1
|
Bernardo VS, Torres FF, Zucão ACA, Chaves NA, Santana ILR, da Silva DGH. Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies. Tissue Cell 2025; 93:102717. [PMID: 39805212 DOI: 10.1016/j.tice.2024.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus. Moreover, this review summarizes the current knowledge about the disease-modifying agents and their action mechanisms based on the sickle RBC alterations previously mentioned (i.e., their association with beneficial effects on the sickle cells' membrane, to their RBCs' energy metabolism, and to their oxidative status). Therefore, providing a comprehensive understanding of how sickle cells cope with the disruption of metabolic homeostasis and the most promising therapeutic agents able to ameliorate the various consequences of abnormal sickle RBC alterations.
Collapse
Affiliation(s)
| | | | | | - Nayara Alves Chaves
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil.
| |
Collapse
|
2
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 PMCID: PMC11611669 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
4
|
Krishnan D, Babu S, Raju R, Veettil MV, Prasad TSK, Abhinand CS. Epstein-Barr Virus: Human Interactome Reveals New Molecular Insights into Viral Pathogenesis for Potential Therapeutics and Antiviral Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:32-44. [PMID: 38190109 DOI: 10.1089/omi.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Host-virus Protein-Protein Interactions (PPIs) play pivotal roles in biological processes crucial for viral pathogenesis and by extension, inform antiviral drug discovery and therapeutics innovations. Despite efforts to develop the Epstein-Barr virus (EBV)-host PPI network, there remain significant knowledge gaps and a limited number of interacting human proteins deciphered. Furthermore, understanding the dynamics of the EBV-host PPI network in the distinct lytic and latent viral stages remains elusive. In this study, we report a comprehensive map of the EBV-human protein interactions, encompassing 1752 human and 61 EBV proteins by integrating data from the public repository HPIDB (v3.0) as well as curated high-throughput proteomic data from the literature. To address the stage-specific nature of EBV infection, we generated two detailed subset networks representing the latent and lytic stages, comprising 747 and 481 human proteins, respectively. Functional and pathway enrichment analysis of these subsets uncovered the profound impact of EBV proteins on cancer. The identification of highly connected proteins and the characterization of intrinsically disordered and cancer-related proteins provide valuable insights into potential therapeutic targets. Moreover, the exploration of drug-protein interactions revealed notable associations between hub proteins and anticancer drugs, offering novel perspectives for controlling EBV pathogenesis. This study represents, to the best of our knowledge, the first comprehensive investigation of the two distinct stages of EBV infection using high-throughput datasets. This makes a contribution to our understanding of EBV-host interactions and provides a foundation for future drug discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
5
|
Feral A, Martin AR, Desfoux A, Amblard M, Vezenkov LL. Covalent-reversible peptide-based protease inhibitors. Design, synthesis, and clinical success stories. Amino Acids 2023; 55:1775-1800. [PMID: 37330416 DOI: 10.1007/s00726-023-03286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated human peptidases are implicated in a large variety of diseases such as cancer, hypertension, and neurodegeneration. Viral proteases for their part are crucial for the pathogens' maturation and assembly. Several decades of research were devoted to exploring these precious therapeutic targets, often addressing them with synthetic substrate-based inhibitors to elucidate their biological roles and develop medications. The rational design of peptide-based inhibitors offered a rapid pathway to obtain a variety of research tools and drug candidates. Non-covalent modifiers were historically the first choice for protease inhibition due to their reversible enzyme binding mode and thus presumably safer profile. However, in recent years, covalent-irreversible inhibitors are having a resurgence with dramatic increase of their related publications, preclinical and clinical trials, and FDA-approved drugs. Depending on the context, covalent modifiers could provide more effective and selective drug candidates, hence requiring lower doses, thereby limiting off-target effects. Additionally, such molecules seem more suitable to tackle the crucial issue of cancer and viral drug resistances. At the frontier of reversible and irreversible based inhibitors, a new drug class, the covalent-reversible peptide-based inhibitors, has emerged with the FDA approval of Bortezomib in 2003, shortly followed by 4 other listings to date. The highlight in the field is the breathtakingly fast development of the first oral COVID-19 medication, Nirmatrelvir. Covalent-reversible inhibitors can hipothetically provide the safety of the reversible modifiers combined with the high potency and specificity of their irreversible counterparts. Herein, we will present the main groups of covalent-reversible peptide-based inhibitors, focusing on their design, synthesis, and successful drug development programs.
Collapse
Affiliation(s)
- Anthony Feral
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Muriel Amblard
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
6
|
Elgamal HA, Mohamed SA, Farghali AA, Hassan AME. PEG@ Carbon Nanotubes Composite as an Effective Nanocarrier of Ixazomib for Myeloma Cancer Therapy. NANOSCALE RESEARCH LETTERS 2022; 17:72. [PMID: 35930196 PMCID: PMC9356125 DOI: 10.1186/s11671-022-03707-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, the preparation of a PEG@ multi-walled carbon nanotubes (MWCNTs) composite has shown a great potential effect in tumor therapy using graphite powder at room temperature. PEGylated MWCNTs were created and used as a carrier for targeting the antineoplastic drug Ixazomib to myeloma cancer cells (abnormal plasma cells). Ixazomib (MLN2238) was covalently encapsulated into functionalized carbon nanotubes modified with polyethylene glycol (PEG 600) to obtain MWCNTs-PEG-MLN2238. The Ixazomib@ MWCNTs-PEG composite shows promising results as an effective nanocarrier and using a small amount of MWCNTs-PEG-Ixazomib that has a low toxicity compared with that of Ixazomib alone. A multifunctional MWCNTs-PEG-Ixazomib composite is used to test biological effects on multiple myeloma cell lines RPMI 8226 using the MTT assay to enhance treatment efficiency. The cytotoxicity of free Ixazomib citrate (69% cell viability of RPMI8226 cells) was higher than that of MWCNTs-PEG-Ixazomib (91% cell viability) at the same maximum concentration of Ixazomib citrate (50 µg/ml). In this work, we performed a study of preparation of MWCNTs with an acceptable Ixazomib loading efficiency and determination of the drug systemic toxicity for the first time. In this study, the preparation of MWCNTs with acceptable Ixazomib loading efficiency and determination of the drug systemic toxicity was performed for the first time. The MTT assay results show decreasing the toxicity of Ixazomib after loading with the MWCNTs-PEG composite. The MWCNTs-PEG @ Ixazomib show promising results as an effective carrier of Ixazomib and lead to a decrease in the cost of using Ixazomib.
Collapse
Affiliation(s)
- Hanady A. Elgamal
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511 Egypt
- National Organization of Drug Control and Research, Dokki, Egypt
| | | | - Ahmed A. Farghali
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Abeer M. E. Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
7
|
Coulson AB, Royle KL, Pawlyn C, Cairns DA, Hockaday A, Bird J, Bowcock S, Kaiser M, de Tute R, Rabin N, Boyd K, Jones J, Parrish C, Gardner H, Meads D, Dawkins B, Olivier C, Henderson R, Best P, Owen R, Jenner M, Kishore B, Drayson M, Jackson G, Cook G. Frailty-adjusted therapy in Transplant Non- Eligible patient s with newly diagno sed Multiple Myeloma (FiTNEss (UK-MRA Myeloma XIV Trial)): a study protocol for a randomised phase III trial. BMJ Open 2022; 12:e056147. [PMID: 35654466 PMCID: PMC9163533 DOI: 10.1136/bmjopen-2021-056147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/24/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Multiple myeloma is a bone marrow cancer, which predominantly affects older people. The incidence is increasing in an ageing population.Over the last 10 years, patient outcomes have improved. However, this is less apparent in older, less fit patients, who are ineligible for stem cell transplant. Research is required in this patient group, taking into account frailty and aiming to improve: treatment tolerability, clinical outcomes and quality of life. METHODS AND ANALYSIS Frailty-adjusted therapy in Transplant Non-Eligible patients with newly diagnosed Multiple Myeloma is a national, phase III, multicentre, randomised controlled trial comparing standard (reactive) and frailty-adjusted (adaptive) induction therapy delivery with ixazomib, lenalidomide and dexamethasone (IRD), and to compare maintenance lenalidomide to lenalidomide+ixazomib, in patients with newly diagnosed multiple myeloma not suitable for stem cell transplant. Overall, 740 participants will be registered into the trial to allow 720 and 478 to be randomised at induction and maintenance, respectively.All participants will receive IRD induction with the dosing strategy randomised (1:1) at trial entry. Patients randomised to the standard, reactive arm will commence at the full dose followed by toxicity dependent reactive modifications. Patients randomised to the adaptive arm will commence at a dose level determined by their International Myeloma Working Group frailty score. Following 12 cycles of induction treatment, participants alive and progression free will undergo a second (double-blind) randomisation on a 1:1 basis to maintenance treatment with lenalidomide+placebo versus lenalidomide+ixazomib until disease progression or intolerance. ETHICS AND DISSEMINATION Ethical approval has been obtained from the North East-Tyne & Wear South Research Ethics Committee (19/NE/0125) and capacity and capability confirmed by local research and development departments for each participating centre prior to opening to recruitment. Participants are required to provide written informed consent prior to trial registration. Trial results will be disseminated by conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER ISRCTN17973108, NCT03720041.
