1
|
Verma M, Randhawa S, Bathla M, Teji N, Acharya A. Strategic use of nanomaterials as double-edged therapeutics to control carcinogenesis via regulation of dysbiosis and bacterial infection: current status and future prospects. J Mater Chem B 2025; 13:4770-4790. [PMID: 40192037 DOI: 10.1039/d4tb02409e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The human microbiome plays a crucial role in modulating health and disease susceptibility through a complex network of interactions with the host. When the delicate balance of this microbial ecosystem is disrupted, it often correlates with the onset of systemic diseases. An over-abundance of pathogenic microorganisms within the microbiome has been implicated as a driving factor in the development of disease conditions such as diabetes, obesity, and chronic infections. It has been observed that microbiome dysbiosis perturbs metabolic, inflammatory, and immunological pathways, potentially facilitating carcinogenesis. Furthermore, the metabolites associated with microbial dysbiosis exert multifaceted effects, including metabolic interference, host DNA damage, and tumor promotion, further underscoring the microbiome's significance in several of the cancers. This new exploration of microbiome involvement in carcinogenesis needs additional patient sample analysis, which could provide new insights into cancer diagnosis and treatment. However, treating these diseases using drugs, traditional methods, etc. has resulted in multi-drug resistance, and this has eventually made the situation worrisome. This review highlights the importance of nanotechnology, which may tackle these pathogenic conditions simultaneously by targeting common receptors present in bacteria and cancer. Herein, we have explained how nanotechnology may come to the forefront for these treatments. It explores the potential of non-antibiotic disinfectants, i.e., nanoparticles (NPs) with dual targeting capabilities against microbes and cancer cells, using mechanisms such as ROS generation and DNA damage while minimizing the chances of drug resistance.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nandini Teji
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Alves Costa Silva C, Almonte AA, Zitvogel L. Oncobiomics: Leveraging Microbiome Translational Research in Immuno-Oncology for Clinical-Practice Changes. Biomolecules 2025; 15:504. [PMID: 40305219 PMCID: PMC12024955 DOI: 10.3390/biom15040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Growing evidence suggests that cancer should not be viewed solely as a genetic disease but also as the result of functional defects in the metaorganism, including disturbances in the gut microbiota (i.e., gut dysbiosis). The human microbiota plays a critical role in regulating epithelial barrier function in the gut, airways, and skin, along with host metabolism and systemic immune responses against microbes and cancer. Collaborative international networks, such as ONCOBIOME, are essential in advancing research equity and building microbiome resources to identify and validate microbiota-related biomarkers and therapies. In this review, we explore the intricate relationship between the microbiome, metabolism, and cancer immunity, and we propose microbiota-based strategies to improve outcomes for individuals at risk of developing cancer or living with the disease.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Andrew A. Almonte
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, 94805 Villejuif, France
| |
Collapse
|
3
|
Zhang S, Huang J, Jiang Z, Tong H, Ma X, Liu Y. Tumor microbiome: roles in tumor initiation, progression, and therapy. MOLECULAR BIOMEDICINE 2025; 6:9. [PMID: 39921821 PMCID: PMC11807048 DOI: 10.1186/s43556-025-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
Over the past few years, the tumor microbiome is increasingly recognized for its multifaceted involvement in cancer initiation, progression, and metastasis. With the application of 16S ribosomal ribonucleic acid (16S rRNA) sequencing, the intratumoral microbiome, also referred to as tumor-intrinsic or tumor-resident microbiome, has also been found to play a significant role in the tumor microenvironment (TME). Understanding their complex functions is critical for identifying new therapeutic avenues and improving treatment outcomes. This review first summarizes the origins and composition of these microbial communities, emphasizing their adapted diversity across a diverse range of tumor types and stages. Moreover, we outline the general mechanisms by which specific microbes induce tumor initiation, including the activation of carcinogenic pathways, deoxyribonucleic acid (DNA) damage, epigenetic modifications, and chronic inflammation. We further propose the tumor microbiome may evade immunity and promote angiogenesis to support tumor progression, while uncovering specific microbial influences on each step of the metastatic cascade, such as invasion, circulation, and seeding in secondary sites. Additionally, tumor microbiome is closely associated with drug resistance and influences therapeutic efficacy by modulating immune responses, drug metabolism, and apoptotic pathways. Furthermore, we explore innovative microbe-based therapeutic strategies, such as engineered bacteria, oncolytic virotherapy, and other modalities aimed at enhancing immunotherapeutic efficacy, paving the way for microbiome-centered cancer treatment frameworks.
