1
|
Jia JJ, Lai HJ, Sun BW, Lu J, Zeng YY. miR-21 regulates autophagy and apoptosis of ectopic endometrial stromal cells of adenomyosis via PI3K/ AKT/ mTOR pathway. Sci Rep 2025; 15:7639. [PMID: 40038429 PMCID: PMC11880337 DOI: 10.1038/s41598-025-92526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/28/2025] [Indexed: 03/06/2025] Open
Abstract
Adenomyosis (AM) is a common and challenging disease in gynecological clinics, which adversely affects women's physical and mental health. Despite the growing number of studies, the mechanisms associated with the growth of the lesion are poorly understood. Studies show that abnormal proliferation, apoptosis, and migration in ectopic endometrial stromal cells (EESc) of AM may contribute to the development and progression of AM. Understanding the underlying molecular mechanisms can significantly contribute to diagnosing and treating AM. In the present study, EESc was isolated and cultured from the ectopic endometrium of patients with AM. These cells were treated with a PI3K/AKT activator (740 Y-P) and an inhibitor (LY294002), while the expression of microRNA-21 (miR-21) was interfered with. The effects of miR-21 on the apoptosis and autophagy of EESc, as well as the associated mechanisms, were investigated from multiple perspectives. Here, we found that 740 Y-P could significantly promote proliferation, inhibit apoptosis of EESc, and increase the expression of mTOR and p-mTOR proteins in EESc. Moreover, activating miR-21 enhanced the pro-migration effect of 740 Y-P and reversed the pro-apoptotic effect of LY294002, reducing the apoptosis rate and increasing the migration ability of EESc. Our investigation revealed that miR-21 can inhibit apoptosis and autophagy and promote migration of EESc. This effect is likely mediated via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jin-Jin Jia
- Department of Traditional Chinese Medicine, Qinghai Unversity Medical College, Xining, 810016, China
| | - Hui-Jie Lai
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Bo-Wen Sun
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jie Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yu-Yan Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Lou Y, Jiang F, Guan J. The effect of lipidomes on the risk of endometrioid endometrial cancer: a Mendelian randomization study. Front Oncol 2024; 14:1436955. [PMID: 39493450 PMCID: PMC11527595 DOI: 10.3389/fonc.2024.1436955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Objective This study aimed to explore the potential effects between various human plasma lipidomes and endometrioid endometrial cancer (EEC) by using Mendelian randomization (MR) methods. Methods This study designated a total of 179 human plasma lipidomes from the genome-wide association study (GWAS) database as the exposure variable. An EEC-related dataset from the GWAS (GCST006465) served as the outcome variable. MR analyses used the inverse variance-weighted method (IVW), MR-Egger, weighted median, simple mode, and weighted mode methods for regression calculations, accounting for possible biases induced by linkage disequilibrium and weak instrument variables. Any lipidomes failing to pass heterogeneity and horizontal pleiotropy tests were deemed to lack significant causal impact on the outcome. Results The results of IVW analysis disclosed that a variety of human plasma lipidomes (n = 15) exhibited a significant causal effect on EEC (p < 0.05). A subset of these lipidomes (n = 13) passed heterogeneity and horizontal pleiotropy tests, which demonstrated consistent and viable causal effects (p < 0.05) including glycerophospholipids, glycerolipids, and sterols. Specifically, phosphatidylcholine (odds ratio [OR]: 1.065-1.129, p < 0.05) exhibited a significant positive causal effect on the occurrence of EEC. Conversely, sterol ester (OR = 0.936, p = 0.007), diacylglycerol (OR = 0.914, p = 0.036), phosphatidylcholine (OR: 0.903-0.927, p < 0.05), phosphatidylethanolamine (OR = 0.907, p = 0.046) and triacylglycerol (OR: 0.880-0.924, p < 0.05) showed a notable negative causal association with EEC, suggesting their inhibitory effects on the EEC occurrence. Conclusions The study revealed that human plasma lipidomes have complex impacts on EEC through Mendelian randomization. This indicated that the diversity of structural changes in lipidomes could show different effects on subtypes and then affect EEC occurrence. Although these lipids had the potential to be promising biomarkers, they needed to be further clinically validated nevertheless.
Collapse
Affiliation(s)
- Yaochen Lou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jun Guan
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Huang X, Lian M, Li C. Copper homeostasis and cuproptosis in gynecological cancers. Front Cell Dev Biol 2024; 12:1459183. [PMID: 39386020 PMCID: PMC11461353 DOI: 10.3389/fcell.2024.1459183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Copper (Cu) is an essential trace element involved in a variety of biological processes, such as antioxidant defense, mitochondrial respiration, and bio-compound synthesis. In recent years, a novel theory called cuproptosis has emerged to explain how Cu induces programmed cell death. Cu targets lipoylated enzymes in the tricarboxylic acid cycle and subsequently triggers the oligomerization of lipoylated dihydrolipoamide S-acetyltransferase, leading to the loss of Fe-S clusters and induction of heat shock protein 70. Gynecological malignancies including cervical cancer, ovarian cancer and uterine corpus endometrial carcinoma significantly impact women's quality of life and even pose a threat to their lives. Excessive Cu can promote cancer progression by enhancing tumor growth, proliferation, angiogenesis and metastasis through multiple signaling pathways. However, there are few studies investigating gynecological cancers in relation to cuproptosis. Therefore, this review discusses Cu homeostasis and cuproptosis while exploring the potential use of cuproptosis for prognosis prediction as well as its implications in the progression and treatment of gynecological cancers. Additionally, we explore the application of Cu ionophore therapy in treating gynecological malignancies.
Collapse
Affiliation(s)
- Xiaodi Huang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Mengyi Lian
- Department of Obstetrics and Gynecology, Longquan People’s Hospital, Lishui, China
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
4
|
Randeni N, Xu B. New insights into signaling pathways of cancer prevention effects of polysaccharides from edible and medicinal mushrooms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155875. [PMID: 39029136 DOI: 10.1016/j.phymed.2024.155875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Despite extensive efforts, empirical techniques have yielded limited progress in finding effective anticancer medications, with chemotherapy drugs often associated with drug resistance and serious side effects. Thus, there is a pressing need for novel agents with minimal adverse effects. Natural substances, widely used in treating various illnesses, including cancer, offer promising alternatives. Among these, mushrooms, rich in low molecular weight secondary metabolites, polysaccharides, and polysaccharide-protein complexes, have gained attention for their potential anticancer properties. RESULTS Mushroom polysaccharides have been found to impede oncogenesis and tumor metastasis by directly inhibiting tumor cell growth and indirectly enhancing immune system functions. These polysaccharides engage with numerous cell signaling pathways that influence cancer development and progression. They affect pathways that control cell survival, growth, and differentiation, and they also play a role in adjusting the tumor immune microenvironment. CONCLUSION This review highlights the potential of mushroom polysaccharides as promising anticancer agents due to their ability to modulate cell signaling pathways crucial for cancer development. Understanding the mechanisms underlying their effects on these pathways is essential for harnessing their therapeutic potential and developing novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
5
|
Shi H, Li J, Yan T, Zhou L, Zhu Y, Guo F, Yang S, Kong X, Zhou H. Krüppel-like factor 12 decreases progestin sensitivity in endometrial cancer by inhibiting the progesterone receptor signaling pathway. Transl Oncol 2024; 47:102041. [PMID: 38959708 PMCID: PMC11269804 DOI: 10.1016/j.tranon.2024.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/11/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE This study aimed to clarify the mechanism by which Krüppel-like factor 12 (KLF12) affects progesterone sensitivity in endometrial cancer (EC) through the progesterone receptor PGR signaling pathway. METHODS The relationship of KLF12 with PGR in EC patients was examined by immunohistochemistry, and the expression of KLF12 and PGR in EC cell lines was detected by real-time PCR and western blotting. Cell proliferation assay, plate clone formation, cell apoptosis assay, and cell cycle analysis were conducted to determine the impact of KLF12 intervention on progesterone therapy. CUT&Tag analysis and the dual-luciferase reporter experiment were used to determine the underlying regulatory effect of KLF12 on the PGR DNA sequence. A subcutaneous xenograft nude mouse model was established to validate the in vivo effect of KLF12 on progesterone sensitivity via PGR expression modulation. RESULTS KLF12 demonstrated decreased progesterone sensitivity and a negative correlation with PGR expression in EC tissues. Progesterone sensitivity was increased by KLF12 deficiency through PGR overexpression, a result that could be significantly reversed by PGR downregulation. PGR was identified as a target gene of KLF12, which could directly bind to the PGR promotor region and inhibit its expression. CONCLUSION This study is the first to investigate the effect of KLF12 expression on EC cell resistance to progesterone. Our results offer important mechanistic insight into the direct regulation of the PGR promoter region, demonstrating that KLF12 expression strongly suppressed the PGR signaling pathway and, as a result, reduced progesterone sensitivity in EC patients.
