1
|
Gdesz-Birula K, Drobczyński S, Sarat K, Duś-Szachniewicz K. Sonidegib Inhibits the Adhesion of Acute Myeloid Leukemia to the Bone Marrow in Hypoxia: An Optical Tweezer Study. Biomedicines 2025; 13:578. [PMID: 40149555 PMCID: PMC11940413 DOI: 10.3390/biomedicines13030578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Acute myeloid leukemia (AML) is a heterogeneous disease highly resistant to chemotherapeutic agents. Leukemia stem cells (LSCs) can enter a dormant state and avoid apoptosis in the protective niche of the bone marrow (BM) microenvironment. Moreover, bone marrow stromal cells protect leukemia cells by promoting pro-survival signaling pathways and drug resistance. Therefore, attenuating interactions between leukemia cells and BM cells may have a positive therapeutic effect. Objectives: In this work, we hypothesized that sondages may inhibit the adhesion of leukemia cells to the bone marrow by inhibiting the Hedgehog (Hh) signaling pathway. The Hedgehog pathway is a key therapeutic target in AML due to its role in leukemic cell growth and survival. Methods: We investigated the effects of sonidegib on the adhesion of individual OCI-AML3 cells to a bone marrow stromal spheroid derived from the HS-5 cell line. For this purpose, we precisely determined the minimum cell-to-cell adhesion time using optical tweezers under normoxic (21% of O2) and hypoxic (1% of O2) conditions. Results: Our results demonstrated that sonidegib significantly increased the minimum cell-to-cell adhesion time necessary for leukemic cells to establish adhesive bonds with bone marrow stromal cells, thereby indicating a reduction in their adhesive properties. Additionally, we showed that sonidegib is particularly effective at hypoxic oxygen concentrations. Conclusions: The results obtained in this study suggest that sonidegib, through its modulation of the Hedgehog signaling pathway, holds promise as a potential therapeutic approach to target leukemic cell adhesion within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Katarzyna Gdesz-Birula
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, 50-368 Wrocław, Poland
| | - Sławomir Drobczyński
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Krystian Sarat
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| | - Kamila Duś-Szachniewicz
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, 50-368 Wrocław, Poland
| |
Collapse
|
2
|
Kazama R, Ishikawa R, Sakai S. Development of Hemispherical 3D Models of Human Brain and B Cell Lymphomas Using On-Chip Cell Dome System. Bioengineering (Basel) 2024; 11:1303. [PMID: 39768123 PMCID: PMC11727638 DOI: 10.3390/bioengineering11121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Lymphocytes are generally non-adherent. This makes it challenging to fabricate three-dimensional (3D) structures mimicking the three-dimensional lymphoma microenvironment in vivo. This study presents the fabrication of a hemispherical 3D lymphoma model using the on-chip Cell Dome system with a hemispherical cavity (1 mm in diameter and almost 300 µm in height). Both the human brain lymphoma cell line (TK) and human B cell lymphoma cell line (KML-1) proliferated and filled the cavities. Hypoxic regions were observed in the center of the hemispherical structures. CD19 expression did not change in either cell line, while CD20 expression was slightly upregulated in TK cells and downregulated in KML-1 cells cultured in the Cell Dome compared to those cultured in two-dimensional (2D) flasks. In addition, both TK and KML-1 cells in the hemispherical structures exhibited higher resistance to doxorubicin than those in 2D flasks. These results demonstrate the effectiveness of the on-chip Cell Dome for fabricating 3D lymphoma models and provide valuable insights into the study of lymphoma behavior and the development of new drugs for lymphoma treatment.
Collapse
Affiliation(s)
| | | | - Shinji Sakai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Osaka, Japan; (R.K.); (R.I.)
