solid cancer patients. As major components of most solid tumors, myeloid cells played critical roles in regulating the initiation and sustentation of adaptive immunity, thus determining tumor progression as well as therapeutic responses. In this review, we discuss emerging data on the diverse functions of myeloid cells in tumor progression through their direct effects or interactions with other immune cells. We explain how different metabolic reprogramming impacts the characteristics and functions of tumor myeloid cells, and discuss recent progress in revealing different mechanisms-chemotaxis, proliferation, survival, and alternative sources-involved in the infiltration and accumulation of myeloid cells within tumors. Further understanding of the function and regulation of myeloid cells is important for the development of novel strategies for therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Qiaomin Hua
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhixiong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yulan Weng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Limin Zheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Wu YY, Chen MS, Chen IC, Wu FH, Liao TL, Wen HW, Nielsen BL, Liu HJ. Lidocaine Modulates Cytokine Production and Reprograms the Tumor Immune Microenvironment to Enhance Anti-Tumor Immune Responses in Gastric Cancer. Int J Mol Sci 2025; 26:3236. [PMID: 40244064 PMCID: PMC11989700 DOI: 10.3390/ijms26073236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors and tumor-infiltrating immune cells (TIICs) from gastric cancer patients. PBMCs from healthy donors and TIICs from gastric cancer patients were treated with lidocaine. Cytokine production was assessed using flow cytometry and cytokine assays, with a focus on IFN-γ, IL-12, IL-10, TGF-β, and IL-35 levels. Cytotoxicity against primary gastric cancer cells (PGCCs) was also evaluated. Lidocaine inhibited IFN-γ production in CD8+ PBMCs and IL-12 in CD14+ PBMCs while increasing anti-inflammatory cytokines (IL-10, TGF-β, IL-35) in CD4+CD25+ and CD14+ cells. In TIICs, lidocaine enhanced IFN-γ and IL-12 production in CD8+ and CD14+ cells while reducing IL-10, TGF-β, and IL-35 levels, promoting an M1-like phenotype in macrophages. Mechanistically, lidocaine enhanced IFN-γ production in sorted CD8+ TIICs through G-protein-coupled receptor (GPCR) signaling and increased IL-12 production in sorted CD14+ TIICs via the toll-like receptor 4 (TLR4) signaling pathway. Lidocaine also increased IFN-γ production and cytotoxicity in CD8+ TIICs via NF-κB activation. Importantly, lidocaine did not affect the viability of PBMCs, TIICs, or PGCCs at concentrations up to 1.5 mM. Lidocaine reprogrammed the tumor immune microenvironment, enhancing anti-tumor immune responses, suggesting its potential to modulate immune functions in gastric cancer.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan;
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City 600, Taiwan;
| | - I-Chun Chen
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Feng-Hsu Wu
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Critical Care, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Nursing, Hung Kuang University, Taichung 433, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan;
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
5
|
Deng Y, Jia X, Liu L, He Q, Liu L. The role of intestinal macrophage polarization in colitis-associated colon cancer. Front Immunol 2025; 16:1537631. [PMID: 40109347 PMCID: PMC11919874 DOI: 10.3389/fimmu.2025.1537631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic inflammation of the intestine is a significant risk factor in the development of colorectal cancer. The emergence of colitis and colorectal cancer is a complex, multifactorial process involving chronic inflammation, immune regulation, and tumor microenvironment remodeling. Macrophages represent one of the most prevalent cells in the colorectal cancer microenvironment and play a pivotal role in maintaining intestinal health and the development of colitis-associated colon cancer (CAC). Macrophages are activated mainly in two ways and resulted in three phenotypes: classically activated macrophages (M1), alternatively activated macrophages (M2). The most characteristic of these cells are the pro-inflammatory M1 and anti-inflammatory M2 types, which play different roles at different stages of the disease. During chronic inflammation progresses to cancer, the proportion of M2 macrophages gradually increases. The M2 macrophages secrete cytokines such as IL-10 and TGF-β, which promote angiogenesis and matrix remodeling, and create the favorable conditions for cancer cell proliferation, infiltration, and migration. Therefore, macrophage polarization has a dual effect on the progression of colitis to CAC. The combination of immunotherapy with reprogrammed macrophages and anti-tumor drugs may provide an effective means for enhancing the therapeutic effect. It may represent a promising avenue for developing novel treatments for CAC. In this review, we focus on the process of intestinal macrophage polarization in CAC and the role of intestinal macrophage polarization in the progression of colitis to colon cancer, and review the immunotherapy targets and relevant drugs targeting macrophages in CAC.