Collapse
Affiliation(s)
- Haimeng Shi
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing, PR China
| | - Jian Li
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing, PR China
| | - Tong Yan
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, PR China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, PR China
| | - Yu Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, PR China
| | - Feifei Guo
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing, PR China
| | - Sihui Yang
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing, PR China
| | - Xiangyi Kong
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing, PR China
| | - Huaijun Zhou
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing, PR China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, PR China.
| |
Collapse
|
6
|
Vasuki A, Christy HJ, Renugadevi K, Dammalli M. Structure-based pharmacophore modeling and DFT studies of Indian Ocean-derived red algal compounds as PI3Kα inhibitors. Mol Divers 2024; 28:2563-2581. [PMID: 37466805 DOI: 10.1007/s11030-023-10695-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Phosphoinositide kinases (PIKs) are a type of lipid kinase that acts as an upstream activator of oncogenic signaling. Presently accessible therapeutic compounds have downsides, such as toxicity and dubious efficacy, as well as lengthy treatment durations, which have bred resistance. Here we attempt to screen the Indian Ocean-derived red algal compounds to be used as a promising lead for PI3Kα inhibitor development. Experimental structure of the PI3K alpha Isoform-Specific Inhibitor alpelisib complex-based pharmacophore model was constructed and used as key to mark off the suitable lead compounds from the pool of marine-derived red algal compounds of Indian Ocean. Besides, the study encompasses pharmacophore scaffold screening as well as physicochemical and pharmacokinetic parameter assessment. We employed molecular docking and molecular dynamics simulation to assess the binding type and stability of 21 red algal derivatives. Twelve compounds demonstrated a sustained binding mode within the PI3Kα binding pocket with an optimal protein backbone root-mean-square deviation, also prompted hydrogen bonding throughout the simulations, and also implies that these MNPs have firmly mediated the interaction with prime hinge region residues in the PI3Kα ATP binding pocket. DFT studies revealed that proposed compounds had the greatest occupied molecular orbital electrophilicity index, basicity, and dipole moment, all of which attributed their stability as well as binding affinity at the PI3Kα active site. Our study's findings revealed that CMNPD31054, CMNPD4798, CMNPD27861, CMNPD4799, CMNPD27860, CMNPD9533, CMNPD3732, CMNPD4221, CMNPD31058, CMNPD31052, CMNPD29281, and CMNPD31055 can be used as lead compounds for PI3KΑ isoform inhibitors design.
Collapse
Affiliation(s)
- Archana Vasuki
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, India
| | - H Jemmy Christy
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, India.
| | - K Renugadevi
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| | - Manjunath Dammalli
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, India
| |
Collapse
|
7
|
Goudarzi ST, Vousooghi N, Verdi J, Mehdizadeh A, Aslanian-Kalkhoran L, Yousefi M. Autophagy genes and signaling pathways in endometrial decidualization and pregnancy complications. J Reprod Immunol 2024; 163:104223. [PMID: 38489930 DOI: 10.1016/j.jri.2024.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Autophagy is a process that occurs in almost all eukaryotic cells and this process is controlled by several molecular processes. Its biological roles include the provision of energy, the maintenance of cell homeostasis, and the promotion of aberrant cell death. The importance of autophagy in pregnancy is gradually becoming recognized. In literature, it has been indicated that autophagy has three different effects on the onset and maintenance of pregnancy: embryo (embryonic development), feto-maternal immune crosstalk, and maternal (decidualization). In humans, proper decidualization is a major predictor of pregnancy accomplishment and it can be influenced by different factors. This review highlights the genes, pathways, regulation, and function of autophagy in endometrial decidualization and other involved factors in this process.
Collapse
Affiliation(s)
- Saeedeh Torabi Goudarzi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Aslanian-Kalkhoran
- Department of Immunology, school of medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Wang B, Gao M, Yao Y, Li H, Zhang X. Focusing on the role of protein kinase mTOR in endometrial physiology and pathology: insights for therapeutic interventions. Mol Biol Rep 2024; 51:359. [PMID: 38400863 DOI: 10.1007/s11033-023-08937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 02/26/2024]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase crucial for cellular differentiation, proliferation, and autophagy. It shows a complex role in the endometrium, influencing both normal and pathogenic conditions. mTOR promotes the growth and maturation of endometrial cells, enhancing endometrial receptivity and decidualization. However, it also contributes to the development of endometriosis (EMs) and endometrial cancer (EC), thus emerging as a therapeutic target for these conditions. In this review, we summarize recent research progress on the mTOR signalling pathway in the endometrium. This provides insights into female endometrial structure and function and guides the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Bin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Mingxia Gao
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Ying Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongwei Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xuehong Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China.
| |
Collapse
|
9
|
Vemula S, Bonala S, Vadde NK, Natu JZ, Basha R, Vadde R, Ahmad S. Drug resistance and immunotherapy in gynecologic cancers. Life Sci 2023; 332:122104. [PMID: 37730109 DOI: 10.1016/j.lfs.2023.122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Gynecologic malignancies (GMs) are relatively less focused cancers by oncologists and researchers. The five-year survival rate of patients with GMs remained almost the same during the last decade. The development of drug resistance GMs makes it even more challenging to tackle due to tumor heterogeneity, genomic instability, viral/non-viral antigens, and etiological tumor origin. A precision medicine approach, including gene therapies, is under testing to restore tumor responsiveness to therapeutics and immunotherapy. With more data being uncovered, immunotherapy is emerging as a viable alternative for achieving promising results. This review highlights the drug resistance mechanisms and immunotherapeutic approaches to managing GMs better. The approval of immune therapeutic drugs in recent years shifted this notion. It provided hope for researchers, clinicians, and patients with GMs to experience the anti-cancer benefits of these therapies.
Collapse
Affiliation(s)
| | | | | | - Jay Z Natu
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Raasil Basha
- Department of Biology-Environmental Health, Missouri Southern State University, Joplin, MO, USA
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India.
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL, USA.
| |
Collapse
|
10
|
Suhail M, AlZahrani WM, Shakil S, Tarique M, Tabrez S, Zughaibi TA, Rehan M. Analysis of some flavonoids for inhibitory mechanism against cancer target phosphatidylinositol 3-kinase (PI3K) using computational tool. Front Pharmacol 2023; 14:1236173. [PMID: 37900167 PMCID: PMC10612336 DOI: 10.3389/fphar.2023.1236173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Cancer has been one of the leading causes of mortality worldwide over the past few years. Some progress has been made in the development of more effective cancer therapeutics, resulting in improved survival rates. However, the desired outcome in the form of successful treatment is yet to be achieved. There is high demand for the development of innovative, inexpensive, and effective anticancer treatments using natural resources. Natural compounds have been increasingly discovered and used for cancer therapy owing to their high molecular diversity, novel biofunctionality, and minimal side effects. These compounds can be utilized as chemopreventive agents because they can efficiently inhibit cell growth, control cell cycle progression, and block several tumor-promoting signaling pathways. PI3K is an important upstream protein of the PI3K-Akt-mTOR pathway and a well-established cancer therapeutic target. This study aimed to explore the small molecules, natural flavonoids, viz. quercetin, luteolin, kaempferol, genistein, wogonin, daidzein, and flavopiridol for PI3Kγ kinase activity inhibition. In this study, the binding pose, interacting residues, molecular interactions, binding energies, and dissociation constants were investigated. Our results showed that these flavonoids bound well with PI3Kγ with adequate binding strength scores and binding energy ranging from (-8.19 to -8.97 Kcal/mol). Among the explored ligands, flavopiridol showed the highest binding energy of -8.97 Kcal/mol, dock score (-44.40), and dissociation constant term, p K d of 6.58 against PI3Kγ. Based on the above results, the stability of the most promising ligand, flavopiridol, against PI3Kγ was evaluated by molecular dynamics simulations for 200 ns, confirming the stable flavopiridol and PI3Kγ complex. Our study suggests that among the selected flavonoids specifically flavopiridol may act as potential inhibitors of PI3Kγ and could be a therapeutic alternative to inhibit the PI3Kγ pathway, providing new insights into rational drug discovery research for cancer therapy.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wejdan M. AlZahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Zhang C, Sheng Y, Sun X, Wang Y. New insights for gynecological cancer therapies: from molecular mechanisms and clinical evidence to future directions. Cancer Metastasis Rev 2023; 42:891-925. [PMID: 37368179 PMCID: PMC10584725 DOI: 10.1007/s10555-023-10113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Advanced and recurrent gynecological cancers lack effective treatment and have poor prognosis. Besides, there is urgent need for conservative treatment for fertility protection of young patients. Therefore, continued efforts are needed to further define underlying therapeutic targets and explore novel targeted strategies. Considerable advancements have been made with new insights into molecular mechanisms on cancer progression and breakthroughs in novel treatment strategies. Herein, we review the research that holds unique novelty and potential translational power to alter the current landscape of gynecological cancers and improve effective treatments. We outline the advent of promising therapies with their targeted biomolecules, including hormone receptor-targeted agents, inhibitors targeting epigenetic regulators, antiangiogenic agents, inhibitors of abnormal signaling pathways, poly (ADP-ribose) polymerase (PARP) inhibitors, agents targeting immune-suppressive regulators, and repurposed existing drugs. We particularly highlight clinical evidence and trace the ongoing clinical trials to investigate the translational value. Taken together, we conduct a thorough review on emerging agents for gynecological cancer treatment and further discuss their potential challenges and future opportunities.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yaru Sheng
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
12
|
Wei L, Ma X, Hou Y, Zhao T, Sun R, Qiu C, Liu Y, Qiu Z, Liu Z, Jiang J. Verteporfin reverses progestin resistance through YAP/TAZ-PI3K-Akt pathway in endometrial carcinoma. Cell Death Discov 2023; 9:30. [PMID: 36693834 PMCID: PMC9873621 DOI: 10.1038/s41420-023-01319-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Progestin resistance is a problem for patients with endometrial carcinoma (EC) who require conservative treatment with progestin, and its underlying mechanisms remain unclear. YAP and TAZ (YAP/TAZ), downstream transcription coactivators of Hippo pathway, promote viability, metastasis and also drug resistance of malignant tumors. According to our microarray analysis, YAP/TAZ were upregulated in progestin resistant IshikawaPR cell versus progestin sensitive Ishikawa cell, which implied that YAP/TAZ may be a vital promotor of resistance to progestin. We found YAP/TAZ had higher expression levels among the resistant tissues than sensitive tissues. In addition, knocking down YAP/TAZ decreased cell viability, inhibited cell migration and invasion and increased the sensitivity of IshikawaPR cell to progestin. On the contrary, overexpression of YAP/TAZ increased cell proliferation, metastasis and promoted progestin resistance. We also confirmed YAP/TAZ were involved in progestin resistant process by regulating PI3K-Akt pathway. Furthermore, Verteporfin as an inhibitor of YAP/TAZ could increase sensitivity of IshikawaPR cells to progestin in vivo and in vitro. Our study for the first time indicated that YAP/TAZ play an important role in progestin resistance by regulating PI3K-Akt pathway in EC, which may provide ideas for clinical targeted therapy of progestin resistance.