Collapse
Affiliation(s)
- Amy Beth Coulson
- Leeds Institute of Clinical Trials Research, University of Leeds Clinical Trials Research Unit, Leeds, West Yorkshire, UK
| | - Kara-Louise Royle
- Leeds Institute of Clinical Trials Research, University of Leeds Clinical Trials Research Unit, Leeds, West Yorkshire, UK
| | | | - David A Cairns
- Leeds Institute of Clinical Trials Research, University of Leeds Clinical Trials Research Unit, Leeds, West Yorkshire, UK
| | - Anna Hockaday
- Leeds Institute of Clinical Trials Research, University of Leeds Clinical Trials Research Unit, Leeds, West Yorkshire, UK
| | - Jennifer Bird
- Department of Haematology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Stella Bowcock
- Department of Haematology, Kings College Hospital NHS Foundation Trust, Princess Royal Hospital, Hull, UK
| | - Martin Kaiser
- Institute of Cancer Research, London, UK
- The Department of Haemato-oncology, Royal Marsden Hospital NHS Trust, London, UK
| | - Ruth de Tute
- Haematology Malignancy Diagnostic Service (HMDS), St James's University Hospital, Leeds, West Yorkshire, UK
| | - Neil Rabin
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Kevin Boyd
- The Department of Haemato-oncology, Royal Marsden Hospital NHS Trust, London, UK
| | - John Jones
- King's College Hospital, London, UK
- Brighton and Sussex Medical School, Brighton, UK
| | | | - Hayley Gardner
- Department of Haematology and Stem Cell Transplantation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - David Meads
- Academic Unit of Health Economics, University of Leeds, Leeds Institute of Health Sciences, Leeds, West Yorkshire, UK
| | - Bryony Dawkins
- Academic Unit of Health Economics, University of Leeds, Leeds Institute of Health Sciences, Leeds, West Yorkshire, UK
| | - Catherine Olivier
- Leeds Institute of Clinical Trials Research, University of Leeds Clinical Trials Research Unit, Leeds, West Yorkshire, UK
| | - Rowena Henderson
- Leeds Institute of Clinical Trials Research, University of Leeds Clinical Trials Research Unit, Leeds, West Yorkshire, UK
| | - Phillip Best
- Leeds Institute of Clinical Trials Research, University of Leeds Clinical Trials Research Unit, Leeds, West Yorkshire, UK
| | - Roger Owen
- Haematology Malignancy Diagnostic Service (HMDS), St James's University Hospital, Leeds, West Yorkshire, UK
| | | | - Bhuvan Kishore
- Department of Haematology and Stem Cell Transplantation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mark Drayson
- Institute of Immunology and Immunotherapy, Department of Haematology, University of Birmingham, Birmingham, UK
| | - Graham Jackson
- Department of Haematology, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Gordon Cook
- Leeds Institute of Clinical Trials Research, University of Leeds Clinical Trials Research Unit, Leeds, West Yorkshire, UK
- Leeds Cancer Centre, St James's University Hospital, Leeds, West Yorkshire, UK
| |
Collapse
|
8
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
9
|
Tao J, Srinivasan V, Yi X, Zhao Y, Zhang H, Lin X, Zhou X, Boyce BF, Villalta PW, Ebetino FH, Ho KK, Boeckman RK, Xing L. Bone-Targeted Bortezomib Inhibits Bortezomib-Resistant Multiple Myeloma in Mice by Providing Higher Levels of Bortezomib in Bone. J Bone Miner Res 2022; 37:629-642. [PMID: 34970782 PMCID: PMC9018514 DOI: 10.1002/jbmr.4496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022]
Abstract
Limited treatment options exist for cancer within the bone, as demonstrated by the inevitable, pernicious course of metastatic and blood cancers. The difficulty of eliminating bone-residing cancer, especially drug-resistant cancer, necessitates novel, alternative treatments to manipulate tumor cells and their microenvironment, with minimal off-target effects. To this end, bone-targeted conjugate (BP-Btz) was generated by linking bortezomib (Btz, an anticancer, bone-stimulatory drug) to a bisphosphonate (BP, a targeting ligand) through a cleavable linker that enables spatiotemporally controlled delivery of Btz to bone under acidic conditions for treating multiple myeloma (MM). Three conjugates with different linkers were developed and screened for best efficacy in mouse model of MM. Results demonstrated that the lead candidate BP-Btz with optimal linker could overcome Btz resistance, reduced tumor burden, bone destruction, or tumor metastasis more effectively than BP or free Btz without thrombocytopenia and neurotoxicity in mice bearing myeloma. Furthermore, pharmacokinetic and pharmacodynamic studies showed that BP-Btz bound to bone matrix, released Btz in acidic conditions, and had a higher local concentration and longer half-life than Btz in bone. Our findings suggest the potential of bone-targeted Btz conjugate as an efficacious Btz-resistant MM treatment mechanism. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jianguo Tao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Xiangjiao Yi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xichao Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY, USA.,BioVinc, Pasadena, CA, USA
| | - Koc Kan Ho
- Ionova Life Science Co., Ltd, Shenzhen, China
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
10
|
Dhawan B, Akhter G, Hamid H, Kesharwani P, Alam MS. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
12
|
Wang Z, Hou H, Zhang H, Duan X, Li L, Meng L. Effect of MUC16 mutations on tumor mutation burden and its potential prognostic significance for cutaneous melanoma. Am J Transl Res 2022; 14:849-862. [PMID: 35273689 PMCID: PMC8902552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES MUC16, a mucin marker with a high mutation probability, is closely related to the occurrence, development, response to treatment, and prognosis of melanoma. As melanoma has high immunogenicity, immunotherapy has become a routine treatment. Tumor mutation burden (TMB) is the most common indicator for determining appropriate immunotherapy. The relationship between the mutation and expression of MUC16 and the prognosis, TMB, level of immune infiltration, and drug sensitivity in melanoma was investigated in this study. METHODS Melanoma data were downloaded from the Cancer Genome Atlas and the International Cancer Genome Consortium database, and the "GenVisR" package was used to visualize the gene mutation types and frequencies. Intersections of the top 30 genes with the highest mutation frequencies were determined. Thereafter, we investigated the effects of MUC16 mutations on overall survival (OS) and TMB of melanoma patients by multivariate Cox regression and multivariate logistic analyses. Related pathways that were enriched by MUC16 and BRAF were investigated using gene-set enrichment analysis and gene-set variation analysis. The CIBERSORT calculation method was used to analyze the proportion of tumor-infiltrating immune subsets. The relationship between MUC16 expression and drug sensitivity was also discussed. RESULTS Twenty-two genes with high mutation frequencies were identified in both datasets. MUC16 and ADGRV1 mutations were associated with higher TMB and good clinical prognosis (P<0.05). Multivariate Cox regression analysis showed that age, clinical stage, and MUC16 mutations were independent prognostic factors affecting OS of melanoma patients. Multivariate logistic analysis showed that gender and MUC16 mutations were independent prognostic factors affecting the TMB. MUC16 mutations and high-expression groups were primarily enriched in immune-related pathways. Furthermore, T-cell CD4 memory activation and T-cell CD8 were positively correlated with MUC16 expression and activated dendritic cells were significantly enriched in the MUC16 mutant group. Abnormal MUC16 expression may be related to abnormal methylation and drug resistance. CONCLUSION MUC16 was found to have a higher mutation frequency in melanoma patients, which is associated with a higher TMB. The mutation and/or expression of MUC16 may affect immune-related pathways and tumor-infiltrating immune cell subsets, which may improve the prognosis for melanoma patients.