Collapse
Affiliation(s)
- Yujie Deng
- Medical Research Center, The Third People’s Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaobing Jia
- The First Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Liu Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Scie Technology of China, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Kim S, Koh J, Kim TM, Oh S, Kim S, Youk J, Kim M, Keam B, Jeon YK, Kim DW, Heo DS. Remodeling of tumor microenvironments by EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer. iScience 2025; 28:111736. [PMID: 39898038 PMCID: PMC11787596 DOI: 10.1016/j.isci.2024.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/23/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Patients with EGFR mutations exhibit immunosuppressive microenvironments, limiting responsiveness to immunotherapy. We used digital spatial profiling to analyze non-small cell lung carcinomas in 25 patients before and after EGFR tyrosine kinase inhibitor (TKI) treatment, including 14 patients treated with first-line osimertinib, focusing on CD45-positive immune regions and pan-cytokeratin-positive tumor regions. Osimertinib treatment resulted in altered angiogenic pathways and immune cell proportions, with reduced plasma cells (22.2%-11.7%; p = 0.025) and increased macrophage infiltration (p = 0.145). The most predominant immune subtypes before and after treatment was the interferon-γ (IFN-γ)-dominant C2 subtype and the lymphocyte-depleted C4 subtype. Two patients who showed the opposite pattern, transiting from C4 to C2, had durable responses to subsequent atezolizumab/bevacizumab/carboplatin/paclitaxel treatment. Our results shed light on the immunomodulatory effects of osimertinib treatment and suggest that co-targeting angiogenesis and anti-programmed death (ligand) 1 might be effective in EGFR-TKI-resistant non-small cell lung cancer.
Collapse
Affiliation(s)
- Soomin Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Songji Oh
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jeonghwan Youk
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Aytekin A, Kadakal H, Mihcioglu D, Gurer T. Bioinformatics analysis of miR-2861 and miR-5011-5p that function as potential tumor suppressors in colorectal carcinogenesis. BMC Med Genomics 2025; 18:1. [PMID: 39748239 PMCID: PMC11697744 DOI: 10.1186/s12920-024-02080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The study aimed to was to investigate the relationship between miR-2861, miR-5011-5p, and colorectal carcinogenesis. METHOD In the present study, it was isolated RNA from both the tumor and non-tumor tissue of a total of 80 CRC patients and after synthesizing the cDNA, it was performed qRT-PCR to determine the expression levels of miR‑2861 and miR‑5011-5p. In addition, it was predicted that dysregulated miRNAs targets, pathways and functional gene annotations that may be important in colorectal carcinogenesis using KEGG pathway and GO analysis. RESULTS The resulting data revealed that both expression levels of miR-2861 and miR-5011-5p were significantly decreased in tumor tissues compared with non-tumor tissues of CRC patients. The GO and KEGG pathway analysis showed that miR-2861 and miR-5011-5p may participate in multiple the biological process, cellular components, and molecular function subcategories such as mitotic cell cycle, regulation of small GTPase mediated signal transduction, cell death, and acid binding transcription factor activity. It was also revealed that target genes of miRNAs can be found in signaling pathways such as TGF-beta, Rap1, Ras, cAMP, Wnt, mTOR and, PI3K-Akt signaling pathways. CONCLUSION These findings imply that miR-2861 and miR-5011-5p might function as tumor suppressors in the development of CRC.
Collapse
Affiliation(s)
- Alper Aytekin
- Department of General Surgery, Faculty of Medicine, Gaziantep University, Gaziantep, 27310, Turkey.
| | - Hikmet Kadakal
- Department of Biology, Faculty of Art and Science, Gaziantep University, Gaziantep, 27310, Turkey
| | - Deniz Mihcioglu
- Department of Nutrition and Dietetics, Faculty of Health Science, SANKO University, Gaziantep, 27090, Turkey
| | - Turkan Gurer
- Department of Biology, Faculty of Art and Science, Gaziantep University, Gaziantep, 27310, Turkey
| |
Collapse
|
8
|
Papp FR, Katko M, Csiki R, Galgoczi E, Molnar Z, Erdei A, Bodor M, Steiber Z, Ujhelyi B, Nagy EV. Characteristics of Hyaluronan Metabolism During Myofibroblast Differentiation in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 39504052 PMCID: PMC11549924 DOI: 10.1167/iovs.65.13.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/12/2024] [Indexed: 11/11/2024] Open
Abstract
Purpose To study the impact of myofibroblast differentiation (MD) on hyaluronan (HA) turnover in orbital fibroblasts (OFs) focusing on the expression of its key enzymes and their potential implications in the pathogenesis of thyroid eye disease (TED). Methods Primary cultures of OFs were established from tissue samples (TED OFs, n = 4; non-TED OFs, n = 5). MD was induced by TGF-β1 (5 ng/mL). Measurements were performed after 24- and 72-hour treatments. The proliferation rate was determined by 5-bromo-2'-deoxyuridine (BrdU) incorporation. HA level and size were measured using an aggrecan-based ELISA-like method and agarose gel electrophoresis, respectively. mRNA expressions of myofibroblast markers and enzymes with a role in HA metabolism were determined using real-time PCR. Results Upregulation of type I collagen alpha1 chain, alpha-smooth muscle actin, and fibronectin indicated that OFs underwent MD after stimulation by TGF-β. After 72 hours, proliferation of untreated cultures declined, but it remained higher in myofibroblasts. Pericellular HA content, but not HA in the supernatant of myofibroblasts, increased compared to untreated cells. TGF-β was a potent stimulator of hyaluronan synthase 1 (HAS1) expression. The expression of hyaluronidase-1 and cell migration-inducing protein (CEMIP) diminished following MD, whereas the expression of transmembrane protein 2, the regulator of HA catabolism through CEMIP, was elevated. The size distribution of HA shifted toward a high-molecular-weight form following treatment with TGF-β. Conclusions OFs undergoing MD are characterized by decreased HA turnover as a consequence of the inhibition of hyaluronidases and HAS1 induction. Our results suggest that hyaluronidases could be potential targets in the treatment of TED.