| |
Collapse
|
3
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
4
|
Wang Q, Li Y, Hu P, Zhang Y, Liu Y, Yang Q, Xu L, Gong Z, Yang J, Sun W, Liu X, Wu Y. Impact of enniatins and beauvericin on lipid metabolism: Insights from a 3D HepaRG spheroid model. ENVIRONMENT INTERNATIONAL 2024; 191:108969. [PMID: 39180774 DOI: 10.1016/j.envint.2024.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) pose potential health risks to humans through dietary exposure. However, research into their mechanisms of toxicity is limited, with a lack of comprehensive toxicological data. This study investigates from a hepatic lipid metabolism perspective, establishing a more precise and reliable 3D HepaRG hepatocyte spheroid model as an alternative for toxicity assessment. Utilizing physiological indices, histopathological analyses, lipidomics, and molecular docking techniques, it comprehensively elucidates the effects of ENNs and BEA on hepatic lipid homeostasis and their molecular toxicological mechanisms. Our findings indicate that ENNs and BEA impact cellular viability and biochemical functions, significantly altering lipid metabolism pathways, particularly those involving glycerophospholipids and sphingolipids. Molecular docking has demonstrated strong binding affinity of ENNs and BEA with key enzymes in lipid metabolism such as Peroxisome Proliferator-Activated Receptor α (PPARα) and Cytosolic Phospholipase A2 (cPLA2), revealing the mechanistic basis for their hepatotoxic effects and potential to impair liver function and human health. These insights enhance our understanding of the potential hepatotoxicity of such fungal toxins and lay a foundation for the assessment of their health risks.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Yan Li
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan 430023, Hubei, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing 100024, China
| | - Peihao Hu
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan 430023, Hubei, China
| | - Yutao Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Yan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Jiangke Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Wen Sun
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan 430023, Hubei, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing 100024, China.
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
5
|
Falahi F, Akbari-Birgani S, Mortazavi Y, Johari B. Caspase-9 suppresses metastatic behavior of MDA-MB-231 cells in an adaptive organoid model. Sci Rep 2024; 14:15116. [PMID: 38956424 PMCID: PMC11219723 DOI: 10.1038/s41598-024-65711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.
Collapse
Affiliation(s)
- Farzaneh Falahi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Brauge B, Dessauge E, Creusat F, Tarte K. Modeling the crosstalk between malignant B cells and their microenvironment in B-cell lymphomas: challenges and opportunities. Front Immunol 2023; 14:1288110. [PMID: 38022603 PMCID: PMC10652758 DOI: 10.3389/fimmu.2023.1288110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
B-cell lymphomas are a group of heterogeneous neoplasms resulting from the clonal expansion of mature B cells arrested at various stages of differentiation. Specifically, two lymphoma subtypes arise from germinal centers (GCs), namely follicular lymphoma (FL) and GC B-cell diffuse large B-cell lymphoma (GCB-DLBCL). In addition to recent advances in describing the genetic landscape of FL and GCB-DLBCL, tumor microenvironment (TME) has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, and late progression/transformation. The lymphoma-supportive niche integrates a dynamic and coordinated network of immune and stromal cells defining microarchitecture and mechanical constraints and regulating tumor cell migration, survival, proliferation, and immune escape. Several questions are still unsolved regarding the interplay between lymphoma B cells and their TME, including the mechanisms supporting these bidirectional interactions, the impact of the kinetic and spatial heterogeneity of the tumor niche on B-cell heterogeneity, and how individual genetic alterations can trigger both B-cell intrinsic and B-cell extrinsic signals driving the reprogramming of non-malignant cells. Finally, it is not clear whether these interactions might promote resistance to treatment or, conversely, offer valuable therapeutic opportunities. A major challenge in addressing these questions is the lack of relevant models integrating tumor cells with specific genetic hits, non-malignant cells with adequate functional properties and organization, extracellular matrix, and biomechanical forces. We propose here an overview of the 3D in vitro models, xenograft approaches, and genetically-engineered mouse models recently developed to study GC B-cell lymphomas with a specific focus on the pros and cons of each strategy in understanding B-cell lymphomagenesis and evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Baptiste Brauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Elise Dessauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Florent Creusat
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Karin Tarte
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- SITI Laboratory, Centre Hospitalier Universitaire (CHU) Rennes, Etablissement Français du sang, Univ Rennes, Rennes, France
| |
Collapse
|
7
|
Barozzi D, Scielzo C. Emerging Strategies in 3D Culture Models for Hematological Cancers. Hemasphere 2023; 7:e932. [PMID: 37520775 PMCID: PMC10378728 DOI: 10.1097/hs9.0000000000000932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
In vitro cell cultures are fundamental and necessary tools in cancer research and personalized drug discovery. Currently, most cells are cultured using two-dimensional (2D) methods, and drug testing is mainly performed in animal models. However, new and improved methods that implement three-dimensional (3D) cell-culturing techniques provide compelling evidence that more advanced experiments can be performed, yielding valuable new insights. In 3D cell-culture experiments, the cell environment can be manipulated to mimic the complexity and dynamicity of the human tissue microenvironment, possibly leading to more accurate representations of cell-to-cell interactions, tumor biology, and predictions of drug response. The 3D cell cultures can also potentially provide alternative ways to study hematological cancers and are expected to eventually bridge the gap between 2D cell culture and animal models. The present review provides an overview of the complexity of the lymphoid microenvironment and a summary of the currently used 3D models that aim at recreating it for hematological cancer research. We here dissect the differences and challenges between, and potential advantages of, different culture methods and present our vision of the most promising future strategies in the hematological field.