Collapse
Affiliation(s)
- Zi Wang
- Department of Dermatology, Dong Zhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing 100700, China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijing 100730, China
| | - Haomin Zhang
- Department of Dermatology, Dong Zhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing 100700, China
| | - Xingwu Duan
- Department of Dermatology, Dong Zhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing 100700, China
| | - Lingling Li
- Dong Zhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing 100700, China
| | - Lingfeng Meng
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijing 100730, China
- Beijing Hospital Continence CenterBeijing 100730, China
| |
Collapse
|
13
|
Kersten MJ, Amaador K, Minnema MC, Vos JMI, Nasserinejad K, Kap M, Kastritis E, Gavriatopoulou M, Kraan W, Chamuleau MED, Deeren D, Tick LW, Doorduijn JK, Offner F, Böhmer LH, Liu RD, Pals ST, Dimopoulos MA. Combining Ixazomib With Subcutaneous Rituximab and Dexamethasone in Relapsed or Refractory Waldenström's Macroglobulinemia: Final Analysis of the Phase I/II HOVON124/ECWM-R2 Study. J Clin Oncol 2022; 40:40-51. [PMID: 34388022 PMCID: PMC8683241 DOI: 10.1200/jco.21.00105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Proteasome inhibitors are effective in Waldenström's macroglobulinemia (WM) but require parenteral administration and are associated with polyneuropathy. We investigated efficacy and toxicity of the less neurotoxic oral proteasome inhibitor ixazomib combined with rituximab, in patients with relapsed WM. METHODS We conducted a multicenter phase I/II trial with ixazomib, rituximab, and dexamethasone (IRD). Induction consisted of eight cycles IRD wherein rituximab was started in cycle 3, followed by rituximab maintenance. Phase I showed feasibility of 4 mg ixazomib. Primary end point for phase II was overall response rate (ORR [≥ minimal response]) after induction. RESULTS A total of 59 patients were enrolled (median age, 69 years; range, 46-91 years). Median number of prior treatments was 2 (range, 1-7); 70% had an intermediate or high WM-IPSS (International Prognostic Scoring System for WM) score. After eight cycles, ORR was 71% (42 out of 59) (14% very good partial response [PR], 37% PR, and 20% minor response). Depth of response improved until month 12 (best ORR 85% [50 out of 59]: 15% very good PR, 46% PR, and 24% minor response). Median duration of response was 36 months. The average hematocrit level increased significantly (0.33-0.38 L/L) after induction (P < .001). After two cycles of ixazomib and dexamethasone, immunoglobulin M levels decreased significantly (median 3,700-2,700 mg/dL, P < .0001). Median time to first response was 4 months. Median progression-free survival and overall survival were not reached. After median follow-up of 24 months (range, 7.4-54.3 months), progression-free survival and overall survival were 56% and 88%, respectively. Toxicity included mostly grade 2 or 3 cytopenias, grade 1 or 2 neurotoxicity, and grade 2 or 3 infections. No infusion-related reactions or immunoglobulin M flare occurred with use of subcutaneous rituximab. Quality of life improved significantly after induction. In total, 48 patients (81%) completed at least six cycles of IRD. CONCLUSION Combination of IRD shows promising efficacy with manageable toxicity in patients with relapsed or refractory WM.
Collapse
Affiliation(s)
- Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, the Netherlands,Marie José Kersten, Department of Hematology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; e-mail:
| | - Karima Amaador
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, the Netherlands
| | - Monique C. Minnema
- Department of Hematology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Josephine M. I. Vos
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, the Netherlands
| | - Kazem Nasserinejad
- Department of Hematology, HOVON Data Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Marcel Kap
- Department of Hematology, HOVON Data Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Willem Kraan
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, the Netherlands
| | - Martine E. D. Chamuleau
- Department of Hematology, Amsterdam UMC, VU University, Amsterdam and Cancer Center, Amsterdam, the Netherlands
| | - Dries Deeren
- Department of Hematology, AZ Delta, Roeselare, Belgium
| | - Lidwine W. Tick
- Department of Hematology, Maxima Medical Center, Eindhoven, the Netherlands
| | - Jeanette K. Doorduijn
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Fritz Offner
- Department of Hematology, University Hospital Gent, Gent, Belgium
| | - Lara H. Böhmer
- Department of Hematology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Roberto D. Liu
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, the Netherlands
| | - Steven T. Pals
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, the Netherlands
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Jayaweera SPE, Wanigasinghe Kanakanamge SP, Rajalingam D, Silva GN. Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Front Oncol 2021; 11:740796. [PMID: 34858819 PMCID: PMC8631731 DOI: 10.3389/fonc.2021.740796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The proteasome is crucial for the degradation of intracellular proteins and plays an important role in mediating a number of cell survival and progression events by controlling the levels of key regulatory proteins such as cyclins and caspases in both normal and tumor cells. However, compared to normal cells, cancer cells are more dependent on the ubiquitin proteasome pathway (UPP) due to the accumulation of proteins in response to uncontrolled gene transcription, allowing proteasome to become a potent therapeutic target for human cancers such as multiple myeloma (MM). Up to date, three proteasome inhibitors namely bortezomib (2003), carfilzomib (2012) and ixazomib (2015) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed and/or refractory MM. This review mainly focuses on the biochemical properties, mechanism of action, toxicity profile and pivotal clinical trials related to carfilzomib, a second-generation proteasome inhibitor that binds irreversibly with proteasome to overcome the major toxicities and resistance associated with bortezomib.
Collapse
Affiliation(s)
| | | | - Dharshika Rajalingam
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Gayathri N Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
15
|
Fang Y, Johnson H, Anderl JL, Muchamuel T, McMinn D, Morisseau C, Hammock BD, Kirk C, Wang J. Role of Epoxide Hydrolases and Cytochrome P450s on Metabolism of KZR-616, a First-in-Class Selective Inhibitor of the Immunoproteasome. Drug Metab Dispos 2021; 49:810-821. [PMID: 34234005 DOI: 10.1124/dmd.120.000307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/24/2021] [Indexed: 11/22/2022] Open
Abstract
KZR-616 is an irreversible tripeptide epoxyketone-based selective inhibitor of the human immunoproteasome. Inhibition of the immunoproteasome results in anti-inflammatory activity in vitro and based on promising therapeutic activity in animal models of rheumatoid arthritis and systemic lupus erythematosus KZR-616 is being developed for potential treatment of multiple autoimmune and inflammatory diseases. The presence of a ketoepoxide pharmacophore presents unique challenges in the study of drug metabolism during lead optimization and clinical candidate profiling. This study presents a thorough and systematic in vitro and cell-based enzymatic metabolism and kinetic investigation to identify the major enzymes involved in the metabolism and elimination of KZR-616. Upon exposure to liver microsomes in the absence of NADPH, KZR-616 and its analogs were converted to their inactive diol derivatives with varying degrees of stability. Diol formation was also shown to be the major metabolite in pharmacokinetic studies in monkeys and correlated with in vitro stability results for individual compounds. Further study in intact hepatocytes revealed that KZR-616 metabolism was sensitive to an inhibitor of microsomal epoxide hydrolase (mEH) but not inhibitors of cytochrome P450 (P450) or soluble epoxide hydrolase (sEH). Primary human hepatocytes were determined to be the most robust source of mEH activity for study in vitro. These findings also suggest that the exposure of KZR-616 in vivo is unlikely to be affected by coadministration of inhibitors or inducers of P450 and sEH. SIGNIFICANCE STATEMENT: This work presents a thorough and systematic investigation of metabolism and kinetics of KZR-616 and related analogs in in vitro and cell-based enzymatic systems. Information gained could be useful in assessing novel covalent proteasome inhibitors during lead compound optimization. These studies also demonstrate a robust source in vitro test system that correlated with in vivo pharmacokinetics for KZR-616 and two additional tripeptide epoxyketones.