Collapse
Affiliation(s)
- Fruzsina R. Papp
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Monika Katko
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Robert Csiki
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Erika Galgoczi
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsanett Molnar
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Erdei
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklos Bodor
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zita Steiber
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernadett Ujhelyi
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
10
|
Chu Y, Zhang S, Wan W, Yang J, Zhang Y, Nie C, Xing W, Tong S, Liu J, Tian G, Wang B, Ji L. Pathological image profiling identifies onco-microbial, tumor immune microenvironment, and prognostic subtypes of colorectal cancer. APMIS 2024; 132:416-429. [PMID: 38403979 DOI: 10.1111/apm.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Histology slide, tissue microbes, and the host gene expression can be independent prognostic factors of colorectal cancer (CRC), but the underlying associations and biological significance of these multimodal omics remain unknown. Here, we comprehensively profiled the matched pathological images, intratumoral microbes, and host gene expression characteristics in 527 patients with CRC. By clustering these patients based on histology slide features, we classified the patients into two histology slide subtypes (HSS). Onco-microbial community and tumor immune microenvironment (TIME) were also significantly different between the two subtypes (HSS1 and HSS2) of patients. Furthermore, variation in intratumoral microbes-host interaction was associated with the prognostic heterogeneity between HSS1 and HSS2. This study proposes a new CRC classification based on pathological image features and elucidates the process by which tumor microbes-host interactions are reflected in pathological images through the TIME.
Collapse
Affiliation(s)
- Yuwen Chu
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Shuo Zhang
- School of management, Harbin Institute of Technology, Harbin, China
| | - Wei Wan
- Department of Colorectal and Anal Surgery, Yidu Central Hospital of Weifang, Shandong, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Yumeng Zhang
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Chuanqi Nie
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Weipeng Xing
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Shanhe Tong
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jinyang Liu
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Bing Wang
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| |
Collapse
|
11
|
Vizcaino Castro A, Daemen T, Oyarce C. Strategies to reprogram anti-inflammatory macrophages towards pro-inflammatory macrophages to support cancer immunotherapies. Immunol Lett 2024; 267:106864. [PMID: 38705481 DOI: 10.1016/j.imlet.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Tumor-associated myeloid cells, including macrophages and myeloid-derived suppressor cells, can be highly prevalent in solid tumors and play a significant role in the development of the tumor. Therefore, myeloid cells are being considered potential targets for cancer immunotherapies. In this review, we focused on strategies aimed at targeting tumor-associated macrophages (TAMs). Most strategies were studied preclinically but we also included a limited number of clinical studies based on these strategies. We describe possible underlying mechanisms and discuss future challenges and prospects.
Collapse
Affiliation(s)
- Ana Vizcaino Castro
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Cesar Oyarce
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Liu Y, Shi J, Liu W, Tang Y, Shu X, Wang R, Chen Y, Shi X, Jin J, Li D. A deep neural network predictor to predict the sensitivity of neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cancer Lett 2024; 589:216641. [PMID: 38232812 DOI: 10.1016/j.canlet.2024.216641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Neoadjuvant chemoradiotherapy (NCRT) is widely used for locally advanced rectal cancer (LARC). This study aimed to conduct an effective model to predict NCRT sensitivity and provide guidance for clinical treatment. Biomarkers for NCRT sensitivity were identified by applying transcriptome profiles using logistic regression and subsequently screened out by Spearman correlation analysis and four machine learning algorithms. A deep neural network (DNN) predictor was constructed by using in-house dataset and validated in two independent datasets. Additionally, a web-based program was developed. Wnt/β-catenin signaling and linoleic acid metabolism (LA) pathways were associated with NCRT sensitivity and prognosis in LARC, antagonistically. A DNN predictor with an 18-gene signature was conducted within in-house datasets. In two validation cohorts, area under ROC curve (AUC) achieved 0.706 and 0.897. The DNN subtypes were significantly associated with NCRT sensitivity, survival status et al. Moreover, NK and cytotoxic T cells were observed contribution to NCRT sensitivity while regulatory T, myeloid-derived suppressor cells and dysfunction of CD4 T effector memory cells could impede NCRT response. A DNN predictor could predict NCRT sensitivity in LARC and stratify LARC patients with different clinical and immunity characteristic.