Collapse
Affiliation(s)
- Shengxin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
4
|
Rother C, John T, Wong A. Biomarkers for immunotherapy resistance in non-small cell lung cancer. Front Oncol 2024; 14:1489977. [PMID: 39749035 PMCID: PMC11693593 DOI: 10.3389/fonc.2024.1489977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Immunotherapy has revolutionised the treatment landscape of non-small cell lung cancer (NSCLC), significantly improving survival outcomes and offering renewed hope to patients with advanced disease. However, the majority of patients experience limited long-term benefits from immune checkpoint inhibition (ICI) due to the development of primary or acquired immunotherapy resistance. Accurate predictive biomarkers for immunotherapy resistance are essential for individualising treatment strategies, improving survival outcomes, and minimising potential treatment-related harm. This review discusses the mechanisms underlying resistance to immunotherapy, addressing both cancer cell-intrinsic and cancer cell-extrinsic resistance processes. We summarise the current utility and limitations of two clinically established biomarkers: programmed death ligand 1 (PD-L1) expression and tumour mutational burden (TMB). Following this, we present a comprehensive review of emerging immunotherapy biomarkers in NSCLC, including tumour neoantigens, epigenetic signatures, markers of the tumour microenvironment (TME), genomic alterations, host-microbiome composition, and circulating biomarkers. The potential clinical applications of these biomarkers, along with novel approaches to their biomarker identification and targeting, are discussed. Additionally, we explore current strategies to overcome immunotherapy resistance and propose incorporating predictive biomarkers into an adaptive clinical trial design, where specific immune signatures guide subsequent treatment selection.
Collapse
Affiliation(s)
- Catriona Rother
- Wellington Blood and Cancer Centre, Te Whatu Ora Capital, Wellington, New Zealand
| | - Tom John
- Department of Medical Oncology, Peter MacCallum, Cancer Centre, Melbourne, VIC, Australia
| | - Annie Wong
- Wellington Blood and Cancer Centre, Te Whatu Ora Capital, Wellington, New Zealand
- Department of Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
5
|
Zhang D, Fan J, Liu X, Gao X, Zhou Q, Zhao J, Xu Y, Zhong W, Oh IJ, Chen M, Wang M. Lower respiratory tract microbiome is associated with checkpoint inhibitor pneumonitis in lung cancer patients. Transl Lung Cancer Res 2024; 13:3189-3201. [PMID: 39670023 PMCID: PMC11632428 DOI: 10.21037/tlcr-24-853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Background The gut microbiome is associated with the occurrence and severity of immune-related adverse events (irAEs) in cancer patients undergoing immunotherapy. However, the relationship between the lower respiratory tract (LRT) microbiome and checkpoint inhibitor pneumonitis (CIP) in lung cancer patients who underwent immunotherapy is unclear. The aim of the present study was to investigate the associations between the LRT microbiome and CIP in lung cancer patients receiving immunotherapy. Methods This retrospective study included lung cancer patients who received immunotherapy and had metagenomic next-generation sequencing (mNGS) results of LRT specimens [bronchoalveolar lavage fluid (BALF)]. Based on their final diagnosis, the patients were allocated to either the CIP group or the non-CIP group. We conducted an exploratory analysis of the LRT microbiome in the CIP and non-CIP patients, delineating the microbial composition, and comparing the differences between the two groups. Results In total, 52 lung patients were included in the study, of whom 33 were allocated to the CIP group and 19 to the non-CIP group. The alpha- and beta-diversity analyses revealed no significant differences between the two groups. In the CIP group, the dominant phyla were Firmicutes (41.7%), Acinetobacter (18.2%), and Proteobacteria (16.3%). In the non-CIP group, the dominant phyla were Firmicutes (38.2%), Acinetobacter (18.4%), and Proteobacteria (17.8%). Notably, the relative abundance of the Proteobacteria phylum (P<0.001) and Firmicutes phylum (P=0.01) was significantly higher in the CIP group than the non-CIP group. Conclusions The elevated relative abundance of the Proteobacteria and Firmicutes phyla in the LRT samples is associated with CIP in lung cancer patients.