Collapse
Affiliation(s)
- Ying Fang
- Kezar Life Sciences, South San Francisco, California
| | - Henry Johnson
- Kezar Life Sciences, South San Francisco, California
| | | | | | - Dustin McMinn
- Kezar Life Sciences, South San Francisco, California
| | | | | | | | - Jinhai Wang
- Kezar Life Sciences, South San Francisco, California
| |
Collapse
|
16
|
Wang Q, Dong Z, Su J, Huang J, Xiao P, Tian L, Chen Y, Ma L, Chen X. Ixazomib inhibits myeloma cell proliferation by targeting UBE2K. Biochem Biophys Res Commun 2021; 549:1-7. [PMID: 33647537 DOI: 10.1016/j.bbrc.2021.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Ixazomib is a selective, effective, and reversible inhibitor of 20S proteasome and is approved for the treatment of multiple myeloma. Ubiquitin-conjugating enzyme E2 (UBE2K) is involved in the synthesis of K48-linked ubiquitin chains and is the target of certain drugs used for the treatment of tumors. The purpose of this study was to investigate the relationship between ixazomib and UBE2K in myeloma cells. METHODS We used CCK-8 and Annexin V-FITC/propidium iodide kit to detect the effects of ixazomib on survival and apoptosis of RPMI-8226 and U-266 myeloma cell lines. Quantitative polymerase chain reaction and western blot were used to detect the change in gene and protein expression levels of myeloma cells treated with ixazomib. Furthermore, the regulatory effects of ixazomib on UBE2K and its downstream targets were investigated following the overexpression of UBE2K. RESULTS In myeloma cells, ixazomib decreased cell survival and increased apoptosis in a dose-dependent manner. Ixazomib significantly increased the expression of HIST1H2BD, MNAT1, NEK3, and TARS2, while decreasing the expression of HSPA1B and UBE2K. In addition, ixazomib inhibited the proliferation of myeloma cells, blocked cell cycle, induced cell apoptosis, and increased the production of reactive oxygen species by inhibiting UBE2K expression. Lastly, ixazomib regulates mitosis- and apoptosis-related genes by lowering UBE2K expression. CONCLUSION In summary, ixazomib leads to impaired proliferation of myeloma cells by targeting UBE2K.
Collapse
Affiliation(s)
- Qingqing Wang
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Zhigao Dong
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Junnan Su
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Jinmei Huang
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Pingping Xiao
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Lihong Tian
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Yongquan Chen
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Lili Ma
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Xuyan Chen
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| |
Collapse
|
17
|
Protti ÍF, Rodrigues DR, Fonseca SK, Alves RJ, de Oliveira RB, Maltarollo VG. Do Drug-likeness Rules Apply to Oral Prodrugs? ChemMedChem 2021; 16:1446-1456. [PMID: 33471444 DOI: 10.1002/cmdc.202000805] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Indexed: 12/21/2022]
Abstract
This paper describes a comparative analysis of the physicochemical and structural properties of prodrugs and their corresponding drugs with regard to drug-likeness rules. The dataset used in this work was obtained from the DrugBank. Sixty-five pairs of prodrugs/drugs were retrieved and divided into the following categories: carrier-linked to increase hydrophilic character, carrier-linked to increase absorption, and bioprecursors. We compared the physicochemical properties related to drug-likeness between prodrugs and drugs. Our results show that prodrugs do not always follow Lipinski's Rule of 5, especially as we observed 15 prodrugs with more than 10 hydrogen bond acceptors and 18 with a molecular weight greater than 500 Da. This fact highlights the importance of extending Lipinski's rules to encompass other parameters as both strategies (filtering of drug-like chemical libraries and prodrug design) aim to improve the bioavailability of compounds. Therefore, critical reasoning is fundamental to determine whether a structure has drug-like properties or could be considered a potential orally active compound in the drug-design pipeline.
Collapse
Affiliation(s)
- Ícaro F Protti
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, BR 31270-901, Brazil
| | - Daniel R Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, BR 31270-901, Brazil
| | - Sofia K Fonseca
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, BR 31270-901, Brazil
| | - Ricardo J Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, BR 31270-901, Brazil
| | - Renata B de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, BR 31270-901, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, BR 31270-901, Brazil
| |
Collapse
|
18
|
Kim A, Suzuki Y, Nagasaki Y. Molecular design of a high-performance polymeric carrier for delivery of a variety of boronic acid-containing drugs. Acta Biomater 2021; 121:554-565. [PMID: 33321218 DOI: 10.1016/j.actbio.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Because of their many useful and unique properties, boronic acids are well suited for biomedical applications such as antitumor chemotherapy and boron neutron capture therapy (BNCT). Bortezomib, a boronic acid derivative, has drawn a lot of attention as a potent proteasome inhibitor. Nevertheless, because of rapid excretion and off-target effects, the clinical translation of boronic acid-containing drugs is limited. To this end, we employed a polymeric carrier to stably encapsulate boronic acid-containing drugs and achieve superior pharmacokinetics with an on-target drug release capability. Accordingly, to construct a supramolecular polymeric nanoparticle, we took advantage of the facile, stable, and pH-sensitive conjugation between boronic acids and diethanolamine-installed polymeric carriers. We demonstrated the feasibility of our molecular design by generating and applying bortezomib-loaded nanoparticles to a subcutaneous tumor-bearing mouse model. Stable encapsulation and pH-sensitive release of bortezomib facilitated antitumor efficacy and alleviated hepatotoxicity. We also verified the versatility of our approach through biological evaluations of the nanoparticles encapsulating benzo(b)thiophene-2-boronic acid, phenylboronic acid, and p-phenylene-diboronic acid.
Collapse
|
19
|
Cary DC, Peterlin BM. Proteasomal Inhibition Potentiates Latent HIV Reactivation. AIDS Res Hum Retroviruses 2020; 36:800-807. [PMID: 32683901 DOI: 10.1089/aid.2020.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), ART fails to eradicate the virus and HIV cure has remained beyond the reach of current treatments. ART targets replicating virally infected but not latently infected cells, which have limited expression of factors important for proliferation and cellular activity, including positive transcription elongation factor b (P-TEFb) and nuclear factor κB (NF-κB). Levels of the cyclin T1 (CycT1) subunit of P-TEFb are low to absent in resting T cells, and treatment with proteasome inhibitors (PIs) increases CycT1 protein levels to those of proliferating T cells. In this study, the clinically approved PI bortezomib reactivated latent HIV in latently infected primary CD4+ T cells. Bortezomib not only increased levels of CycT1 but also activated NF-κB. Strikingly, as opposed to most currently researched latency reversing agents (LRAs), bortezomib did not require a second LRA to potently reactivate latent HIV. Effects of bortezomib on resting T cells and reactivation of HIV suggest a possible direction for future attempts to diminish the viral reservoir in HIV+ individuals.
Collapse
Affiliation(s)
- Daniele C. Cary
- Department of Medicine, University of California at San Francisco, San Francisco, California, USA
| | - B. Matija Peterlin
- Department of Medicine, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
21
|
Fraz MA, Warraich FH, Warraich SU, Tariq MJ, Warraich Z, Khan AY, Usman M, Ijaz A, Tenneti P, Mushtaq A, Akbar F, Shahid Z, Ali Z, Fazeel HM, Rodriguez C, Nasar A, McBride A, Anwer F. Special considerations for the treatment of multiple myeloma according to advanced age, comorbidities, frailty and organ dysfunction. Crit Rev Oncol Hematol 2019; 137:18-26. [PMID: 31014512 PMCID: PMC6508081 DOI: 10.1016/j.critrevonc.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/24/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple Myeloma (MM) is primarily a disease of old age with a median age of sixty-nine years at diagnosis. The development of novel therapies for induction and use of autologous stem cell transplantation has resulted in improved clinical outcomes and better quality of life for MM patients. Elderly patients, comprising the majority of MM population, have a higher incidence of age-related comorbidities, frailty and organ dysfunction which complicates the coordination of treatment and limits the selection of therapies. Even in the era of multiple chemotherapeutic options, the clinical heterogeneity of the myeloma patients' demands personalized treatments which often require dose-adjustments or dose delays. The use of reduced-dose regimens and various comorbidity indices has improved clinical outcome and regimen tolerability in MM patients with renal, neurological and bone abnormalities. We focus on advancements in the treatment of multiple myeloma with the goal to guide clinicians towards patient-specific management.