Collapse
Affiliation(s)
- Yuhao Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jinming Shi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenyang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Tang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingmei Shu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ranjiaxi Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yinan Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoqian Shi
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
13
|
Afra F, Eftekhar SP, Farid AS, Ala M. Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:215-240. [PMID: 39461753 DOI: 10.1016/bs.pmbts.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
With the rapid advancement in immunotherapy, cancer immune resistance has become more evident, which demands new treatment approaches to achieve greater efficacy. Non-coding RNAs (ncRNAs) are a heterogeneous group of RNAs that are not translated to proteins but instead regulate different stages of gene expression. Recent studies have increasingly supported the critical role of ncRNAs in immune cell-cancer cell cross-talk, and numerous ncRNAs have been implicated in the immune evasion of cancer cells. Cancer cells take advantage of ncRNAs to modulate several signaling pathways and upregulate the expression of immune checkpoints and anti-inflammatory mediators, thereby dampening the anti-tumor response of M1 macrophages, dendritic cells, cytotoxic T cells, and natural killer cells or potentiating the immunosuppressive properties of M2 macrophages, regulatory T cells, and myeloid-derived suppressive cells. Upregulation of immunosuppressive ncRNAs or downregulation of immunogenic ncNRAs is a major driver of resistance to immune checkpoint inhibitors, cancer vaccines, and other means of cancer immunotherapy, making ncRNAs ideal targets for treatment. In addition, ncRNAs released by cancer cells have been demonstrated to possess prognostic values for patients who undergo cancer immunotherapy. Future clinical trials are urged to consider the potential of ncRNAs in cancer immunotherapy.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Feng Y, Qiao S, Chen J, Wen X, Chen Y, Song X, Xu J, Qiao X, Yang J, Zhang S, Feng Y, Gao Y. M2-Type Macrophages and Cancer-Associated Fibroblasts Combine to Promote Colorectal Cancer Liver Metastases. Onco Targets Ther 2024; 17:243-260. [PMID: 38558848 PMCID: PMC10981424 DOI: 10.2147/ott.s447502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose This research explored the association between CD163-labeled M2-type macrophages and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) of 38 colorectal cancer (CRC) liver metastases. In addition, we investigated the correlation differences between M2-type macrophages and CAFs in the tumor microenvironments of 38 primary colorectal cancer patients with confirmed liver metastases and 946 colorectal cancer patients, as well as possible mechanisms of action between the two cells. Methods The Immunohistochemistry (IHC) method was applied to detect the expression levels of M2-type macrophages and CAFs in the tissues of 984 cases of CRC and to analyze the correlation between M2-type macrophages and CAFs in colorectal cancer tissues. The IHC method was also applied to detect the expression levels of M2-type macrophages and CAFs in the liver metastases of 38 cases of CRC in the experimental group and to analyze the correlation between the two cells in liver metastases. Results 1. M2-type macrophages and CAFs expression were significantly higher in 38 primary colorectal cancer patients compared to 946 controls, and the expression of M2-type macrophages was significantly positively correlated with CAFs. 2. In 984 CRC cases, M2-type macrophages and CAFs expression levels were significantly higher in the cancer tissues than in the paired paracancerous tissues. 3. The expression levels of M2-type macrophages and CAFs in primary colorectal cancer were significantly higher in the experimental group than in colorectal cancer tissues without distant metastasis. Conclusion M2-type macrophages and CAFs are involved in the development of the colorectal cancer tumor microenvironment, and their interaction influences the initiation and progression of liver metastasis in colorectal cancer. It may provide new clinical ideas for early diagnosis of CRC liver metastases and searching for immune targets.