Collapse
Affiliation(s)
- Dongming Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junping Fan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxing Gao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Ma Q, Li X, Jiang H, Fu X, You L, You F, Ren Y. Mechanisms underlying the effects, and clinical applications, of oral microbiota in lung cancer: current challenges and prospects. Crit Rev Microbiol 2024; 50:631-652. [PMID: 37694585 DOI: 10.1080/1040841x.2023.2247493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The oral cavity contains a site-specific microbiota that interacts with host cells to regulate many physiological processes in the human body. Emerging evidence has suggested that changes in the oral microbiota can increase the risk of lung cancer (LC), and the oral microbiota is also altered in patients with LC. Human and animal studies have shown that oral microecological disorders and/or specific oral bacteria may play an active role in the occurrence and development of LC through direct and/or indirect mechanisms. These studies support the potential of oral microbiota in the clinical treatment of LC. Oral microbiota may therefore be used in the prevention and treatment of LC and to improve the side effects of anticancer therapy by regulating the balance of the oral microbiome. Specific oral microbiota in LC may also be used as screening or predictive biomarkers. This review summarizes the main findings in research on oral microbiome-related LC and discusses current challenges and future research directions.
Collapse
Affiliation(s)
- Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hua Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
7
|
Bum Lee J, Huang Y, Oya Y, Nutzinger J, LE Ang Y, Sooi K, Chul Cho B, Soo RA. Modulating the gut microbiome in non-small cell lung cancer: Challenges and opportunities. Lung Cancer 2024; 194:107862. [PMID: 38959670 DOI: 10.1016/j.lungcan.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Despite the efficacy of immunotherapy in non-small cell lung cancer (NSCLC), the majority of the patients experience relapse with limited subsequent treatment options. Preclinical studies of various epithelial tumors, such as melanoma and NSCLC, have shown that harnessing the gut microbiome resulted in improvement of therapeutic responses to immunotherapy. Is this review, we summarize the role of microbiome, including lung and gut microbiome in the context of NSCLC, provide overview of the mechanisms of microbiome in efficacy and toxicity of chemotherapies and immunotherapies, and address current ongoing clinical trials for NSCLC including fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs).
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Toyoake, Japan
| | - Jorn Nutzinger
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yvonne LE Ang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Kenneth Sooi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| |
Collapse
|
8
|
Chen Z, Huang L. Fusobacterium nucleatum carcinogenesis and drug delivery interventions. Adv Drug Deliv Rev 2024; 209:115319. [PMID: 38643839 PMCID: PMC11459907 DOI: 10.1016/j.addr.2024.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/16/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The microbiome has emerged as a significant biomarker and modulator in cancer development and treatment response. Recent research highlights the notable role of Fusobacterium nucleatum (F. nucleatum) in various tumor types, including breast, colorectal, esophageal, gastric, pancreatic, and lung cancers. Accumulating evidence suggests that the local microbial community forms an integral component of the tumor microenvironment, with bacterial communities within tumors displaying specificity to tumor types. Mechanistic investigations indicate that tumor-associated microbiota can directly influence tumor initiation, progression, and responses to chemotherapy or immunotherapy. This article presents a comprehensive review of microbial communities especially F. nucleatum in tumor tissue, exploring their roles and underlying mechanisms in tumor development, treatment, and prevention. When the tumor-associated F. nucleatum is killed, the host immune response is activated to recognize tumor cells. Bacteria epitopes restricted by the host antigens, can be identified for future anti-bacteria/tumor vaccine development.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC 27599, United States
| | - Leaf Huang
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC 27599, United States.