Collapse
Affiliation(s)
- Muhammad Asad Fraz
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Faiza Hassan Warraich
- Department of Internal Medicine, McLaren-Flint Medical Center, Flint, MI, 48532, United States
| | - Sami Ullah Warraich
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Muhammad Junaid Tariq
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Zabih Warraich
- Department of Internal Medicine, United Health Services Wilson Memorial Regional Medical Center, Johnson City, NY, 13790, United States
| | - Ali Younas Khan
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Muhammad Usman
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Awais Ijaz
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Pavan Tenneti
- Department of Medicine, Banner University Medical Center, Tucson, AZ, 85724, United States
| | - Adeela Mushtaq
- Department of Medicine, University of Pittsburgh Medical Center, McKeesport, PA, 15132, United States
| | - Faisal Akbar
- Department of Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, United States
| | - Zaina Shahid
- Department of Medicine, Wilkes Medical Center- Wake Forest Baptist Health, Wilkesboro, NC, 28659, United States
| | - Zeeshan Ali
- Department of Medicine, Southern Arizona Veterans Affairs Health Care System, Tucson, AZ, 85723, United States
| | - Hafiz Muhammad Fazeel
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Cesar Rodriguez
- Department of Hematology Oncology, Wake Forest Baptist Medical Comprehensive Cancer Center, Winston Salem, NC, 27157, United States
| | - Aboo Nasar
- Department of Geriatrics, Tri-City Medical Center, 4002 Vista Way, Oceanside, CA 92056, United States
| | - Ali McBride
- Department of Pharmacy, The University of Arizona Cancer Center, Tucson, AZ, 85737, United States
| | - Faiz Anwer
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States; Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH, 44195, United States.
| |
Collapse
|
22
|
Ganguly S, Kuravi S, Alleboina S, Mudduluru G, Jensen RA, McGuirk JP, Balusu R. Targeted Therapy for EBV-Associated B-cell Neoplasms. Mol Cancer Res 2018; 17:839-844. [PMID: 30487243 DOI: 10.1158/1541-7786.mcr-18-0924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is directly implicated in several B-cell lymphoid malignancies. EBV-associated lymphomas are characterized by prominent activation of the NF-κB pathway and targeting this pathway establishes a rationale for a therapeutic approach. The ubiquitin/proteasome signaling plays an essential role in the regulation of the NF-κB pathway. Ixazomib is an FDA-approved, orally bioavailable proteasome inhibitor. Here we report the first preclinical evaluation of ixazomib-mediated growth-inhibitory effects on EBV-infected B-lymphoblastoid cell lines Raji and Daudi. Ixazomib induced apoptosis in these cell lines in a dose-dependent manner. Cell-cycle analysis demonstrated ixazomib treatment induced cell-cycle arrest at the G2-M phase with a concomitant decrease in G0-G1 and S phases. The results further revealed an increase in p53, p21, and p27 levels and a decrease in survivin and c-Myc protein levels. Mechanistically, ixazomib treatment resulted in the accumulation of polyubiquitinated proteins, including phosphorylated IκBα with a significant reduction of p65 subunit nuclear translocation. Altogether, our preclinical data support the rationale for in vivo testing of ixazomib in EBV-associated B-cell neoplasms. IMPLICATIONS: This preclinical study supports the use of oral proteasome inhibitor ixazomib for targeting NF-κB signaling in the treatment of EBV-associated B-cell neoplasms.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/4/839/F1.large.jpg.
Collapse
Affiliation(s)
- Siddhartha Ganguly
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, Kansas City, Kansas
| | - Sudhakiranmayi Kuravi
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, Kansas City, Kansas
| | - Satyanarayana Alleboina
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, Kansas City, Kansas
| | - Giridhar Mudduluru
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, Kansas City, Kansas
| | - Roy A Jensen
- The University of Kansas Cancer Center, Kansas City, Kansas.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Joseph P McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, Kansas City, Kansas
| | - Ramesh Balusu
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas. .,The University of Kansas Cancer Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
23
|
Richardson PG, Zweegman S, O’Donnell EK, Laubach JP, Raje N, Voorhees P, Ferrari RH, Skacel T, Kumar SK, Lonial S. Ixazomib for the treatment of multiple myeloma. Expert Opin Pharmacother 2018; 19:1949-1968. [DOI: 10.1080/14656566.2018.1528229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paul G. Richardson
- Division of Hematologic Malignancy, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Jacob P. Laubach
- Division of Hematologic Malignancy, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Noopur Raje
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Voorhees
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Renda H. Ferrari
- Global Medical Affairs, Millennium Pharmaceuticals, Inc, Cambridge, MA, USA
| | - Tomas Skacel
- Global Medical Affairs, Millennium Pharmaceuticals, Inc, Cambridge, MA, USA
| | | | - Sagar Lonial
- Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
|
25
|
Chang TL, Liou PS, Cheng PY, Chang HN, Tsai PJ. Borneol and Luteolin from Chrysanthemum morifolium Regulate Ubiquitin Signal Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8280-8290. [PMID: 29995407 DOI: 10.1021/acs.jafc.8b01972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Targeting the two degradation systems, ubiquitin proteasome pathway and ubiquitin signal autophagy lysosome system, plays an important function in cancer prevention. Borneol is called an "upper guiding drug". Luteolin has demonstrated anticancer activity. The fact that borneol regulates luteolin can be sufficient to serve as an alternative strategy. Borneol activates luteolin to inhibit E1 and 20S activity (IC50 = 118.8 ± 15.7 μM) and perturb the 26S proteasome structure in vitro. Borneol regulates luteolin to inhibit 26S activity (IC50 = 157 ± 19 μM), induces apoptosis (LC50 = 134 ± 4 μM), and causes pre-G1 and G0/G1 arrest in HepG2 cells. Borneol regulates luteolin to induce ubiquitin signal autophagic degradation, resulting in induction of E1, reduction of USP47, and accumulation of p62 in HepG2 reporter cells. Interestingly, luteolin decreased Ub conjugates, while borneol increased the accumulation of Ub conjugates in HepG2 reporter cells. E1, p62, and ubiquitin levels were downregulated in borneol-treated HepG2 reporter cells at 24 h. These observations suggest a potential autophagic inhibitor of borneol that may guide luteolin in the ubiquitin proteasome pathway and the ubiquitin signal autophagic degradation.
Collapse
Affiliation(s)
- Tsui-Ling Chang
- Department of Biological Sciences and Technology , National University of Tainan , 33, Section 2, Shu-Lin Street , Tainan 70005 , Taiwan
| | - Pei-Shin Liou
- Department of Biological Sciences and Technology , National University of Tainan , 33, Section 2, Shu-Lin Street , Tainan 70005 , Taiwan
| | - Pei-Yuan Cheng
- Department of Biological Sciences and Technology , National University of Tainan , 33, Section 2, Shu-Lin Street , Tainan 70005 , Taiwan
| | - Hsiang-Ning Chang
- Department of Biological Sciences and Technology , National University of Tainan , 33, Section 2, Shu-Lin Street , Tainan 70005 , Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology , National Cheng Kung University , 138 Sheng-Li Road , Tainan 70428 , Taiwan
| |
Collapse
|
26
|
|
27
|
Abstract
Maintenance of protein homeostasis is a crucial process for the normal functioning of the cell. The regulated degradation of proteins is primarily facilitated by the ubiquitin proteasome system (UPS), a system of selective tagging of proteins with ubiquitin followed by proteasome-mediated proteolysis. The UPS is highly dynamic consisting of both ubiquitination and deubiquitination steps that modulate protein stabilization and degradation. Deregulation of protein stability is a common feature in the development and progression of numerous cancer types. Simultaneously, the elevated protein synthesis rate of cancer cells and consequential accumulation of misfolded proteins drives UPS addiction, thus sensitizing them to UPS inhibitors. This sensitivity along with the potential of stabilizing pro-apoptotic signaling pathways makes the proteasome an attractive clinical target for the development of novel therapies. Targeting of the catalytic 20S subunit of the proteasome is already a clinically validated strategy in multiple myeloma and other cancers. Spurred on by this success, promising novel inhibitors of the UPS have entered development, targeting the 20S as well as regulatory 19S subunit and inhibitors of deubiquitinating and ubiquitin ligase enzymes. In this review, we outline the manner in which deregulation of the UPS can cause cancer to develop, current clinical application of proteasome inhibitors, and the (pre-)clinical development of novel inhibitors of the UPS.