Collapse
Affiliation(s)
- Dafne Barozzi
- Università degli Studi di Milano-Bicocca, School of Medicine and Surgery, PhD program in Molecular and Translational Medicine (DIMET), Milano, Italy
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Cristina Scielzo
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
8
|
Kubacz M, Kusowska A, Winiarska M, Bobrowicz M. In Vitro Diffuse Large B-Cell Lymphoma Cell Line Models as Tools to Investigate Novel Immunotherapeutic Strategies. Cancers (Basel) 2022; 15:cancers15010235. [PMID: 36612228 PMCID: PMC9818372 DOI: 10.3390/cancers15010235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Despite the high incidence of diffuse large B-cell lymphoma (DLBCL), its management constitutes an ongoing challenge. The most common DLBCL variants include activated B-cell (ABC) and germinal center B-cell-like (GCB) subtypes including DLBCL with MYC and BCL2/BCL6 rearrangements which vary among each other with sensitivity to standard rituximab (RTX)-based chemoimmunotherapy regimens and lead to distinct clinical outcomes. However, as first line therapies lead to resistance/relapse (r/r) in about half of treated patients, there is an unmet clinical need to identify novel therapeutic strategies tailored for these patients. In particular, immunotherapy constitutes an attractive option largely explored in preclinical and clinical studies. Patient-derived cell lines that model primary tumor are indispensable tools that facilitate preclinical research. The current review provides an overview of available DLBCL cell line models and their utility in designing novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Małgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| |
Collapse
|
9
|
Duś-Szachniewicz K, Gdesz-Birula K, Nowosielska E, Ziółkowski P, Drobczyński S. Formation of Lymphoma Hybrid Spheroids and Drug Testing in Real Time with the Use of Fluorescence Optical Tweezers. Cells 2022; 11:cells11132113. [PMID: 35805197 PMCID: PMC9265821 DOI: 10.3390/cells11132113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
Interactions between stromal and lymphoma cells in the bone marrow are closely related to drug resistance and therapy failure. Physiologically relevant pre-clinical three-dimensional (3D) models recapitulating lymphoma microenvironmental complexity do not currently exist. In this study, we proposed a scheme for optically controlled hybrid lymphoma spheroid formation with the use of optical tweezers (OT). Following the preparation of stromal spheroids using agarose hydrogel, two aggressive non-Hodgkin lymphoma B-cell lines, Ri-1 (DLBCL) and Raji (Burkitt lymphoma), were used to conduct multi-cellular spheroid formation driven by in-house-developed fluorescence optical tweezers. Importantly, the newly formed hybrid spheroid preserved the 3D architecture for the next 24 h. Our model was successfully used for the evaluation of the influence of the anticancer agents doxorubicin (DOX), ibrutinib (IBR), and AMD3100 (plerixafor) on the adhesive properties of lymphoma cells. Importantly, our study revealed that a co-treatment of DOX and IBR with AMD3100 affects the adhesion of B-NHL lymphoma cells.
Collapse
Affiliation(s)
- Kamila Duś-Szachniewicz
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, 50-368 Wrocław, Poland; (K.G.-B.); (P.Z.)
- Correspondence: (K.D.-S.); (S.D.); Tel.: +48-71-784-12-25 (K.D.-S.)
| | - Katarzyna Gdesz-Birula
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, 50-368 Wrocław, Poland; (K.G.-B.); (P.Z.)
| | - Emilia Nowosielska
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, 50-368 Wrocław, Poland; (K.G.-B.); (P.Z.)
| | - Sławomir Drobczyński
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
- Correspondence: (K.D.-S.); (S.D.); Tel.: +48-71-784-12-25 (K.D.-S.)
| |
Collapse
|