Collapse
Affiliation(s)
- Yunpeng Feng
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Shifeng Qiao
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Jie Chen
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Xin Wen
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Yanlei Chen
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaoyu Song
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Jiaxin Xu
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Xiucheng Qiao
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Jing Yang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Shenshen Zhang
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Yang Feng
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| | - Yu Gao
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, 12100, People’s Republic of China
| |
Collapse
|
15
|
Di Ceglie I, Carnevale S, Rigatelli A, Grieco G, Molisso P, Jaillon S. Immune cell networking in solid tumors: focus on macrophages and neutrophils. Front Immunol 2024; 15:1341390. [PMID: 38426089 PMCID: PMC10903099 DOI: 10.3389/fimmu.2024.1341390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells, stromal cells and leukocytes, including innate and adaptive immune cells, and represents an ecological niche that regulates tumor development and progression. In general, inflammatory cells are considered to contribute to tumor progression through various mechanisms, including the formation of an immunosuppressive microenvironment. Macrophages and neutrophils are important components of the tumor microenvironment and can act as a double-edged sword, promoting or inhibiting the development of the tumor. Targeting of the immune system is emerging as an important therapeutic strategy for cancer patients. However, the efficacy of the various immunotherapies available is still limited. Given the crucial importance of the crosstalk between macrophages and neutrophils and other immune cells in the formation of the anti-tumor immune response, targeting these interactions may represent a promising therapeutic approach against cancer. Here we will review the current knowledge of the role played by macrophages and neutrophils in cancer, focusing on their interaction with other immune cells.
Collapse
Affiliation(s)
| | | | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
16
|
Zemanek T, Nova Z, Nicodemou A. Tumor-Infiltrating Lymphocytes and Adoptive Cell Therapy: State of the Art in Colorectal, Breast and Lung Cancer. Physiol Res 2023; 72:S209-S224. [PMID: 37888965 PMCID: PMC10669950 DOI: 10.33549/physiolres.935155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of tumor-infiltrating lymphocytes (TILs) is dramatically expanding. These cells have proven prognostic and therapeutic value for many cancer outcomes and potential to treat also disseminated breast, colorectal, or lung cancer. However, the therapeutical outcome of TILs is negatively affected by tumor mutational burden and neoantigens. On the other hand, it can be improved in combination with checkpoint blockade therapy. This knowledge and rapid detection techniques alongside gene editing allow us to classify and modify T cells in many ways. Hence, to tailor them precisely to the patient´s needs as to program T cell receptors to recognize specific tumor-associated neoantigens and to insert them into lymphocytes or to select tumor neoantigen-specific T cells, for the development of vaccines that recognize tumor-specific antigens in tumors or metastases. Further studies and clinical trials in the field are needed for an even better-detailed understanding of TILs interactions and aiming in the fight against multiple cancers.
Collapse
Affiliation(s)
- T Zemanek
- Lambda Life, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
17
|
Cao F, Liu Y, Cheng Y, Wang Y, He Y, Xu Y. Multi-omics characteristics of tumor-associated macrophages in the tumor microenvironment of gastric cancer and their exploration of immunotherapy potential. Sci Rep 2023; 13:18265. [PMID: 37880233 PMCID: PMC10600170 DOI: 10.1038/s41598-023-38822-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/15/2023] [Indexed: 10/27/2023] Open
Abstract
The incidence and mortality rate of gastric cancer (GC) have remained high worldwide. Although some progress has been made in immunotargeted therapy, the treatment effect remains limited. With more attention has been paid to the immune potential of tumor-associated macrophages (TAMs), but the specific mechanisms of tumor immunity are still unclear. Thus, we screened marker genes in TAMs differentiation (MDMs) through single-cell RNA sequencing, and combined with GC transcriptome data from TCGA and GEO databases, the clinical and TME characteristics, prognostic differences, immune infiltration, and drug sensitivity among different subtypes of patients with GC in different data sets were analyzed. A prognostic model of GC was constructed to evaluate the prognosis and immunotherapy response of patients with GC. In this study, we extensively studied the mutations in MDMs such as CGN, S100A6, and C1QA, and found differences in the infiltration of immune cells and immune checkpoints including M2 TAMs, T cells, CD274, and CTLA4 in different GC subtypes. In the model, we constructed a predictive scoring system with high accuracy and screened out key MDMs-related genes associated with prognosis and M2 TAMs, among which VKORC1 may be involved in GC progression and iron death in tumor cells. Therefore, this study explores the therapeutic strategy of TAMs reprogramming in-depth, providing new ideas for the clinical diagnosis, treatment, and prognosis assessment of GC.