Collapse
Affiliation(s)
- Arjan Mofers
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Paola Pellegrini
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden. .,Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institute, SE-171 76, Stockholm, Sweden.
| | - Pádraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden.
| |
Collapse
|
28
|
Striha A, Ashcroft AJ, Hockaday A, Cairns DA, Boardman K, Jacques G, Williams C, Snowden JA, Garg M, Cavenagh J, Yong K, Drayson MT, Owen R, Cook M, Cook G. The role of ixazomib as an augmented conditioning therapy in salvage autologous stem cell transplant (ASCT) and as a post-ASCT consolidation and maintenance strategy in patients with relapsed multiple myeloma (ACCoRd [UK-MRA Myeloma XII] trial): study protocol for a Phase III randomised controlled trial. Trials 2018; 19:169. [PMID: 29514706 PMCID: PMC5842589 DOI: 10.1186/s13063-018-2524-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a plasma cell tumour with an approximate annual incidence of 4500 in the UK. Therapeutic options for patients with MM have changed in the last decade with the arrival of proteasome inhibitors and immunomodulatory drugs. Despite these options, almost all patients will relapse post first-line autologous stem cell transplantation (ASCT). First relapse management (second-line treatment) has evolved in recent years with an expanding portfolio of novel agents, driving response rates influencing the durability of response. A second ASCT, as part of relapsed disease management (salvage ASCT), has been shown to prolong the progression-free survival and overall survival following a proteasome inhibitor-containing re-induction regimen, in the Cancer Research UK-funded National Cancer Research Institute Myeloma X (Intensive) study. It is now recommended that salvage ASCT be considered for suitable patients by the International Myeloma Working Group and the National Institute for Health and Care Excellence NG35 guidance. METHODS/DESIGN ACCoRd (Myeloma XII) is a UK-nationwide, individually randomised, multi-centre, multiple randomisation, open-label phase III trial with an initial single intervention registration phase aimed at relapsing MM patients who have received ASCT in first-line treatment. We will register 406 participants into the trial to allow 284 and 248 participants to be randomised at the first and second randomisations, respectively. All participants will receive re-induction therapy until maximal response (four to six cycles of ixazomib, thalidomide and dexamethasone). Participants who achieve at least stable disease will be randomised (1:1) to receive either ASCTCon, using high-dose melphalan, or ASCTAug, using high-dose melphalan with ixazomib. All participants achieving or maintaining a minimal response or better, following salvage ASCT, will undergo a second randomisation (1:1) to consolidation and maintenance or observation. Participants randomised to consolidation and maintenance will receive consolidation with two cycles of ixazomib, thalidomide and dexamethasone, and maintenance with ixazomib until disease progression. DISCUSSION The question of how best to maximise the durability of response to salvage ASCT warrants clinical investigation. Given the expanding scope of oral therapeutic agents, patient engagement with long-term maintenance strategies is a real opportunity. This study will provide evidence to better define post-relapse treatment in MM. TRIAL REGISTRATION ISRCTN, ISRCTN10038996 . Registered on 15 December 2016.
Collapse
Affiliation(s)
- Alina Striha
- Clinical Trials Research Unit (CTRU), Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - A. John Ashcroft
- Department of Haematology, Pinderfields General Hospital, Wakefield, UK
| | - Anna Hockaday
- Clinical Trials Research Unit (CTRU), Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - David A. Cairns
- Clinical Trials Research Unit (CTRU), Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Karen Boardman
- Clinical Trials Research Unit (CTRU), Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Gwen Jacques
- Clinical Trials Research Unit (CTRU), Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Cathy Williams
- Centre for Clinical Haematology, Nottingham University Hospitals (City Campus), Nottingham, UK
| | - John A. Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mamta Garg
- Leicester Royal Infirmary, Leicester, UK
| | - Jamie Cavenagh
- Department of Haematology, St Bartholomew’s Hospital, London, UK
| | - Kwee Yong
- Department of Haematology, University College Hospital, London, UK
| | - Mark T. Drayson
- Myeloma Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Roger Owen
- HMDS, St James’s University Hospital, Leeds, UK
| | - Mark Cook
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Birmingham, UK
| | - Gordon Cook
- Leeds Institute of Cancer & Pathology, University of Leeds, St James’s University Hospital, Leeds, UK
| |
Collapse
|
29
|
Scalzulli E, Grammatico S, Vozella F, Petrucci MT. Proteasome inhibitors for the treatment of multiple myeloma. Expert Opin Pharmacother 2018; 19:375-386. [PMID: 29478351 DOI: 10.1080/14656566.2018.1441287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Multiple Myeloma (MM) management is rapidly evolving, with a spectrum of novel treatments that have changed our approach to the therapy. Proteasome inhibitors (PIs) have revolutionized the scenario of both relapsed/refractory and newly diagnosed patients. The efficacy of bortezomib, the first PI approved, followed by carfilzomib and, the oral ixazomib, have been tested in several trials as single agents or in combination. AREAS COVERED In this review, the authors summarize mechanism of action, efficacy and safety of proteasome inhibitors in MM and focus on data derived from clinical trials, analyzing adverse events and their relative management. EXPERT OPINION The authors believe that, currently, the best course of action in the treatment of MM is to use PIs in combination with immunomodulatory drugs (IMiDs) and/or with monoclonal antibodies for all patients. However, based on the patient-specific characteristics, it is important to avoid inappropriate discontinuation by knowing the single side effects of every agent in order to balance their efficacy and safety.