Collapse
Affiliation(s)
- Lina Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaohong Ma
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of Gynecology and Obstetrics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, 264000, Yantai, Shandong, China
| | - Yixin Hou
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Tianyi Zhao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Rui Sun
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Chunping Qiu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong, China
| | - Yao Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ziyi Qiu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhiming Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong, China.
| | - Jie Jiang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong, China.
| |
Collapse
|
13
|
Qi S, Feng H, Li X. LncRNAs signatures associated with cuproptosis predict the prognosis of endometrial cancer. Front Genet 2023; 14:1120089. [PMID: 37124623 PMCID: PMC10130664 DOI: 10.3389/fgene.2023.1120089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Endometrial cancer (UCEC) is the sixth most common cancer in women, and although surgery can provide a good prognosis for early-stage patients, the 5-year overall survival rate for women with metastatic disease is as low as 16%. Long non-coding RNAs (LncRNAs) are thought to play an important role in tumor progression. Cuproptosis is a recently discovered form of cell death in which copper binds directly to the lipoacylated component of the tricarboxylic acid (TCA) cycle. The aggregation of these copper-bound listed mitochondrial proteins and the loss of Fe-S cluster proteins trigger proteotoxic stress, which leads to cell death. Therefore, the aim of this work was to investigate the role of Cuproptosis-related LncRNAs signaling in clinical prognostic prediction and immunotherapy, as well as the relationship between tumor mutation burden. Methods: Genomic, clinical and mutational data of endometrial cancer patients were presented in the TCGA database, and cuproptosis-related genes obtained from related studies. Coexpression analysis and Cox regression analysis were used to construct prognostic features. Patients were divided into high risk group and low risk group, and then ROC, survival rate, risk curve, principal component analysis, independent prognostic analysis and clinical subgroup model validation were performed to observe the prognostic value of characteristics. Subsequently, the GO and genomic KEGG enrichment and immune-related functions of LncRNAs as well as the tumor mutation burden were analyzed. Results: In 548 UCEC case data, we identified five associated LncRNAs co-expressed with cuproptosis genes, and we found that high-risk patients had poorer overall survival (OS), progression-free survival (PFS), and higher mortality. Independent prognostic analysis, ROC showed that the LncRNAs associated with cuproptosis could accurately predict the prognosis of patients. Enrichment analysis revealed that the biological functions of LncRNAs were related to tumorigenesis. We also discovered suppression of immune-related functions in high-risk patients with oncogene mutations, higher tumor mutation burden in low-risk patients, and longer overall survival in patients with higher tumor mutation burden. Conclusion: The identification of five LncRNAs associated with cuproptosis can accurately predict the prognosis of patients with endometrial cancer, and may provide a new perspective for clinical application and immunotherapy.
Collapse
|
14
|
Ma X, Xia M, Wei L, Guo K, Sun R, Liu Y, Qiu C, Jiang J. ABX-1431 inhibits the development of endometrial adenocarcinoma and reverses progesterone resistance by targeting MGLL. Cell Death Dis 2022; 13:1067. [PMID: 36550099 PMCID: PMC9780207 DOI: 10.1038/s41419-022-05507-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Endometrial cancer is a common gynecological malignancy. With the onset of EC patients younger, conservative treatment with progesterone has become an important option for patients trying to preserve reproductive function. However, progesterone resistance is a key factor affecting the efficacy of therapy and it is urgent to clarify the mechanism so as to propose a potential target and inhibit the development of endometrial adenocarcinoma and progesterone resistance. MGLL, an important factor involved in lipid mobilization, is overexpressed in many tumors, however the biological function of MGLL in the development of endometrial adenocarcinoma and the process of progesterone resistance still remains unclear. In this study, we first found MGLL was highly expressed in progesterone resistant samples of endometrial adenocarcinoma, and then we verified its expression was increased in endometrial adenocarcinoma. Through in vitro and in vivo experiments, we demonstrated that overexpression of MGLL promoted tumor proliferation, metastasis and the occurrence of progestogen resistance, knockdown MGLL inhibited tumor proliferation, metastasis and reversed progestogen resistance. In addition, knockdown of MGLL can sensitize endometrial adenocarcinoma cells to progesterone, possibly by affecting ROS generation and reducing the expression of AKR1C1. Finally, it was verified that ABX-1431, MGLL inhibitor, reversed progesterone resistance and enhanced the sensitivity of endometrial adenocarcinoma to progesterone both in vitro and in vivo. In conclusion, the high expression of MGLL is involved in the occurrence and development of endometrial adenocarcinoma and progesterone resistance. Targeted inhibition of MGLL by inhibitors may be an effective method for the treatment of progesterone resistance in endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Department of Gynecology and Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 264000, Yantai, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Min Xia
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Department of Gynecology and Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 264000, Yantai, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Lina Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Kui Guo
- Department of Gynecology and Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 264000, Yantai, China
| | - Rui Sun
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Yao Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Chunping Qiu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Jie Jiang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.
| |
Collapse
|
15
|
Lv M, Chen P, Bai M, Huang Y, Li L, Feng Y, Liao H, Zheng W, Chen X, Zhang Z. Progestin Resistance and Corresponding Management of Abnormal Endometrial Hyperplasia and Endometrial Carcinoma. Cancers (Basel) 2022; 14:cancers14246210. [PMID: 36551694 PMCID: PMC9776943 DOI: 10.3390/cancers14246210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
With a younger tendency in morbidity age, endometrial cancer (EC) incidence has grown year after year. Worse, even more commonly occurring is endometrial hyperplasia (EH), which is a precancerous endometrial proliferation. For young women with early EC and EH who want to preserve fertility, progestin therapy has been utilized as a routine fertility-preserving treatment approach. Nevertheless, progestin medication failure in some patients is mostly due to progestin resistance and side effects. In order to further analyze the potential mechanisms of progestin resistance in EH and EC, to provide theoretical support for effective therapeutic strategies, and to lay the groundwork for searching novel treatment approaches, this article reviews the current therapeutic effects of progestin in EH and EC, as well as the mechanisms and molecular biomarkers of progestin resistance, and systematically expounds on the potential therapeutic methods to overcome progestin resistance.
Collapse
Affiliation(s)
- Mu Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Peiqin Chen
- Department of Obstetrics and Gynecology, The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Mingzhu Bai
- Reproductive Medicine Center, Maternal and Child Health Hospital in Xuzhou, Xuzhou 215002, China
| | - Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai 200032, China
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai 200137, China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
- Correspondence: (X.C.); (Z.Z.)