| |
Collapse
|
9
|
Chung IY, Kim J, Koh A. The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses. J Microbiol 2024; 62:137-152. [PMID: 38587593 DOI: 10.1007/s12275-024-00110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 04/09/2024]
Abstract
In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confined to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specific microbial taxa within different cancer types underscore their pivotal roles in driving tumorigenesis and influencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse effects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
10
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C, Wu J. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci 2023; 13:188. [PMID: 37828613 PMCID: PMC10571290 DOI: 10.1186/s13578-023-01135-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.
Collapse
Affiliation(s)
- Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| |
Collapse
|
12
|
Zhang J, Liu S, Chen X, Xu X, Xu F. Non-immune cell components in tumor microenvironment influencing lung cancer Immunotherapy. Biomed Pharmacother 2023; 166:115336. [PMID: 37591126 DOI: 10.1016/j.biopha.2023.115336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer-related deaths worldwide, with a significant morbidity and mortality rate, endangering human life and health. The introduction of immunotherapies has significantly altered existing cancer treatment strategies and is expected to improve immune responses, objective response rates, and survival rates. However, a better understanding of the complex immunological networks of LC is required to improve immunotherapy efficacy further. Tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) are significantly expressed by LC cells, which activate dendritic cells, initiate antigen presentation, and activate lymphocytes to exert antitumor activity. However, as tumor cells combat the immune system, an immunosuppressive microenvironment forms, enabling the enactment of a series of immunological escape mechanisms, including the recruitment of immunosuppressive cells and induction of T cell exhaustion to decrease the antitumor immune response. In addition to the direct effect of LC cells on immune cell function, the secreting various cytokines, chemokines, and exosomes, changes in the intratumoral microbiome and the function of cancer-associated fibroblasts and endothelial cells contribute to LC cell immune escape. Accordingly, combining various immunotherapies with other therapies can elicit synergistic effects based on the complex immune network, improving immunotherapy efficacy through multi-target action on the tumor microenvironment (TME). Hence, this review provides guidance for understanding the complex immune network in the TME and designing novel and effective immunotherapy strategies for LC.
Collapse
Affiliation(s)
- Jingtao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiubao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
13
|
Li Y, Xing S, Chen F, Li Q, Dou S, Huang Y, An J, Liu W, Zhang G. Intracellular Fusobacterium nucleatum infection attenuates antitumor immunity in esophageal squamous cell carcinoma. Nat Commun 2023; 14:5788. [PMID: 37723150 PMCID: PMC10507087 DOI: 10.1038/s41467-023-40987-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023] Open
Abstract
Currently, the influence of the tumor microbiome on the effectiveness of immunotherapy remains largely unknown. Intratumoural Fusobacterium nucleatum (Fn) functions as an oncogenic bacterium and can promote tumor progression in esophageal squamous cell carcinoma (ESCC). Our previous study revealed that Fn is a facultative intracellular bacterium and that its virulence factor Fn-Dps facilitates the intracellular survival of Fn. In this study, we find that Fn DNA is enriched in the nonresponder (NR) group among ESCC patients receiving PD-1 inhibitor and that the serum antibody level of Fn is significantly higher in the NR group than in the responder (R) group. In addition, Fn infection has an opposite impact on the efficacy of αPD-L1 treatment in animals. Mechanistically, we confirm that Fn can inhibit the proliferation and cytokine secretion of T cells and that Fn-Dps binds to the PD-L1 gene promoter activating transcription factor-3 (ATF3) to transcriptionally upregulate PD-L1 expression. Our results suggest that it may be an important therapeutic strategy to eradicate intratumoral Fn infection before initiating ESCC immunotherapies.