Collapse
Affiliation(s)
- Feng Cao
- Department of General Surgery, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanwei Liu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yunsheng Cheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yong Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yan He
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yanyan Xu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
18
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
19
|
Feng Y, Wang S, Xie J, Ding B, Wang M, Zhang P, Mi P, Wang C, Liu R, Zhang T, Yu X, Yuan D, Zhang C. Spatial transcriptomics reveals heterogeneity of macrophages in the tumor microenvironment of granulomatous slack skin. J Pathol 2023; 261:105-119. [PMID: 37550813 DOI: 10.1002/path.6151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 06/01/2023] [Indexed: 08/09/2023]
Abstract
Granulomatous slack skin (GSS) is an extremely rare subtype of cutaneous T-cell lymphoma accompanied by an abundant number of macrophages and is clinically characterized by the development of pendulous skin folds. However, the characteristics of these macrophages in GSS remain unclear. Here, we conducted a spatial transcriptomic study on one frozen GSS sample and drew transcriptomic maps of GSS for the first time. Gene expression analysis revealed the enrichment of three clusters with macrophage transcripts, each exhibiting distinct characteristics suggesting that their primary composition consists of different subpopulations of macrophages. The CD163+ /CD206+ cluster showed a tumor-associated macrophage (TAM) M2-like phenotype and highly expressed ZFP36, CCL2, TNFAIP6, and KLF2, which are known to be involved in T-cell interaction and tumor progression. The APOC1+ /APOE+ cluster presented a non-M1 or -M2 phenotype and may be related to lipid metabolism. The CD11c+ /LYZ+ cluster exhibited an M1-like phenotype. Notably, these cells strongly expressed MMP9, MMP12, CHI3L1, CHIT1, COL1A1, TIMP1, and SPP1, which are responsible for extracellular matrix (ECM) degradation and tissue remodeling. This may partially explain the symptoms of cutaneous relaxation in GSS. Further immunohistochemistry on four GSS cases demonstrated that CD11c predominantly marked granulomas and multinucleated giant cells, whereas CD163 was mainly expressed on scattered macrophages, appearing as a mutually exclusive pattern. The expression pattern of MMP9 overlapped with that of CD11c, implying that CD11c+ macrophages may be a source of MMP9. Our data shed light on the characteristics of macrophages in the GSS microenvironment and provide a theoretical basis for the application of MMP9 inhibitors to prevent cutaneous relaxation of GSS. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yawei Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jianjun Xie
- Department of Pathology, Qingdao Chengyang People's Hospital, Qingdao, PR China
| | - Bin Ding
- Department of Pathology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, PR China
| | - Min Wang
- Department of Pathology, The Second People's Hospital of Liaocheng, Linqing, PR China
| | - Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Chunxue Wang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ruirui Liu
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xiaojing Yu
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
20
|
Li M, Jiang P, Wei S, Wang J, Li C. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression. Front Immunol 2023; 14:1113312. [PMID: 36845095 PMCID: PMC9947507 DOI: 10.3389/fimmu.2023.1113312] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies have revealed that tumor-associated macrophages are the most abundant stromal cells in the tumor microenvironment and play an important role in tumor initiation and progression. Furthermore, the proportion of macrophages in the tumor microenvironment is associated with the prognosis of patients with cancer. Tumor-associated macrophages can polarize into anti-tumorigenic phenotype (M1) and pro-tumorigenic phenotype (M2) by the stimulation of T-helper 1 and T-helper 2 cells respectively, and then exert opposite effects on tumor progression. Besides, there also is wide communication between tumor-associated macrophages and other immune compositions, such as cytotoxic T cells, regulatory T cells, cancer-associated fibroblasts, neutrophils and so on. Furthermore, the crosstalk between tumor-associated macrophages and other immune cells greatly influences tumor development and treatment outcomes. Notably, many functional molecules and signaling pathways have been found to participate in the interactions between tumor-associated macrophages and other immune cells and can be targeted to regulate tumor progression. Therefore, regulating these interactions and CAR-M therapy are considered to be novel immunotherapeutic pathways for the treatment of malignant tumors. In this review, we summarized the interactions between tumor-associated macrophages and other immune compositions in the tumor microenvironment and the underlying molecular mechanisms and analyzed the possibility to block or eradicate cancer by regulating tumor-associated macrophage-related tumor immune microenvironment.