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Correspondence: (X.C.); (Z.Z.)
| |
Collapse
|
16
|
MIG-6 Is Critical for Progesterone Responsiveness in Human Complex Atypical Hyperplasia and Early-Stage Endometrial Cancer. Int J Mol Sci 2022; 23:ijms232314596. [PMID: 36498921 PMCID: PMC9738720 DOI: 10.3390/ijms232314596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Women with complex atypical hyperplasia (CAH) or early-stage endometrioid endometrial cancer (EEC) are candidates for fertility preservation. The most common approach is progesterone (P4) therapy and deferral of hysterectomy until after completion of childbearing. However, P4 therapy response rates vary, and molecular mechanisms behind P4 resistance are poorly understood. One potential molecular cause of P4 resistance is a loss or attenuation of PGR expression. Mitogen-inducible gene 6 (MIG-6) is critical for P4 responsiveness. MIG-6 protein expression in the endometrial epithelial and stromal cells from women with CAH and EEC was significantly lower compared to women without CAH or EEC. The P4-responsive women (10/15) exhibited an increase of MIG-6 expression in epithelial and stromal cells compared to P4-resistant women (5/15). In addition, immunohistochemical analysis for PGR results showed that stromal PGR levels are significantly higher in P4-responsive women compared to P4-resistant women, whereas epithelial PGR expression was not different. A reverse correlation of MIG-6 and pAKT levels was observed in early-stage EEC patients. Studies strongly suggest that loss of MIG-6 and PGR and activation of pAKT lead to P4 resistance in CAH and EEC. These results will help to elucidate the molecular mechanism leading to P4 resistance in CAH and EEC.
Collapse
|
17
|
Thyroid Hormone Receptor β Knockdown Reduces Suppression of Progestins by Activating the mTOR Pathway in Endometrial Cancer Cells. Int J Mol Sci 2022; 23:ijms232012517. [PMID: 36293372 PMCID: PMC9604373 DOI: 10.3390/ijms232012517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Progestin resistance is a major obstacle to conservative therapy in patients with endometrial cancer (EC) and endometrial atypical hyperplasia (EAH). However, the related inducing factor is yet unclear. In this study, thyroid hormone and its receptor α (TRα) and β (TRβ) of patients were assayed. THRB-silenced RL95-2 and KLE EC cells were cultured to investigate the response of progestins. Transcriptomics and Western blotting were performed to investigate the changes in signaling pathways. We found that THRB, rather than THRA, knockdown promoted the viability and motilities of RL95-2 cells but not KLE cells. The suppressive effect of progestins on cell growth and motility significantly decreased in THRB-silenced RL95-2 cells. Multiple proliferation-related signaling pathways were enriched, and the activities of mammalian targets of rapamycin (mTOR)/4e-binding protein 1 (4EBP1)/eukaryotic translation initiation factor 4G (eIF4G) rather than phosphorylated protein kinase B (Akt) were remarkably boosted. Progestin treatment enhanced the effects, and the augmentation was partially abated on supplementation with T3. In THRB-knockdown KLE cells, the progestins-activated partial signaling pathway expression (either mTOR or eIF4G), and supplementation with T3 did not induce noticeable alterations. The serum levels of triiodothyronine (T3) were significantly lower in patients with EC compared with healthy women. A strong expression of TRβ was observed in most patients with EC and EAH sensitive to progestin treatment. In contrast, TRα positive expression was detected in less than half of the patients sensitive to progestin therapy. In conclusion, THRB knockdown enhanced the viability and motility of type I EC cells and attenuated the suppressive effects of progestins by activating the mTOR-4EBP1/eIF4G pathway. Lower expression of THRB is likely correlated with progesterone resistance.
Collapse
|
18
|
Li S, Pan J, Zhang Y, Tang Y, Zeng X, Wang S, Wu D, Liu Y, Xu D, Lan J, Hu D. An eleven autophagy-related genes-based prognostic signature for endometrial carcinoma. J Egypt Natl Canc Inst 2022; 34:42. [DOI: 10.1186/s43046-022-00135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Endometrial cancer (EC) is a common malignant tumor in women with increasing mortality. The prognosis of EC is highly heterogeneous which needs more effective biomarkers for clinical decision. Here, we reported the effect of autophagy-related genes (ARGs) on the prognosis of EC.
Methods
The expression data of EC tissues and adjacent non-tumor samples were available from the TCGA dataset and 232 autophagy-related genes were from The Human Autophagy Database. A prognostic ARGs risk model was further constructed by using LASSO-Cox regression, and its prognostic and predictive value were evaluated by nomogram. Further functional analysis was conducted to reveal a significant signaling pathway.
Results
A total of 45 differentially expressed ARGs were obtained, including 18 upregulated and 27 downregulated genes. Eleven ARGs (BID, CAPN2, CDKN2A, DLC1, GRID2, IFNG, MYC, NRG3, P4HB, PTK6, and TP73) were finally selected to build ARGs risk. This signature could well distinguish between the high- and low-risk patients (survival analysis: P = 1.18E-10; AUC: 0.733 at 1 year, 0.795 at 3 years, and 0.823 at 5 years). Furthermore, a nomogram was plotting to predict the possibility of overall survival and suggested good value for clinical utility.
Conclusion
We established an eleven-ARG signature, which was probably effective in the prognostic prediction of patients with EC.
Collapse
|
19
|
Fukuda T, Wada-Hiraike O. The Two-Faced Role of Autophagy in Endometrial Cancer. Front Cell Dev Biol 2022; 10:839416. [PMID: 35433698 PMCID: PMC9008213 DOI: 10.3389/fcell.2022.839416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy, meaning “self-eating,” is a cellular catabolic process that involves lysosomal degradation of cytoplasmic materials. Autophagy contributes to both quality control and energy supply of cells, which are associated with tumorigenesis and tumor development, respectively. Endometrial cancer (EC) is the most common gynecologic cancer, and its incidence is increasing. Although autophagy plays crucial roles in several types of cancer, such as pancreatic ductal adenocarcinoma, its role in EC has not been clearly demonstrated. Activation of the PI3K/AKT/mTOR pathway, which functions to suppress autophagy, is an initial step in type 1 endometrial carcinogenesis, whereas a loss-of-function mutation of TP53, which augments autophagy via p16 induction, is the main cause of type 2 endometrial carcinogenesis. Mutations in autophagy-related genes, including ATG4C, RB1CC1/FIP200, and ULK4, have been reported in EC; thus, an aberrant autophagy mechanism may be involved in endometrial carcinogenesis. Furthermore, the biguanide diabetes drug metformin, treatment with which enhances autophagy via AMPK-mediated mTOR inactivation, has been reported to reduce the risk of EC. These findings suggest that autophagy negatively regulates endometrial carcinogenesis, and autophagy inducers may be useful for chemoprevention of EC. In contrast, autophagy appears to promote EC once it is established. Consistent with this, treatment with chloroquine, an autophagy inhibitor, is reported to attenuate EC cell proliferation. Moreover, chemotherapy-induced autophagy triggers chemoresistance in EC cells. As autophagy has a tumor-promoting function, the combination of chemotherapy and autophagy inhibitors such as chloroquine could be a potent therapeutic option for patients with EC. In conclusion, autophagy plays a dual role in the prevention and treatment of EC. Therefore, targeting autophagy to prevent and treat EC requires diametrically opposed strategies.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Obstetrics and Gynecology, JR Tokyo General Hospital, Tokyo, Japan
- *Correspondence: Tomohiko Fukuda,
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Zhang X, Ming Y, Fu X, Niu Y, Lin Q, Liang H, Luo X, Liu L, Li N. PI3K/AKT/p53 pathway inhibits infectious spleen and kidney necrosis virus infection by regulating autophagy and immune responses. FISH & SHELLFISH IMMUNOLOGY 2022; 120:648-657. [PMID: 34968710 DOI: 10.1016/j.fsi.2021.12.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT/p53 signaling pathway is activated by various types of cellular stimuli or pathogenic infection, and then regulates fundamental cellular functions to combat these stimulations. Here, we studied the meaningful roles of PI3K/AKT/p53 in regulating cellular machine such as autophagy, immune responses, as well as antiviral activity in Chinese perch brain (CPB) cells infected by infectious spleen and kidney necrosis virus (ISKNV), which is an agent caused devastating losses in mandarin fish (Siniperca chuatsi) industry. We found that ISKNV infection induced up-regulation of host PI3K/AKT/p53 axis, but inhibited autophagy in CPB cells. Interestingly, activation of PI3K/AKT/p53 axis factors trough agonists or overexpression dramatically decreased host autophagy level, inhibited ISKNV replication, and elevated the expression of immune-related genes in CPB cells. In contrast, suppression of PI3K/AKT/p53 pathway by inhibitors or small interfering RNA (siRNA)-mediated gene silence increased the autophagy and ISKNV replication, but down-regulated immune responses in CPB cells. All these results indicate that PI3K/AKT/p53 pathway plays an important role in anti-ISKNV infection and can be used as a new target for controlling ISKNV disease.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Yue Ming
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Yinjie Niu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Xia Luo
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| |
Collapse
|
21
|
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers (Basel) 2021; 13:3949. [PMID: 34439105 PMCID: PMC8394096 DOI: 10.3390/cancers13163949] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.