Collapse
Affiliation(s)
- Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qifan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuheng Dou
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuying Huang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun An
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Yuedong Hospital, Guangzhou, China.
| | - Wanli Liu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Shi T, Wang J, Dong J, Hu P, Guo Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens 2023; 12:1110. [PMID: 37764918 PMCID: PMC10535846 DOI: 10.3390/pathogens12091110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The intricate interplay between oral microbiota and the human host extends beyond the confines of the oral cavity, profoundly impacting the general health status. Both periodontal diseases and respiratory diseases show high prevalence worldwide and have a marked influence on the quality of life for the patients. Accumulating studies are establishing a compelling association between periodontal diseases and respiratory diseases. Here, in this review, we specifically focus on the key periodontal pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum and dissect their roles in the onset and course of respiratory diseases, mainly pneumonia, chronic obstructive pulmonary disease, lung cancer, and asthma. The mechanistic underpinnings and molecular processes on how P. gingivalis and F. nucleatum contribute to the progression of related respiratory diseases are further summarized and analyzed, including: induction of mucus hypersecretion and chronic airway inflammation; cytotoxic effects to disrupt the morphology and function of respiratory epithelial cells; synergistic pathogenic effects with respiratory pathogens like Streptococcus pneumoniae and Pseudomonas aeruginosa. By delving into the complex relationship to periodontal diseases and periodontopathogens, this review helps unearth novel insights into the etiopathogenesis of respiratory diseases and inspires the development of potential therapeutic avenues and preventive strategies.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Nawab S, Bao Q, Ji LH, Luo Q, Fu X, Fan S, Deng Z, Ma W. The Pathogenicity of Fusobacterium nucleatum Modulated by Dietary Fibers-A Possible Missing Link between the Dietary Composition and the Risk of Colorectal Cancer. Microorganisms 2023; 11:2004. [PMID: 37630564 PMCID: PMC10458976 DOI: 10.3390/microorganisms11082004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
The dietary composition has been approved to be strongly associated with the risk of colorectal cancer (CRC), one of the most serious malignancies worldwide, through regulating the gut microbiota structure, thereby influencing the homeostasis of colonic epithelial cells by producing carcinogens, i.e., ammonia or antitumor metabolites, like butyrate. Though butyrate-producing Fusobacterium nucleatum has been considered a potential tumor driver associated with chemotherapy resistance and poor prognosis in CRC, it was more frequently identified in the gut microbiota of healthy individuals rather than CRC tumor tissues. First, within the concentration range tested, the fermentation broth of F. nucleatum exhibited no significant effects on Caco-2 and NCM460 cells viability except for a notable up-regulation of the expression of TLR4 (30.70%, p < 0.0001) and Myc (47.67%, p = 0.021) and genes encoding proinflammatory cytokines including IL1B (197.57%, p < 0.0001), IL6 (1704.51%, p < 0.0001), and IL8 (897.05%, p < 0.0001) in Caco-2 cells exclusively. Although no marked effects of polydextrose or fibersol-2 on the growth of F. nucleatum, Caco-2 and NCM460 cells were observed, once culture media supplemented with polydextrose or fibersol-2, the corresponding fermentation broths of F. nucleatum significantly inhibited the growth of Caco-2 cells up to 48.90% (p = 0.0003, 72 h, 10%) and 52.96% (p = 0.0002, 72 h, 10%), respectively in a dose-dependent manner. These two kinds of fibers considerably promoted butyrate production of F. nucleatum up to 205.67% (p < 0.0001, 6% polydextrose at 24 h) and 153.46% (p = 0.0002, 6% fibersol-2 at 12 h), which explained why and how the fermentation broths of F. nucleatum cultured with fibers suppressing the growth of Caco-2 cells. Above findings indicated that dietary fiber determined F. nucleatum to be a carcinogenic or antitumor bacterium, and F. nucleatum played an important role in the association between the dietary composition, primarily the content of dietary fibers, and the risk of CRC.