Collapse
Affiliation(s)
- Emilia Scalzulli
- a Hematology, Department of Cellular Biotechnologies and Hematology , "Sapienza" University , Rome , Italy
| | - Sara Grammatico
- a Hematology, Department of Cellular Biotechnologies and Hematology , "Sapienza" University , Rome , Italy
| | - Federico Vozella
- a Hematology, Department of Cellular Biotechnologies and Hematology , "Sapienza" University , Rome , Italy
| | - Maria Teresa Petrucci
- a Hematology, Department of Cellular Biotechnologies and Hematology , "Sapienza" University , Rome , Italy
| |
Collapse
|
30
|
Cook G, Zweegman S, Mateos MV, Suzan F, Moreau P. A question of class: Treatment options for patients with relapsed and/or refractory multiple myeloma. Crit Rev Oncol Hematol 2018; 121:74-89. [DOI: 10.1016/j.critrevonc.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/14/2017] [Accepted: 11/30/2017] [Indexed: 02/03/2023] Open
|
31
|
Huang W, Yuan X, Sun T, Fan S, Wang J, Zhou Q, Guo W, Ran F, Ge Z, Yang H, Li R, Cui J. Proteasome Inhibitor YSY01A Abrogates Constitutive STAT3 Signaling via Down-regulation of Gp130 and JAK2 in Human A549 Lung Cancer Cells. Front Pharmacol 2017; 8:476. [PMID: 28883791 PMCID: PMC5574410 DOI: 10.3389/fphar.2017.00476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Proteasome inhibition interfering with many cell signaling pathways has been extensively explored as a therapeutic strategy for cancers. Proteasome inhibitor YSY01A is a novel agent that has shown remarkable anti-tumor effects; however, its mechanisms of action are not fully understood. Here we report that YSY01A is capable of suppressing cancer cell survival by induction of apoptosis. Paradoxically, we find that YSY01A abrogates constitutive activation of STAT3 via proteasome-independent degradation of gp130 and JAK2, but not transcriptional regulation, in human A549 non-small cell lung cancer cells. The reduction in gp130 and JAK2 can be restored by co-treatment with 3-methyladenine, an early-stage autophagy lysosome and type I/III PI3K inhibitor. YSY01A also effectively inhibits cancer cell migration and lung xenograft tumor growth with little adverse effect on animals. Thus, our findings suggest that YSY01A represents a promising candidate for further development of novel anticancer therapeutics targeting the proteasome.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical CollegeBeijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Ting Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Shujie Fan
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Jun Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Quan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Wei Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Fuxiang Ran
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Zemei Ge
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Runtao Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Jingrong Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| |
Collapse
|
32
|
Bibo-Verdugo B, Jiang Z, Caffrey CR, O'Donoghue AJ. Targeting proteasomes in infectious organisms to combat disease. FEBS J 2017; 284:1503-1517. [PMID: 28122162 DOI: 10.1111/febs.14029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023]
Abstract
Proteasomes are multisubunit, energy-dependent, proteolytic complexes that play an essential role in intracellular protein turnover. They are present in eukaryotes, archaea, and in some actinobacteria species. Inhibition of proteasome activity has emerged as a powerful strategy for anticancer therapy and three drugs have been approved for treatment of multiple myeloma. These compounds react covalently with a threonine residue located in the active site of a proteasome subunit to block protein degradation. Proteasomes in pathogenic organisms such as Mycobacterium tuberculosis and Plasmodium falciparum also have a nucleophilic threonine residue in the proteasome active site and are therefore sensitive to these anticancer drugs. This review summarizes efforts to validate the proteasome in pathogenic organisms as a therapeutic target. We describe several strategies that have been used to develop inhibitors with increased potency and selectivity for the pathogen proteasome relative to the human proteasome. In addition, we highlight a cell-based chemical screening approach that identified a potent, allosteric inhibitor of proteasomes found in Leishmania and Trypanosoma species. Finally, we discuss the development of proteasome inhibitors as anti-infective agents.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Chemistry & Biochemistry Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Conor R Caffrey
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Schlafer D, Shah KS, Panjic EH, Lonial S. Safety of proteasome inhibitors for treatment of multiple myeloma. Expert Opin Drug Saf 2016; 16:167-183. [DOI: 10.1080/14740338.2017.1259310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Citrin R, Foster JB, Teachey DT. The role of proteasome inhibition in the treatment of malignant and non-malignant hematologic disorders. Expert Rev Hematol 2016; 9:873-89. [DOI: 10.1080/17474086.2016.1216311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Grammatico S, Cesini L, Petrucci MT. Managing treatment-related peripheral neuropathy in patients with multiple myeloma. Blood Lymphat Cancer 2016; 6:37-47. [PMID: 31360079 PMCID: PMC6467335 DOI: 10.2147/blctt.s91251] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peripheral neuropathy is one of the most important complications of multiple myeloma treatment. Neurological damage can be observed at the onset of the disease, due to the effect of monoclonal protein or radicular compression, but more often is treatment related. Vinca alkaloids in the past era, and more recently, thalidomide and bortezomib are mainly responsible. Degeneration of dorsal root ganglion is common, prevalently related to angiogenesis inhibition and cytokine modulation in the case of thalidomide and inhibition of the ubiquitin proteasome system in the case of bortezomib. Sensory neuropathy and neuropathic pain are more common; motor neuropathy and autonomic damage are less frequently observed. Neurotoxicity often affects patient's quality of life and requires dose modification or withdrawal of therapy, with a possible effect on the overall response. A prompt recognition of predisposing factors (such as diabetes mellitus, alcohol abuse, vitamin deficiencies, or viral infections) and appearance of signs and symptoms, through a periodic neurological assessment with appropriate scales, is extremely important. Effective management of treatment at the emergence of peripheral neuropathy can minimize the incidence and severity of this complication and preserve therapeutic efficacy. Dose adjustment could be necessary during treatment; moreover, gabapentin or pregabalin, tricyclic antidepressants, serotonin and norepinephrine reuptake inhibitors, carbamazepine, and opioid-type analgesics are suggested according to the pain severity. Some authors reported that patients who develop peripheral neuropathy during their multiple myeloma treatments presented a particular gene expression profile; therefore, future studies could be helpful for a better understanding of possible biological pathways underlying neurotoxicity.
Collapse
Affiliation(s)
- Sara Grammatico
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy,
| | - Laura Cesini
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy,
| | - Maria Teresa Petrucci
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy,
| |
Collapse
|
36
|
Huang W, Zhou Q, Yuan X, Ge ZM, Ran FX, Yang HY, Qiang GL, Li RT, Cui JR. Proteasome Inhibitor YSY01A Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant Human Ovarian Cancer Cells. J Cancer 2016; 7:1133-41. [PMID: 27326257 PMCID: PMC4911881 DOI: 10.7150/jca.14519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Cisplatin is one of the most common drugs used for treatment of solid tumors such as ovarian cancer. Unfortunately, the development of resistance against this cytotoxic agent limits its clinical use. Here we report that YSY01A, a novel proteasome inhibitor, is capable of suppressing survival of cisplatin-resistant ovarian cancer cells by inducing apoptosis. And YSY01A treatment enhances the cytotoxicity of cisplatin in drug-resistant ovarian cancer cells. Specifically, YSY01A abrogates regulatory proteins important for cell proliferation and anti-apoptosis including NF-κB p65 and STAT3, resulting in down-regulation of Bcl-2. A dramatic increase in cisplatin uptake was also observed by inductively coupled plasma-mass spectrometry following exposure to YSY01A. Taken together, YSY01A serves as a potential candidate for further development as anticancer therapeutics targeting the proteasome.
Collapse
Affiliation(s)
- Wei Huang
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Quan Zhou
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xia Yuan
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ze-Mei Ge
- 2. Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fu-Xiang Ran
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua-Yu Yang
- 3. Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and PUMC, Beijing 100730, China
| | - Guang-Liang Qiang
- 4. Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Run-Tao Li
- 2. Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Rong Cui
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
37
|
Gupta N, Labotka R, Liu G, Hui AM, Venkatakrishnan K. Exposure-safety-efficacy analysis of single-agent ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma: dose selection for a phase 3 maintenance study. Invest New Drugs 2016; 34:338-46. [PMID: 27039387 PMCID: PMC4859859 DOI: 10.1007/s10637-016-0346-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/15/2016] [Indexed: 12/14/2022]
Abstract
Background Ixazomib is the first oral, small molecule proteasome inhibitor to reach phase 3 trials. The current analysis characterized the exposure-safety and exposure-efficacy relationships of ixazomib in patients with relapsed/refractory multiple myeloma (MM) with a purpose of recommending an approach to ixazomib dosing for maintenance therapy. Methods Logistic regression was used to investigate relationships between ixazomib plasma exposure (area under the curve/day; derived from individual apparent clearance values from a published population pharmacokinetic analysis) and safety/efficacy outcomes (hematologic [grade ≥ 3 vs ≤ 2] or non-hematologic [grade ≥ 2 vs ≤ 1] adverse events [AEs], and clinical benefit [≥stable disease vs progressive disease]) using phase 1 data in relapsed/refractory MM (NCT00963820; N = 44). Results Significant relationships to ixazomib exposure were observed for five AEs (neutropenia, thrombocytopenia, rash, fatigue, and diarrhea) and clinical benefit (p < 0.05). Dose–response relationships indicated a favorable benefit/risk ratio at 3 mg and 4 mg weekly, which are below the maximum tolerated dose of 5.5 mg. At 3 mg, the model predicted that: 37 % of patients will achieve clinical benefit; incidence of grade ≥ 3 neutropenia and thrombocytopenia will be 10 % and 23 %, respectively; and incidence of grade ≥ 2 rash, fatigue, and diarrhea will be 8 %, 19 %, and 19 %, respectively. Conclusions Based on the findings, patients in the phase 3 maintenance trial will initiate ixazomib at a once-weekly dose of 3 mg, increasing to 4 mg if acceptable tolerability after 4 cycles, to provide maximum clinical benefit balanced with adequate tolerability.