Collapse
Affiliation(s)
- Federica Rascio
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Federica Spadaccino
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Maria Teresa Rocchetti
- Cell Biology Unit, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| |
Collapse
|
22
|
Gu NH, Li GJ, Yang BX, You M, Lin Y, Sun F, Xu H. Hypo-Expression of Tuberin Promotes Adenomyosis via the mTOR1-Autophagy Axis. Front Cell Dev Biol 2021; 9:710407. [PMID: 34395438 PMCID: PMC8358309 DOI: 10.3389/fcell.2021.710407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Adenomyosis (AM) is a disease in which endometrial tissue invades the myometrium and has a 10–60% prevalence in reproductive-aged women. TSC2 regulates autophagy via mTOR1 signalling in colorectal cancer and endometrial carcinoma. Dysregulation of autophagy is implicated in adenomyosis pathogenesis. However, whether TSC2 participates in adenomyosis via autophagy remains obscure. Here, we found that the expression of TSC2 in adenomyosis was significantly decreased than that in normal endometrium during the secretory phase. Moreover, TSC2 and autophagy marker expression was significantly lower in ectopic lesions than in eutopic samples. TSC2 downregulation inhibited autophagy through mTOR1 signalling pathway activation in endometrial cells, leading to excessive proliferation, migration, and EMT; TSC2 overexpression induced the opposite effects. Rapamycin treatment suppressed cell proliferation, migration and EMT in the absence of TSC2. In parallel, an autophagy-specific inhibitor (SAR-405) restored migration and EMT under rapamycin treatment in TSC2-knockdown Ishikawa cells. Finally, SAR-405 treatment promoted EMT and migration of overexpressing cells. Collectively, our results suggest that TSC2 controls endometrial epithelial cell migration and EMT by regulating mTOR1-autophagy axis activation and that hypo-expression of TSC2 in the endometrium might promote adenomyosis.
Collapse
Affiliation(s)
- Ni-Hao Gu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Guo-Jing Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Bing-Xin Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Min You
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Feng Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
23
|
Devis-Jauregui L, Eritja N, Davis ML, Matias-Guiu X, Llobet-Navàs D. Autophagy in the physiological endometrium and cancer. Autophagy 2021; 17:1077-1095. [PMID: 32401642 PMCID: PMC8143243 DOI: 10.1080/15548627.2020.1752548] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved catabolic process and a major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles. An increasing body of evidence has unveiled autophagy as an indispensable biological function that helps to maintain normal tissue homeostasis and metabolic fitness that can also lead to severe consequences for the normal cellular functioning when altered. Recent accumulating data point to autophagy as a key player in a wide variety of physiological and pathophysiological conditions in the human endometrium, one of the most proficient self-regenerating tissues in the human body and an instrumental player in placental species reproductive function. The current review highlights the most recent findings regarding the process of autophagy in the normal and cancerous endometrial tissue. Current research efforts aiming to therapeutically exploit autophagy and the methodological approaches used are discussed.Abbreviations: 3-MA: 3-methyladenine; ACACA (acetyl-CoA carboxylase alpha); AICAR: 5-aminoimidazole-4-carboximide riboside; AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; ATG3: autophagy related 3; ATG4C: autophagy related 4C cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG9: autophagy related 9; Baf A1: bafilomycin A1; BAX: BCL2 associated X, apoptosis regulator; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; CACNA1D: calcium voltage-gated channel subunit alpha1 D; CASP3: caspase 3; CASP7: caspase 7; CASP8: caspase 8; CASP9: caspase 9; CD44: CD44 molecule (Indian blood group); CDH1: cadherin 1; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; CMA: chaperone-mediated autophagy; CQ: chloroquine; CTNNB1: catenin beta 1; DDIT3: DNA damage inducible transcript 3; EC: endometrial cancer; EGFR: epidermal growth factor receptor; EH: endometrial hyperplasia; EIF4E: eukaryotic translation initiation factor 4E; EPHB2/ERK: EPH receptor B2; ER: endoplasmic reticulum; ERBB2: er-b2 receptor tyrosine kinase 2; ERVW-1: endogenous retrovirus group W member 1, envelope; ESR1: estrogen receptor 1; FSH: follicle-stimulating hormone; GCG/GLP1: glucagon; GFP: green fluorescent protein; GIP: gastric inhibitory polypeptide; GLP1R: glucagon-like peptide-1 receptor; GLS: glutaminase; H2AX: H2A.X variant histone; HIF1A: hypoxia inducible factor 1 alpha; HMGB1: high mobility group box 1; HOTAIR: HOX transcript antisense RNA; HSPA5: heat shock protein family A (HSP70) member 5; HSPA8: heat shock protein family A (HSP70) member 8; IGF1: insulin like growth factor 1; IL27: interleukin 27; INS: insulin; ISL: isoliquiritigenin; KRAS: KRAS proto-oncogene, GTPase; LAMP2: lysosomal-associated membrane protein 2; lncRNA: long-non-coding RNA; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPK8: mitogen-activated protein kinase 8; MAPK9: mitogen-activated protein kinase 9; MPA: medroxyprogesterone acetate; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; MYCBP: MYC-binding protein; NFE2L2: nuclear factor, erythroid 2 like 2; NFKB: nuclear factor kappa B; NFKBIA: NFKB inhibitor alpha; NK: natural killer; NR5A1: nuclear receptor subfamily 5 group A member 1; PARP1: poly(ADP-ribose) polymerase 1; PAX2: paired box 2; PDK1: pyruvate dehydrogenase kinase 1; PDX: patient-derived xenograft; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PIK3R1: phosphoinositide-3-kinase regulatory subunit 1; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PPD: protopanaxadiol; PRKCD: protein kinase C delta; PROM1/CD133: prominin 1; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PTEN: phosphatase and tensin homolog; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RFP: red fluorescent protein; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; RSV: resveratrol; SGK1: serum/glucocorticoid regulated kinase 1; SGK3: serum/glucocorticoid regulated kinase family member 3; SIRT: sirtuin; SLS: stone-like structures; SMAD2: SMAD family member 2; SMAD3: SMAD family member 3; SQSTM1: sequestosome 1; TALEN: transcription activator-like effector nuclease; TGFBR2: transforming growth factor beta receptor 2; TP53: tumor protein p53; TRIB3: tribbles pseudokinase 3; ULK1: unc-51 like autophagy activating kinase 1; ULK4: unc-51 like kinase 4; VEGFA: vascular endothelial growth factor A; WIPI2: WD repeat domain, phosphoinositide interacting 2; XBP1: X-box binding protein 1; ZFYVE1: zinc finger FYVE domain containing 1.
Collapse
Affiliation(s)
- Laura Devis-Jauregui
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet, Barcelona, Spain
| | - Núria Eritja
- Department of Pathology-Hospital Universitari Arnau De Vilanova, Universitat De Lleida, IRBLLEIDA, CIBERONC, Lleida, Spain
| | - Meredith Leigh Davis
- Institute of Genetic Medicine-International Centre for Life, Newcastle University. Central Parkway, Newcastle upon Tyne, UK
| | - Xavier Matias-Guiu
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet, Barcelona, Spain
- Department of Pathology-Hospital Universitari Arnau De Vilanova, Universitat De Lleida, IRBLLEIDA, CIBERONC, Lleida, Spain
- Department of Pathology-Hospital, Universitari De Bellvitge, Barcelona, Spain
| | - David Llobet-Navàs
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet, Barcelona, Spain
| |
Collapse
|
24
|
Dore M, Filoche S, Danielson K, Henry C. Efficacy of the LNG-IUS for treatment of endometrial hyperplasia and early stage endometrial cancer: Can biomarkers predict response? Gynecol Oncol Rep 2021; 36:100732. [PMID: 33718563 PMCID: PMC7933258 DOI: 10.1016/j.gore.2021.100732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/19/2022] Open
Abstract
Endometrial Cancer (EC) is the most common gynaecologic malignancy in the developed world, and is increasing in premenopausal women. The surgical standard of care for early-stage EC is not possible in women with concurrent comorbidities or women who desire a fertility sparing approach. The Levonorgestrel Intrauterine System (LNG-IUS) is gaining traction as an alternative treatment for endometrial hyperplasia and early stage EC in inoperable women. Whilst early evidence appears promising, predictive biomarkers need to be established to determine non-responders, which make up one in three women. This timely review discusses the current literature around the identification of clinical, molecular and novel biomarkers that show potential to predict response to progesterone treatment, including the LNG-IUS.