Collapse
Affiliation(s)
- Sadia Nawab
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qelger Bao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin-Hua Ji
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Qian Luo
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiang Fu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuxuan Fan
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
16
|
Tostes K, Siqueira AP, Reis RM, Leal LF, Arantes LMRB. Biomarkers for Immune Checkpoint Inhibitor Response in NSCLC: Current Developments and Applicability. Int J Mol Sci 2023; 24:11887. [PMID: 37569262 PMCID: PMC10418476 DOI: 10.3390/ijms241511887] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer has the highest mortality rate among all cancer types, resulting in over 1.8 million deaths annually. Immunotherapy utilizing immune checkpoint inhibitors (ICIs) has revolutionized the treatment of non-small cell lung cancer (NSCLC). ICIs, predominantly monoclonal antibodies, modulate co-stimulatory and co-inhibitory signals crucial for maintaining immune tolerance. Despite significant therapeutic advancements in NSCLC, patients still face challenges such as disease progression, recurrence, and high mortality rates. Therefore, there is a need for predictive biomarkers that can guide lung cancer treatment strategies. Currently, programmed death-ligand 1 (PD-L1) expression is the only established biomarker for predicting ICI response. However, its accuracy and robustness are not consistently reliable. This review provides an overview of potential biomarkers currently under development or in the validation stage that hold promise in improving the classification of responders and non-responders to ICI therapy in the near future.
Collapse
Affiliation(s)
- Katiane Tostes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
| | - Aléxia Polo Siqueira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos 14785-002, São Paulo, Brazil
| | | |
Collapse
|
17
|
Little A, Tangney M, Tunney MM, Buckley NE. Fusobacterium nucleatum: a novel immune modulator in breast cancer? Expert Rev Mol Med 2023; 25:e15. [PMID: 37009688 PMCID: PMC10407221 DOI: 10.1017/erm.2023.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer was the most commonly diagnosed cancer worldwide in 2020. Greater understanding of the factors which promote tumour progression, metastatic development and therapeutic resistance is needed. In recent years, a distinct microbiome has been detected in the breast, a site previously thought to be sterile. Here, we review the clinical and molecular relevance of the oral anaerobic bacterium Fusobacterium nucleatum in breast cancer. F. nucleatum is enriched in breast tumour tissue compared with matched healthy tissue and has been shown to promote mammary tumour growth and metastatic progression in mouse models. Current literature suggests that F. nucleatum modulates immune escape and inflammation within the tissue microenvironment, two well-defined hallmarks of cancer. Furthermore, the microbiome, and F. nucleatum specifically, has been shown to affect patient response to therapy including immune checkpoint inhibitors. These findings highlight areas of future research needed to better understand the influence of F. nucleatum in the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Alexa Little
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mark Tangney
- Cancer Research, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Niamh E. Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
18
|
Karvela A, Veloudiou OZ, Karachaliou A, Kloukina T, Gomatou G, Kotteas E. Lung microbiome: an emerging player in lung cancer pathogenesis and progression. Clin Transl Oncol 2023:10.1007/s12094-023-03139-z. [PMID: 36995519 DOI: 10.1007/s12094-023-03139-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/31/2023]
Abstract
The microbiome of the lungs, although until recently neglected, is now emerging as a potential contributor to chronic lung diseases, including cancer. Preclinical evidence suggests that the microbial burden of the lungs shapes the host immunity mechanisms and affects local antitumor immune responses. Studies of cohorts of patients with lung cancer reveal that different microbiome profiles are detected in patients with lung cancer compared to controls. In addition, an association between differential lung microbiome composition and distinct responses to immunotherapy has been suggested, yet, with limited data. Scarce evidence exists on the role of the lung microbiome in the development of metastases in the lungs. Interestingly, the lung microbiome is not isolated and interacts with the gut microbiome through a dynamic axis. Future research on the involvement of the lung microbiome in lung cancer pathogenesis and potential therapeutic implications is greatly anticipated.