Collapse
Affiliation(s)
| | | | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- *Correspondence: Chunxiao Li, ; Junjie Wang,
| | - Chunxiao Li
- *Correspondence: Chunxiao Li, ; Junjie Wang,
| |
Collapse
|
21
|
Gazzillo A, Polidoro MA, Soldani C, Franceschini B, Lleo A, Donadon M. Relationship between Epithelial-to-Mesenchymal Transition and Tumor-Associated Macrophages in Colorectal Liver Metastases. Int J Mol Sci 2022; 23:16197. [PMID: 36555840 PMCID: PMC9783529 DOI: 10.3390/ijms232416197] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The liver is the most common metastatic site in colorectal cancer (CRC) patients. Indeed, 25-30% of the cases develop colorectal liver metastasis (CLM), showing an extremely poor 5-year survival rate and resistance to conventional anticancer therapies. Tumor-associated macrophages (TAMs) provide a nurturing microenvironment for CRC metastasis, promoting epithelial-to-mesenchymal transition (EMT) through the TGF-β signaling pathway, thus driving tumor cells to acquire mesenchymal properties that allow them to migrate from the primary tumor and invade the new metastatic site. EMT is known to contribute to the disruption of blood vessel integrity and the generation of circulating tumor cells (CTCs), thus being closely related to high metastatic potential in numerous solid cancers. Despite the fact that it is well-recognized that the crosstalk between tumor cells and the inflammatory microenvironment is crucial in the EMT process, the association between the EMT and the role of TAMs is still poorly understood. In this review, we elaborated on the role that TAMs exert in the induction of EMT during CLM development. Since TAMs are the major source of TGF-β in the liver, we also focused on novel insights into their role in TGF-β-induced EMT.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, MI, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, NO, Italy
- Department of General Surgery, University Maggiore Hospital Della Carità, 28100 Novara, NO, Italy
| |
Collapse
|
22
|
Li X, Wu Y, Tian T. TGF-β Signaling in Metastatic Colorectal Cancer (mCRC): From Underlying Mechanism to Potential Applications in Clinical Development. Int J Mol Sci 2022; 23:14436. [PMID: 36430910 PMCID: PMC9698504 DOI: 10.3390/ijms232214436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is a serious public health issue, and it has the leading incidence and mortality among malignant tumors worldwide. CRC patients with metastasis in the liver, lung or other distant sites always have poor prognosis. Thus, there is an urgent need to discover the underlying mechanisms of metastatic colorectal cancer (mCRC) and to develop optimal therapy for mCRC. Transforming growth factor-β (TGF-β) signaling plays a significant role in various physiologic and pathologic processes, and aberrant TGF-β signal transduction contributes to mCRC progression. In this review, we summarize the alterations of the TGF-β signaling pathway in mCRC patients, the functional mechanisms of TGF-β signaling, its promotion of epithelial-mesenchymal transition, its facilitation of angiogenesis, its suppression of anti-tumor activity of immune cells in the microenvironment and its contribution to stemness of CRC cells. We also discuss the possible applications of TGF-β signaling in mCRC diagnosis, prognosis and targeted therapies in clinical trials. Hopefully, these research advances in TGF-β signaling in mCRC will improve the development of new strategies that can be combined with molecular targeted therapy, immunotherapy and traditional therapies to achieve better efficacy and benefit mCRC patients in the near future.
Collapse
Affiliation(s)
| | | | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
23
|
Chen Y, Gao Y, Ma X, Wang Y, Liu J, Yang C, Wang Y, Bao C, Song X, Feng Y, Sun Y, Qiao S. A study on the correlation between M2 macrophages and regulatory T cells in the progression of colorectal cancer. Int J Biol Markers 2022; 37:412-420. [DOI: 10.1177/03936155221132572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background M2 macrophages and regulatory T cells (Tregs) can promote tumors and development by inhibiting the anti-tumor immune response. This study investigated the effect of CD163-positive M2 macrophages and Foxp3-positive Tregs in the progression of colorectal cancer and lymph node metastasis. It also investigated the correlation between M2 macrophages and Tregs. Methods Postoperative tissue specimens and clinical data were collected from 197 patients with colorectal cancer who underwent initial surgical treatment in The Second Ward of Colorectal Surgery of the First Affiliated Hospital of Jinzhou Medical University from March 2020 to December 2020. Immunohistochemical methods were used to detect the expression levels of CD163 protein-labeled M2 macrophages and Foxp3 protein-labeled Tregs in colorectal cancer tissues, matched paracancer tissues, and lymph node tissues. The correlation between CD163 and Foxp3 in cancer tissues and lymph node tissues were analyzed, as well as the relationship between clinicopathological characteristics and preoperative tumor markers. Results M2 macrophages and Tregs were importantly positively correlated in cancer and lymph node tissues, which significantly increased in cancer and metastatic lymph node tissues. Interestingly, M2 macrophages in non-metastatic lymph nodes also increased significantly in patients with metastatic lymph nodes. In addition, both CD163 and Foxp3 were upregulated with increasing tumor node metastasis stage, depth of infiltration, and lymphatic metastasis; and both were positively correlated with carcinoembryonic antigen. Conclusion CD163 may be a good predictor of pre-metastatic status of colorectal cancer lymph nodes. carcinoembryonic antigen affects the distribution of M2 macrophages and Tregs in colorectal cancer. There is a certain correlation between the two types of cells. It is possible that M2 macrophages, together with suppressor Tregs cells, promote an immunosuppressive environment.