Collapse
Affiliation(s)
- Molly Dore
- Department of Obstetrics, Gynaecology & Women’s Health, University of Otago Wellington, New Zealand
| | - Sara Filoche
- Head of Department, Obstetrics, Gynaecology & Women’s Health, University of Otago Wellington, New Zealand
| | - Kirsty Danielson
- Department of Surgery and Anaesthesia, University of Otago Wellington, New Zealand
| | - Claire Henry
- Department of Obstetrics, Gynaecology & Women’s Health, University of Otago Wellington, New Zealand
| |
Collapse
|
25
|
The Multifaceted Role of Autophagy in Endometrium Homeostasis and Disease. Reprod Sci 2021; 29:1054-1067. [PMID: 33877643 DOI: 10.1007/s43032-021-00587-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is a conserved fundamental cellular process with a primary function of catabolizing harmful or surplus cellular contents such as protein aggregates, dysfunctional/long-lived organelles, intracellular pathogens, and storage nutrients. An increasing body of evidence reveals that basal autophagy is essential for maintaining endometrial homeostasis and mediating endometrial-specific functions, including menstrual cycle, embryo implantation, and decidualization. However, perturbed levels of autophagy can lead to severe endometrial pathologies, including endometriosis, endometrial hyperplasia, endometrial cancer, adenomyosis, and leiomyoma. This review highlights the most recent findings on the activity, regulation, and function of autophagy in endometrium physiology and pathology. Understanding the mechanistic roles of autophagy in endometrium homeostasis and disease is key to developing novel therapeutic strategies for endometrium-related infertility and malignancies.
Collapse
|
26
|
Shah AA, Kamal MA, Akhtar S. Tumor Angiogenesis and VEGFR-2: Mechanism, Pathways and Current Biological Therapeutic Interventions. Curr Drug Metab 2021; 22:50-59. [PMID: 33076807 DOI: 10.2174/1389200221666201019143252] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiogenesis, involving the formation of new blood vessels from preexisting vessels, caters an important biological phenomenon for the growth and development of bodily structures in the human body. Regulation of angiogenesis in non-pathological conditions takes place through a well-defined balanced angiogenic-switch, which upon exposure to various pathological conditions may get altered. This makes the cells change their normal behavior resulting in uncontrolled division and angiogenesis. METHODS The current review tries to present a brief framework of angiogenesis and tumor progression phenomenon along with the latest therapeutic interventions against VEGFR-2 and its future directions. RESULTS The tumor angiogenic pathways functioning in diverse mechanisms via sprouting angiogenesis, intussusceptive angiogenesis, vascular co-option, vascular mimicry, and glomeruloid angiogenesis are normally activated by varied angiogenic stimulators and their receptors are interrelated to give rise to specialized signaling pathways. Amongst these receptors, VEGFR-2 is found as one of the key, critical mediators in tumor angiogenesis and is seen as a major therapeutic target for combating angiogenesis. Though a number of anti-angiogenic drugs like Ramucirumab, Sunitinib, Axitinib, Sorafenib, etc. showing good survival rates have been developed and approved by FDA against VEGFR-2, but these have also been found to be associated with serious health effects and adverse reactions. CONCLUSION An improved or alternative treatment is needed shortly that has a higher survival rate with the least side effects. Innovative strategies, including personalized medicine, nano-medicine, and cancer immunotherapy have also been outlined as an alternative treatment with a discussion on advancements and improvements required for their implementation methods.
Collapse
Affiliation(s)
- Altaf A Shah
- Department of Biosciences, Integral University, Lucknow-226026, UP, India
| | - Mohammad A Kamal
- Novel Global Community Educational Foundation, Peterlee Place, Hebersham, NSW 2770, Australia
| | - Salman Akhtar
- Novel Global Community Educational Foundation, Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
27
|
An Integrated Autophagy-Related Long Noncoding RNA Signature as a Prognostic Biomarker for Human Endometrial Cancer: A Bioinformatics-Based Approach. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5717498. [PMID: 33381557 PMCID: PMC7755467 DOI: 10.1155/2020/5717498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Endometrial cancer is one of the most common malignant tumors, lowering the quality of life among women worldwide. Autophagy plays dual roles in these malignancies. To search for prognostic markers for endometrial cancer, we mined The Cancer Genome Atlas and the Human Autophagy Database for information on endometrial cancer and autophagy-related genes and identified five autophagy-related long noncoding RNAs (lncRNAs) (LINC01871, SCARNA9, SOS1-IT1, AL161618.1, and FIRRE). Based on these autophagy-related lncRNAs, samples were divided into high-risk and low-risk groups. Survival analysis showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group. Univariate and multivariate independent prognostic analyses showed that patients' age, pathological grade, and FIGO stage were all risk factors for poor prognosis. A clinical correlation analysis of the relationship between the five autophagy-related lncRNAs and patients' age, pathological grade, and FIGO stage was also per https://orcid.org/0000-0001-7090-1750 formed. Histopathological assessment of the tumor microenvironment showed that the ESTIMATE, immune, and stromal scores in the high-risk group were lower than those in the low-risk group. Principal component analysis and functional annotation were performed to confirm the correlations. To further evaluate the effect of the model constructed on prognosis, samples were divided into training (60%) and validation (40%) groups, regarding the risk status as an independent prognostic risk factor. A prognostic nomogram was constructed using patients' age, pathological grade, FIGO stage, and risk status to estimate the patients' survival rate. C-index and multi-index ROC curves were generated to verify the stability and accuracy of the nomogram. From this analysis, we concluded that the five lncRNAs identified in this study could affect the incidence and development of endometrial cancer by regulating the autophagy process. Therefore, these molecules may have the potential to serve as novel therapeutic targets and biomarkers.
Collapse
|
28
|
Arildsen NS, Hedenfalk I. Simvastatin is a potential candidate drug in ovarian clear cell carcinomas. Oncotarget 2020; 11:3660-3674. [PMID: 33088426 PMCID: PMC7546754 DOI: 10.18632/oncotarget.27747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022] Open
Abstract
Ovarian clear cell carcinomas (OCCC) constitute a rare subtype of epithelial ovarian cancer, lacking efficient treatment options. Based on previous studies, we assessed the anti-proliferative effect of simvastatin, a Rho GTPase interfering drug, in three OCCC cell lines: JHOC-5, OVMANA and TOV-21G, and one high-grade serous ovarian cancer (HGSOC) cell line, Caov3. We used the Rho GTPase interfering drug CID-1067700 as a control. All OCCC cell lines were more sensitive to single-agent simvastatin than the HGSOC cells, while all cell lines were less sensitive to CID-1067700 than to simvastatin. Combinations of carboplatin and simvastatin were generally antagonistic. Most treatments inhibited migration, while only simvastatin and CID-1067700 also disrupted actin organization in the OCCC cell lines. All treatments induced a G1 arrest in JHOC-5 and TOV-21G cells. Treatments with simvastatin consistently reduced c-Myc protein expression in all OCCC cell lines and displayed evidence of causing both caspase-mediated apoptotic cell death and autophagic response in a cell line dependent manner. Differences between cell lines in response to the treatments were observed and such differences, including e. g. prior treatment, should be investigated further. Conclusively, simvastatin efficiently controlled OCCC proliferation and migration, thus showing potential as a candidate drug for the treatment of OCCC.
Collapse
Affiliation(s)
- Nicolai Skovbjerg Arildsen
- Division of Oncology, Department of Clinical Sciences, Lund and Lund University Cancer Center, Lund University, Lund, Sweden
- Current Address: Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Li G, Kanagasabai T, Lu W, Zou MR, Zhang SM, Celada SI, Izban MG, Liu Q, Lu T, Ballard BR, Zhou X, Adunyah SE, Matusik RJ, Yan Q, Chen Z. KDM5B Is Essential for the Hyperactivation of PI3K/AKT Signaling in Prostate Tumorigenesis. Cancer Res 2020; 80:4633-4643. [PMID: 32868382 DOI: 10.1158/0008-5472.can-20-0505] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/29/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022]
Abstract
KDM5B (lysine[K]-specific demethylase 5B) is frequently upregulated in various human cancers including prostate cancer. KDM5B controls H3K4me3/2 levels and regulates gene transcription and cell differentiation, yet the contributions of KDM5B to prostate cancer tumorigenesis remain unknown. In this study, we investigated the functional role of KDM5B in epigenetic dysregulation and prostate cancer progression in cultured cells and in mouse models of prostate epithelium-specific mutant Pten/Kdm5b. Kdm5b deficiency resulted in a significant delay in the onset of prostate cancer in Pten-null mice, whereas Kdm5b loss alone caused no morphologic abnormalities in mouse prostates. At 6 months of age, the prostate weight of Pten/Kdm5b mice was reduced by up to 70% compared with that of Pten mice. Pathologic analysis revealed Pten/Kdm5b mice displayed mild morphologic changes with hyperplasia in prostates, whereas age-matched Pten littermates developed high-grade prostatic intraepithelial neoplasia and prostate cancer. Mechanistically, KDM5B governed PI3K/AKT signaling in prostate cancer in vitro and in vivo. KDM5B directly bound the PIK3CA promoter, and KDM5B knockout resulted in a significant reduction of P110α and PIP3 levels and subsequent decrease in proliferation of human prostate cancer cells. Conversely, KDM5B overexpression resulted in increased PI3K/AKT signaling. Loss of Kdm5b abrogated the hyperactivation of AKT signaling by decreasing P110α/P85 levels in Pten/Kdm5b mice. Taken together, our findings reveal that KDM5B acts as a key regulator of PI3K/AKT signaling; they also support the concept that targeting KDM5B is a novel and effective therapeutic strategy against prostate cancer. SIGNIFICANCE: This study demonstrates that levels of histone modification enzyme KDM5B determine hyperactivation of PI3K/AKT signaling in prostate cancer and that targeting KDM5B could be a novel strategy against prostate cancer.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Wenfu Lu
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Mike R Zou
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Shang-Min Zhang
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Sherly I Celada
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee
| | - Michael G Izban
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, Tennessee
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tao Lu
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, Tennessee
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qin Yan
- Department of Pathology, Yale University, New Haven, Connecticut.