Collapse
Affiliation(s)
- Alexandra Karvela
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Orsalia-Zoi Veloudiou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Anastasia Karachaliou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Theoni Kloukina
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece.
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| |
Collapse
|
19
|
Huang J, Huang J. Microbial Biomarkers for Lung Cancer: Current Understandings and Limitations. J Clin Med 2022; 11:jcm11247298. [PMID: 36555915 PMCID: PMC9782454 DOI: 10.3390/jcm11247298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
As our "hidden organ", microbes widely co-exist at various sites on the human body. These microbes are collectively referred to as the microbiome. A considerable number of studies have already proven that the microbiome has significant impacts on human health and disease progression, including cancers. The recent discovery of cancer-specific microbiomes renders these cancer-associated microbes as potential biomarkers and therapeutic targets. While at low biomass levels, the lung microbiome still dramatically influences the initiation, progression and treatment of lung cancers. However, research on lung cancer-associated microbiomes is emerging, and most profiling studies are performed within three years. Unfortunately, there are substantial inconsistencies across these studies. Variations in microbial diversity were observed, and different microbial biomarkers for lung cancer have been proposed. In this review, we summarized the current findings of lung cancer microbiome studies and attempt to explain the potential reasons for the dissimilarities. Other than lung microbiomes, oral and airway microbiomes are highly related to lung microbiomes and are therefore included as well. In addition, several lung cancer-associated bacterial genera have been detected by different independent studies. These bacterial genera may not be perfect biomarkers, but they still serve as promising risk factors for lung cancers and show great prognostic value.
Collapse
Affiliation(s)
| | - Juan Huang
- Correspondence: ; Tel.: +86-181-0818-9376
| |
Collapse
|
20
|
Mishra S, Amatya SB, Salmi S, Koivukangas V, Karihtala P, Reunanen J. Microbiota and Extracellular Vesicles in Anti-PD-1/PD-L1 Therapy. Cancers (Basel) 2022; 14:cancers14205121. [PMID: 36291904 PMCID: PMC9600290 DOI: 10.3390/cancers14205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Immune checkpoint inhibitors (ICI) targeting PD-1/PD-L1 have emerged as contemporary treatments for a variety of cancers. However, the efficacy of antibody-based ICIs could be further enhanced. Microbiota have been demonstrated to be among the vital factors governing cancer progression and response to therapy in patients. Bacteria secrete extracellular vesicles carrying bioactive metabolites within their cargo that can cross physiological barriers, selectively accumulate near tumor cells, and alter the tumor microenvironment. Extracellular vesicles, particularly those derived from bacteria, could thus be of promising assistance in refining the treatment outcomes for anti-PD-1/PD-L1 therapy. The potentiality of microbiota-derived extracellular vesicles in improving the currently used treatments and presenting new therapeutic avenues for cancer has been featured in this review. Abstract Cancer is a deadly disease worldwide. In light of the requisite of convincing therapeutic methods for cancer, immune checkpoint inhibition methods such as anti-PD-1/PD-L1 therapy appear promising. Human microbiota have been exhibited to regulate susceptibility to cancer as well as the response to anti-PD-1/PD-L1 therapy. However, the probable contribution of bacterial extracellular vesicles (bEVs) in cancer pathophysiology and treatment has not been investigated much. bEVs illustrate the ability to cross physiological barriers, assemble around the tumor cells, and likely modify the tumor microenvironment (EVs). This systematic review emphasizes the correlation between cancer-associated extracellular vesicles, particularly bEVs and the efficacy of anti-PD-1/PD-L1 therapy. The clinical and pharmacological prospective of bEVs in revamping the contemporary treatments for cancer has been further discussed.