Collapse
Affiliation(s)
- Yanlei Chen
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yu Gao
- Computer Teaching and Research Section, Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Xueqian Ma
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yanping Wang
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Jinhao Liu
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Chunyu Yang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yue Wang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Cuifen Bao
- Basic Medical Experimental Teaching Center, Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Xiaoyu Song
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yang Feng
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yan Sun
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Shifeng Qiao
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
24
|
Zheng SM, Chen H, Sha WH, Chen XF, Yin JB, Zhu XB, Zheng ZW, Ma J. Oxidized low-density lipoprotein stimulates CD206 positive macrophages upregulating CD44 and CD133 expression in colorectal cancer with high-fat diet. World J Gastroenterol 2022; 28:4993-5006. [PMID: 36160648 PMCID: PMC9494932 DOI: 10.3748/wjg.v28.i34.4993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Oxidized low-density lipoprotein (ox-LDL), which is abnormally increased in the serum of colorectal cancer (CRC) patients consuming a high-fat diet (HFD), may be one of the risk factors for the development of CRC. Ox-LDL exerts a regulatory effect on macrophages and may influence CRC through the tumor microenvironment. The role of ox-LDL in CRC remains unclear.
AIM To investigate the role of ox-LDL through macrophages in HFD associated CRC.
METHODS The expression of ox-LDL and CD206 was detected in colorectal tissues of CRC patients with hyperlipidemia and HFD-fed mice by immunofluorescence. We stimulated the macrophages with 20 μg/mL ox-LDL and assessed the expression levels of CD206 and the cytokines by cell fluorescence and quantitative polymerase chain reaction. We further knocked down LOX-1, the surface receptor of ox-LDL, to confirm the function of ox-LDL in macrophages. Then, LoVo cells were co-cultured with the stimulated macrophages to analyze the CD44 and CD133 expression by western blot.
RESULTS The expression of ox-LDL and the CD206 was significantly increased in the stroma of colorectal tissues of CRC patients with hyperlipidemia, and also upregulated in the HFD-fed mice. Moreover, an increased level of CD206 and decreased level of inducible nitric oxide synthase were observed in macrophages after ox-LDL continuous stimulation. Such effects were inhibited when the surface receptor LOX-1 was knocked down in macrophages. Ox-LDL could induce CD206+ macrophages, which resulted in high expression of CD44 and CD133 in co-cultured LoVo cells.
CONCLUSION Ox-LDL stimulates CD206+ macrophages to upregulate CD44 and CD133 expression in HFD related CRC.
Collapse
Affiliation(s)
- Shi-Min Zheng
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
- Medical College, Shantou University, Shantou 515041, Guangdong Province, China
| | - Hao Chen
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Wei-Hong Sha
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
- Medical College, Shantou University, Shantou 515041, Guangdong Province, China
- Medical College, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Fen Chen
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
- Medical College, Shantou University, Shantou 515041, Guangdong Province, China
| | - Jian-Bin Yin
- Medical College, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong Province, China
| | - Xiao-Bo Zhu
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Zhong-Wen Zheng
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
- Medical College, Shantou University, Shantou 515041, Guangdong Province, China
- Medical College, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
25
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022. [PMID: 36156927 DOI: 10.3748/wjg.v28.i33.4744.pmid:36156927;pmcid:pmc9476856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia.
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
26
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022; 28:4744-4761. [PMID: 36156927 PMCID: PMC9476856 DOI: 10.3748/wjg.v28.i33.4744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
27
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
28
|
Qin M, Chen G, Hou J, Wang L, Wang Q, Wang L, Jiang D, Hu Y, Xie B, Chen J, Wei H, Xu G. Tumor-infiltrating lymphocyte: features and prognosis of lymphocytes infiltration on colorectal cancer. Bioengineered 2022; 13:14872-14888. [PMID: 36633318 PMCID: PMC9995135 DOI: 10.1080/21655979.2022.2162660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are vital elements of the tumor microenvironment (TME), and the anti-tumor activity of TILs on colorectal cancer (CRC) has been a topic of concern. However, the characteristics and prognosis of the various types of lymphocyte infiltration in CRC have not been fully explained. Our study aimed to identify distinct features and prognosis of TILs. We integrated multiple-cohort databases to illustrate the features, proportions, and prognosis of TILs on CRC. We found that macrophages were significantly enriched in CRC. When we used the scRNA-seq database to further evaluate the proportion of TILs, we noticed markedly higher numbers of CD4 + T cell, B cell, and CD8 + T cell in four Gene Expression Omnibus Series (GSE) CRC cohorts. Interestingly, we found that the infiltrating level of TIL subgroups from highest to lowest is always dendritic cells, CD8 + T cells, CD4 + T cells, neutrophils, B cells, and macrophages; the proportion of infiltration is largely constant regardless of mutations in specific genes or somatic copy number variation (sCNV). In addition, the data corroborated that CD4+ TILs and CD8+ TILs have certain application values in the prognosis of CRCs, and age negatively related to CD8+ TILs and B plasma infiltration. Finally, patients with CRC who are older than 70 years have a better response to immune-checkpoint blockade.
Collapse
Affiliation(s)
- Miao Qin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jinxia Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qunfeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lina Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China
| | - Ye Hu
- Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China
| |
Collapse
|