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee.
| |
Collapse
|
30
|
Wang Y, Yin L, Sun X. CircRNA hsa_circ_0002577 accelerates endometrial cancer progression through activating IGF1R/PI3K/Akt pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:169. [PMID: 32847606 PMCID: PMC7450704 DOI: 10.1186/s13046-020-01679-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022]
Abstract
Background Endometrial cancer (EC) is a common gynecologic malignancy worldwide. This study investigated the regulatory effects of circular RNA (circRNA) hsa_circ_0002577 on the tumorigenesis of EC. Methods Tumor samples and adjacent normal tissues were obtained from 84 EC patients. Recombinant lentiviral vectors expressing hsa_circ_0002577 (Lv-circRNA), short hairpin RNAs against hsa_circ_0002577 (sh-circRNA), miR-625-5p mimics, miR-625-5p inhibitor, lentiviral vectors expressing insulin-like growth factor 1 receptor (IGF1R) and their corresponding controls were transfected into EC cells as designated. A mouse xenograft model was established in BALB/c mice by inoculating Ishikawa cells transfected with sh-circRNA or control sequence. Results Hsa_circ_0002577 was upregulated in EC tissue samples and cells as compared to normal controls. EC patients with higher expression of hsa_circ_0002577 showed poorer overall survival and more advanced tumor stage. EC cells transfected with Lv-circRNA showed promoted proliferation, migration, and invasion, whereas the delivery of sh-circRNA exerted an opposite effect. Further analyses showed that hsa_circ_0002577 acted as a miR-625-5p sponge in EC cells. IGF1R was a potential downstream target of miR-625-5p. The expression of IGF1R in EC tissues was significantly higher than that in matched controls. Hsa_circ_0002577 accelerated EC development by inducing IGF1R expression and activating PI3K/Akt signaling pathway. Also, the knockdown of hsa_circ_0002577 delayed tumor growth and metastasis in the inoculated mice. Conclusion Our study showed that circRNA hsa_circ_002577 accelerated EC progression by acting as a miR-625-5p sponge, upregulating IGF1R and activating the PI3K/Akt pathway, suggesting the potential therapeutic use of hsa_circ_002577 in EC treatment. Trial registration Not Applicable.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics & Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China.
| | - Lili Yin
- Department of Obstetrics & Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China
| | - Xiaofei Sun
- Department of Obstetrics & Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China
| |
Collapse
|
31
|
Wang H, Ma X, Liu J, Wan Y, Jiang Y, Xia Y, Cheng W. Prognostic value of an autophagy-related gene expression signature for endometrial cancer patients. Cancer Cell Int 2020; 20:306. [PMID: 32684843 PMCID: PMC7359499 DOI: 10.1186/s12935-020-01413-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Autophagy is associated with cancer development. Autophagy-related genes play significant roles in endometrial cancer (EC), a major gynecological malignancy worldwide, but little was known about their value as prognostic markers. Here we evaluated the value of a prognostic signature based on autophagy-related genes for EC. METHODS First, various autophagy-related genes were obtained via the Human Autophagy Database and their expression profiles were downloaded from The Cancer Genome Atlas. Second, key prognostic autophagy-related genes were identified via univariate, LASSO and multivariate Cox regression analyses. Finally, a risk score to predict the prognosis of EC was calculated and validated by using the test and the entire data sets. Besides, the key genes mRNA expression were validated using quantitative real-time PCR in clinical tissue samples. RESULTS A total of 40 differentially expressed autophagy-related genes in EC were screened and five of them were prognosis-related (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1). A prognostic signature was constructed based on these five genes using the train set, which stratified EC patients into high-risk and low-risk groups (p < 0.05). In terms of overall survival, the analyses of the test set and the entire set yielded consistent results (test set: p < 0.05; entire set: p < 0.05). Time-dependent ROC analysis suggested that the risk score predicted EC prognosis accurately and independently (0.674 at 1 year, 0.712 at 3 years and 0.659 at 5 years). A nomogram with clinical utility was built. Patients in the high-risk group displayed distinct mutation signatures compared with those in the low-risk group. For clinical sample validation, we found that EIF4EBP1and ERBB2 had higher level in EC than that in normal tissues while CDKN1B, DLC1 and GRID1 had lower level, which was consistent with the results predicted. CONCLUSIONS Based on five autophagy-related genes (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1), our model can independently predict the OS of EC patients by combining molecular signature and clinical characteristics.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- State Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166 China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- State Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166 China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People’s Republic of China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People’s Republic of China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People’s Republic of China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- State Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166 China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People’s Republic of China
| |
Collapse
|
32
|
Madanes D, Bilotas MA, Bastón JI, Singla JJ, Meresman GF, Barañao RI, Ricci AG. PI3K/AKT pathway is altered in the endometriosis patient's endometrium and presents differences according to severity stage. Gynecol Endocrinol 2020; 36:436-440. [PMID: 31637941 DOI: 10.1080/09513590.2019.1680627] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Based on the inflammatory nature and hormone-dependency of endometriosis, PI3K/AKT signaling appears to influence its progression. Could the endometriosis stages be linked to differential changes in PI3K/AKT pathway regulation? The objective is to evaluate the expression of PI3K, PTEN, AKT and p-AKT in endometrial human biopsies, according to the presence or absence of the disease, and to assess the underlying differences regarding the endometriosis stages. Biopsy specimens of the ectopic and eutopic endometrium were obtained from twenty women with untreated peritoneal endometriosis as well as endometrium biopsies from nine controls. Our study revealed an increased expression of PI3K in eutopic and ectopic endometrium from patients with endometriosis, and a reduced expression of PTEN and increased levels of AKT phosphorylation, compared to control endometrium. Both eutopic and ectopic endometrium from patients with minimal-mild endometriosis expressed a significant reduced PTEN level compared to the respective endometrium from patients with moderate-severe endometriosis. The ratio p-AKT/total AKT showed higher levels of AKT phosphorylation in endometriotic tissue from patients with minimal-mild endometriosis. This study has firmly confirmed the alteration in PI3K/AKT pathway regulation and demonstrated clear differences between the stages of endometriosis, emphasizing the importance of this pathway in the first stage of the disease.
Collapse
Affiliation(s)
- Daniela Madanes
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela A Bilotas
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Bastón
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - José J Singla
- Hospital de Clínicas José de San Martín, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela F Meresman
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rosa I Barañao
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Analía G Ricci
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
33
|
Regulation of cancer cell signaling pathways as key events for therapeutic relevance of edible and medicinal mushrooms. Semin Cancer Biol 2020; 80:145-156. [DOI: 10.1016/j.semcancer.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022]
|
34
|
Expression profiling revealed keratins and interleukins as potential biomarkers in squamous cell carcinoma of horn in Indian bullocks ( Bos indicus). 3 Biotech 2020; 10:92. [PMID: 32089987 DOI: 10.1007/s13205-020-2078-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Horn cancer is most prevalent in Bos indicus and poorly defined genetic landscape makes disease diagnosis and treatment difficult. In this study, RNA-Seq and data analysis using CLC Genomics Workbench was employed to identify biomarkers associated with horn cancer. As a result, a total of 149 genes were found significant differentially expressed in horn cancer samples compared to horn normal samples. The study revealed 'keratins' and 'interleukins' as apex groups of significant differentially expressed genes (DEGs). Functional analysis showed that the upregulated keratins support metastasis of tumor via cell proliferation, migration, and affecting cell stability, while downregulated interleukins along with other associated chemokine receptors deprive the immune response to tumor posing clear path for metastasis of horn cancer. Combi-action of both the group facilitates the tumor microenvironment to reproduce tumorigenesis. Analysis of pathways enriched in DEGs and exemplified protein-protein interaction network indicated actual role of DEGs in horn cancer at a fine level. Important effect of deregulated expression of keratin and interleukin genes in horn cancer enrolling their candidacy as potential biomarkers for horn cancer prognosis. This study appraises the possibility to mitigate horn cancer at fine resolution to extract attainable identification of prognostic molecular portraits.