Collapse
Affiliation(s)
- Surbhi Mishra
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Vesa Koivukangas
- Department of Surgery, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00029 Helsinki, Finland
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Correspondence:
| |
Collapse
|
21
|
Bou Zerdan M, Kassab J, Meouchy P, Haroun E, Nehme R, Bou Zerdan M, Fahed G, Petrosino M, Dutta D, Graziano S. The Lung Microbiota and Lung Cancer: A Growing Relationship. Cancers (Basel) 2022; 14:cancers14194813. [PMID: 36230736 PMCID: PMC9563611 DOI: 10.3390/cancers14194813] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In the past few years, the microbiota has emerged as a major player in cancer management. The efficacy of chemotherapy or immunotherapy may be influenced by the concomitant use of antibiotics before, during, or shortly after treatment with immune checkpoint inhibitors. Despite this, the mechanism linking the microbiota, host immunity, and malignancies are not clear, and the role of microbiota manipulation and analyses in cancer management is underway. In this manuscript, we discuss the role of the microbiota in the initiation, progression, and treatment outcomes of lung cancer. Abstract The lung is home to a dynamic microbial population crucial to modulating immune balance. Interest in the role of the lung microbiota in disease pathogenesis and treatment has exponentially increased. In lung cancer, early studies suggested an important role of dysbiosis in tumor initiation and progression. These results have helped accelerate research into the lung microbiota as a potential diagnostic marker and therapeutic target. Microbiota signatures could represent diagnostic biomarkers of early-stage disease. Lung microbiota research is in its infancy with a limited number of studies and only single-center studies with a significant methodological variation. Large, multicenter longitudinal studies are needed to establish the clinical potential of this exciting field.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Hematology and Oncology, Cleveland Clinic Florida, Weston, FL 33326, USA
| | - Joseph Kassab
- Faculty of Medicine, Saint-Joseph University, Beirut 11072180, Lebanon
| | - Paul Meouchy
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut 11072020, Lebanon
| | - Elio Haroun
- Department of Medicine, Division of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rami Nehme
- Department of Medicine, University of Pavia, 27100 Pavia, Italy
| | - Morgan Bou Zerdan
- Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Gracia Fahed
- Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Michael Petrosino
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dibyendu Dutta
- Department of Medicine, Division of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: (D.D.); (S.G.)
| | - Stephen Graziano
- Department of Medicine, Division of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: (D.D.); (S.G.)
| |
Collapse
|
22
|
He Z, Tian W, Wei Q, Xu J. Involvement of Fusobacterium nucleatum in malignancies except for colorectal cancer: A literature review. Front Immunol 2022; 13:968649. [PMID: 36059542 PMCID: PMC9428792 DOI: 10.3389/fimmu.2022.968649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is originally an oral opportunistic pathogen and accumulating evidence links the presence of F. nucleatum with the pathogenicity, development, and prognosis of colorectal cancer (CRC). However, only limited preliminary data is available dealing with the role of F. nucleatum in other malignancies except for CRC. The present review aims to update and systematize the latest information about the mechanisms of F. nucleatum-mediating carcinogenesis, together with the detection rates, clinicopathological, and molecular features in F. nucleatum-associated malignancies. Comparing with adjacent non-tumorous tissue, previous studies have shown an overabundance of intratumoural F. nucleatum. Although the prognostic role of F. nucleatum is still controversial, a higher prevalence of F. nucleatum was usually associated with a more advanced tumor stage and a worse overall survival. Preliminary evidence have shown that epithelial-to-mesenchymal transition (EMT) and relevant inflammation and immune response aroused by F. nucleatum may be the probable link between F. nucleatum infection and the initiation of oral/head and neck cancer. Further studies are needed to elucidate the etiologic role of the specific microbiota and the connection between the extent of periodontitis and carcinogenesis in different tumor types. The mechanisms of how the antibiotics exerts the critical role in the carcinogenesis and antitumor effects in malignancies other than CRC need to be further explored.
Collapse
Affiliation(s)
- Zhixing He
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Tian
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xu
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Xu,
| |
Collapse
|