Collapse
Affiliation(s)
- Neeraj Gupta
- Clinical Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| | - Richard Labotka
- Clinical Research, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Guohui Liu
- Biostatistics, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Ai-Min Hui
- Clinical Research, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Karthik Venkatakrishnan
- Clinical Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| |
Collapse
|
38
|
Rosenberg A, Pariser A, Diamond B, Yao L, Turka L, Lacana E, Kishnani P. A role for plasma cell targeting agents in immune tolerance induction in autoimmune disease and antibody responses to therapeutic proteins. Clin Immunol 2016; 165:55-9. [DOI: 10.1016/j.clim.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
|
39
|
Park J, Park E, Jung CK, Kang SW, Kim BG, Jung Y, Kim TH, Lim JY, Lee SE, Min CK, Won KA. Oral proteasome inhibitor with strong preclinical efficacy in myeloma models. BMC Cancer 2016; 16:247. [PMID: 27012957 PMCID: PMC4806471 DOI: 10.1186/s12885-016-2285-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The proteasome is a validated anti-cancer target and various small-molecule inhibitors are currently in clinical development or on the market. However, adverse events and resistance associated with those proteasome inhibitors indicate the need for a new generation of drugs. Therefore, we focused on developing an oral proteasome inhibitor with improved efficacy and safety profiles. METHOD The in vitro inhibition of the 20S proteasome catalytic activities was determined in human multiple myeloma (MM) cellular lysates with fluorogenic peptide substrates specific for each catalytic subunit. Cell cytotoxicity was assessed with the ATP bioluminescence assay using human cell samples from tumor cell lines, MM patients or normal healthy donors. In mice bearing human MM xenografts, a single dose of LC53-0110 was administered orally, and concentration-time profiles of LC53-0110 and the 20S proteasome catalytic activities in plasma, blood, and tumor were determined. The efficacy of repeat-dose compound with regard to tumor growth inhibition in vivo was also evaluated in the same MM xenograft models. RESULTS LC53-0110 is far more specific for the chymotrypsin-like proteolytic (β5) site of the 20S proteasome as compared to bortezomib, carfilzomib, or ixazomib. LC53-0110 treatment showed accumulation of ubiquitinated proteins, inhibited cell viability with a low nM range potency in various tumor cell lines, and showed potent activity on CD138(+) cells isolated from MM patients who are resistant/refractory to current FDA-approved drug treatment. When a single dose was administered orally to tumor-bearing mice, LC53-0110 showed both greater maximum and sustained tumor proteasome inhibition as compared with ixazomib in MM xenograft models. The robust pharmacodynamic responses in tumor correlated with tumor growth regression. In addition, LC53-0151, an analog of LC53-0110, in combination with pomalidomide, a third-generation immunomodulatory drug, showed synergistic inhibition of tumor growth both in vitro and in the xenograft mouse model. CONCLUSIONS In view of the in vitro, in vivo, and ex vivo profiles, further investigation of additional LC compounds in preclinical studies is warranted for the nomination of a clinical development candidate.
Collapse
Affiliation(s)
- Jonghoon Park
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | - Eok Park
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | | | | | - Byung Gyu Kim
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | - Youngjoo Jung
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | - Tae Hun Kim
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | - Ji-Young Lim
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Eun Lee
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Kwang-Ai Won
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea.
| |
Collapse
|
40
|
Muz B, Ghazarian RN, Ou M, Luderer MJ, Kusdono HD, Azab AK. Spotlight on ixazomib: potential in the treatment of multiple myeloma. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:217-26. [PMID: 26811670 PMCID: PMC4714737 DOI: 10.2147/dddt.s93602] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the significant therapeutic advances achieved with proteasome inhibitors (PIs) such as bortezomib and carfilzomib in prolonging the survival of patients with multiple myeloma, the development of drug resistance, peripheral neuropathy, and pharmacokinetic limitations continue to pose major challenges when using these compounds. Ixazomib is a second-generation PI with improved activity over other PIs. Unlike bortezomib and carfilzomib, which are administered by injection, ixazomib is the first oral PI approved by US Food and Drug Administration. This review discusses the biochemical properties, mechanisms of action, preclinical efficacy, and clinical trial results leading to the US Food and Drug Administration approval of ixazomib.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Rachel Nicole Ghazarian
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St Louis School of Medicine, St Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St Louis College of Pharmacy, St Louis, MO, USA
| | - Monica Ou
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St Louis School of Medicine, St Louis, MO, USA; Department of Biology, St Louis University, St Louis, MO, USA
| | - Micah John Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Hubert Daniel Kusdono
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St Louis School of Medicine, St Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St Louis College of Pharmacy, St Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St Louis School of Medicine, St Louis, MO, USA
| |
Collapse
|
41
|
Zang M, Li Z, Liu L, Li F, Li X, Dai Y, Li W, Kuckelkorn U, Doeppner TR, Hermann DM, Zhou W, Qiu L, Jin F. Anti-tumor activity of the proteasome inhibitor BSc2118 against human multiple myeloma. Cancer Lett 2015; 366:173-181. [PMID: 26116344 DOI: 10.1016/j.canlet.2015.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/19/2015] [Accepted: 06/18/2015] [Indexed: 02/08/2023]
Abstract
Introduction of bortezomib, the first generation of proteasome inhibitor, has significantly improved the median overall survival of patients with multiple myeloma (MM). However, the dose-limiting adverse events and acquired drug resistance limit its long-term usage. Here, we report in vitro and in vivo anti-MM activity of the irreversible proteasome inhibitor BSc2118. BSc2118 inhibited the chymotrypsin-like (CT-L) proteasome activity, accompanied by accumulation of ubiquitinated proteins. BSc2118 suppressed tumor cell growth through induction of G2/M phase arrest and induced apoptosis via activation of the apoptotic signaling cascade, in association with up-regulation of p53 and p21. Importantly, BSc2118 was active in vitro against MM cells' acquired bortezomib resistance. Of note, BSc2118 also displayed a novel anti-angiogenesis activity both in vitro and in vivo. Lastly, BSc2118 exhibited a broader safety dose range and higher anti-tumor efficacy in vivo in a human MM xenograft mouse model, compared to bortezomib. Together, these findings indicate the in vitro and in vivo anti-MM activities of BSc2118 through induction of cell cycle arrest and apoptosis, as well as inhibition of tumor angiogenesis. They also suggest that BSc2118 might, at least in vitro, partially overcome acquired bortezomib resistance, likely associated with inhibition of autophagy.
Collapse
Affiliation(s)
- Meirong Zang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Zengjun Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Li
- Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yun Dai
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ulrike Kuckelkorn
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Dirk M Hermann
- Department of Neurology, University hospital Essen, Essen, Germany
| | - Wen Zhou
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Hunan, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| | - Fengyan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
42
|
Abstract
INTRODUCTION Most lymphomas and lymphoid leukemias are of B cell origin. Indolent B cell lymphomas, most commonly follicular lymphoma but including Waldenstrom's macroglobulinemia and mantle cell lymphoma, as well as chronic lymphocytic leukemia, are incurable with standard therapy. New treatments are needed. Survival of normal and many abnormal B cells depends on signals through the B-cell receptor, and a key element of this pathway is Bruton's tyrosine kinase (BTK). The oral BTK inhibitor ibrutinib is already US FDA approved in four different indications based on marked treatment benefit in indolent B cell lymphoma/leukemia. AREAS COVERED This review covers the clinical pharmacology of ibrutinib, its efficacy in clinical trials in chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom's macroglobulinemia, as well as safety and toxicity. Future directions are discussed. EXPERT OPINION Ibrutinib is a well-tolerated once-daily oral BTK inhibitor with impressive activity in treating indolent B cell lymphoproliferative disorders. As a single agent, it is already altering treatment paradigms in its approved indications. Ongoing studies will determine its movement to the front-line setting in these and other B cell disorders, as well as combination approaches.
Collapse
Affiliation(s)
- Mitchell R Smith
- Taussig Cancer Institute, Cleveland Clinic , 9500 Euclid Avenue, Cleveland, OH , USA +1 216 444 4366 ; +1 216 444 9464 ;
| |
Collapse
|
43
|
Teicher BA, Tomaszewski JE. Proteasome inhibitors. Biochem Pharmacol 2015; 96:1-9. [PMID: 25935605 DOI: 10.1016/j.bcp.2015.04.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications.
Collapse
Affiliation(s)
- Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, United States.
| | - Joseph E Tomaszewski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, United States
| |
Collapse
|