Collapse
|
35
|
The c-Myc/AKT1/TBX3 Axis Is Important to Target in the Treatment of Embryonal Rhabdomyosarcoma. Cancers (Basel) 2020; 12:cancers12020501. [PMID: 32098189 PMCID: PMC7072582 DOI: 10.3390/cancers12020501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma is a highly aggressive malignant cancer that arises from skeletal muscle progenitor cells and is the third most common solid tumour in children. Despite significant advances, rhabdomyosarcoma still presents a therapeutic challenge, and while targeted therapy has shown promise, there are limited options because the molecular drivers of rhabdomyosarcoma are poorly understood. We previously reported that the T-box transcription factor 3 (TBX3), which has been identified as a druggable target in many cancers, is overexpressed in rhabdomyosarcoma patient samples and cell lines. To identify new molecular therapeutic targets to treat rhabdomyosarcoma, this study investigates the potential oncogenic role(s) for TBX3 and the factors responsible for upregulating it in this cancer. To this end, rhabdomyosarcoma cell culture models in which TBX3 was either stably knocked down or overexpressed were established and the impact on key hallmarks of cancer were examined using growth curves, soft agar and scratch motility assays, as well as tumour-forming ability in nude mice. Our data show that TBX3 promotes substrate-dependent and -independent proliferation, migration and tumour formation. We further reveal that TBX3 is upregulated by c-Myc transcriptionally and AKT1 post-translationally. This study identifies c-Myc/AKT1/TBX3 as an important axis that could be targeted for the treatment of rhabdomyosarcoma.
Collapse
|
36
|
Xu Z, Han X, Ou D, Liu T, Li Z, Jiang G, Liu J, Zhang J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol 2019; 104:575-587. [PMID: 31832711 DOI: 10.1007/s00253-019-10257-8] [Citation(s) in RCA: 404] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Autophagy is a highly conserved catabolic process and participates in a variety of cellular biological activities. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, as a critical regulator of autophagy, is involved in the initiation and promotion of a series of pathological disorders including various tumors. Autophagy also participates in regulating the balance between the tumor and the tumor microenvironment. Natural products have been considered a treasure of new drug discoveries and are of great value to medicine. Mounting evidence has suggested that numerous natural products are targeting PI3K/AKT/mTOR-mediated autophagy, thereby suppressing tumor growth. Furthermore, autophagy plays a "double-edged sword" role in different tumors. Targeting PI3K/AKT/mTOR-mediated autophagy is an important therapeutic strategy for a variety of tumors, and plays important roles in enhancing the chemosensitivity of tumor cells and avoiding drug resistance. Therefore, we summarized the roles of PI3K/AKT/mTOR-mediated autophagy in tumorigenesis, progression, and drug resistance of tumors, which may be utilized to design preferably therapeutic strategies for various tumors.
Collapse
Affiliation(s)
- Zhenru Xu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Daming Ou
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Liu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zunxiong Li
- University of South China, Hengyang, Hunan, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| |
Collapse
|
37
|
Nuñez-Olvera SI, Gallardo-Rincón D, Puente-Rivera J, Salinas-Vera YM, Marchat LA, Morales-Villegas R, López-Camarillo C. Autophagy Machinery as a Promising Therapeutic Target in Endometrial Cancer. Front Oncol 2019; 9:1326. [PMID: 31850214 PMCID: PMC6896250 DOI: 10.3389/fonc.2019.01326] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Endometrial cancer is the fourth most frequent neoplasia for women worldwide, and over the past two decades it incidence has increased. The most common histological type of endometrial cancer is endometrioid adenocarcinoma, also known as type 1 endometrial cancer. Endometrioid endometrial cancer is associated with diverse epidemiological risk factors including estrogen use, obesity, diabetes, cigarette smoking, null parity, early menarche, and late menopause. Clinical effectiveness of chemotherapy is variable, indicating that novel molecular therapies against specific cellular processes associated to cell survival and resistance to therapy, such as autophagy, urged to ameliorate the rates of success in endometrial cancer treatment. Autophagy (also known as macroautophagy) is a specialized mechanism that maintains cell homeostasis which is activated in response to cellular stressors including nutrients deprivation, amino acids starvation, hypoxia, and metabolic stress to prolong cell survival via lysosomal degradation of cytoplasmic macromolecules and organelles. However, in human cancer cells, autophagy has a controversial function due to its dual role as self-protective or apoptotic. Conventional antitumor therapies including hormones, chemotherapy and ionizing radiation, may activate autophagy as a pro-survival tumor response contributing to treatment resistance. Intriguingly, if autophagy continues above reversibility of cell viability, autophagy can result in apoptosis of tumor cells. Here, we have reviewed the mechanisms of autophagy described in endometrial cancers, including the role of PI3K/AKT/mTOR, AMPK-mTOR, and p53 signaling pathways that trigger or inhibit the process and thus representing potential molecular targets in therapeutic clinical approaches. In addition, we discussed the recent findings indicating that autophagy can be modulated using repurposing drugs which may leads to faster experimentation and validation, as well as more easy access of the medications to patients. Finally, the promising role of dietary compounds and microRNAs in autophagy modulation is also discussed. In conclusion, although the research about autophagy is scarce but ongoing in endometrial cancer, the actual findings highlight the promising usefulness of novel molecules for directing targeted therapies.
Collapse
Affiliation(s)
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Jonathan Puente-Rivera
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yarely M. Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Raúl Morales-Villegas
- Coordinación Académica Huasteca del Sur, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| |
Collapse
|
38
|
Cao W, Gao W, Zheng P, Sun X, Wang L. Medroxyprogesterone acetate causes the alterations of endoplasmic reticulum related mRNAs and lncRNAs in endometrial cancer cells. BMC Med Genomics 2019; 12:163. [PMID: 31718641 PMCID: PMC6852953 DOI: 10.1186/s12920-019-0601-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Progestin is effective to promote endometrial cancer (EC) cells apoptosis, however, continuous progestin administration causes low level of progestin receptor B (PRB), further resulting in progestin resistance. Here, we performed microarray analysis on Ishikawa cells (PRB+) treated with medroxyprogesterone acetate (MPA) to explore the molecular mechanism underlying the inhibitory influence of MPA on PRB+ EC cells. METHODS Microarray analysis was performed by using Ishikawa cells (PRB+) treated with MPA. Differentially expressed mRNA and long noncoding RNAs (lncRNAs) were identified. Furthermore, the functions of these mRNAs and lncRNAs were predicted by functional enrichment analysis. QRT-PCR was further performed to verify the microarray data. RESULTS A total of 358 differentially expressed genes and 292 lncRNAs were identified in Ishikawa cells (PRB+) treated with MPA. QRT-PCR verified these data. Functional enrichment analysis identified endoplasmic reticulum (ER) stress as the key pathway involved in the inhibitory effect of MPA on EC cells. And the ER stress apoptotic molecule CHOP and ER stress related molecule HERPUD1 were both highly expressed in Ishikawa cells (PRB+) treated with MPA. Co-expression analysis showed lnc-CETP-3 was highly correlated with CHOP and HERPUD1, suggesting it might participate in ER stress pathway-related EC cell apoptosis caused by MPA. In addition, compared with untreated cells, lnc-CETP-3, CHOP and HERPUD1 were significantly up-regulated in Ishikawa cells (PRB+) treated with MPA, whereas they have no statistical significance in KLE cells (PRB-). CONCLUSIONS MPA may activate ER stress by progesterone-PRB pathway to up-regulate CHOP expression, which may be one of the molecular mechanisms underlying the inhibitory effect of MPA on EC cells with PRB+. Lnc-CETP-3 might be involved in this process. These findings may provide therapeutic targets for EC patients with PRB-, and resistance-related targets to increase the sensitivity of MPA on EC cells.
Collapse
Affiliation(s)
- Wenjiao Cao
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China
| | - Wuyuan Gao
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China
| | - Panchan Zheng
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China
| | - Xiao Sun
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China
| | - Lihua Wang
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China. .,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China. .,Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|
39
|
Cao C, Zhou JY, Xie SW, Guo XJ, Li GT, Gong YJ, Yang WJ, Li Z, Zhong RH, Shao HH, Zhu Y. Metformin Enhances Nomegestrol Acetate Suppressing Growth of Endometrial Cancer Cells and May Correlate to Downregulating mTOR Activity In Vitro and In Vivo. Int J Mol Sci 2019; 20:E3308. [PMID: 31284427 PMCID: PMC6650946 DOI: 10.3390/ijms20133308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effect of a novel progestin and its combination with metformin on the growth of endometrial cancer (EC) cells. Inhibitory effects of four progestins, including nomegestrol acetate (NOMAC), medroxyprogesterone acetate, levonorgestrel, and cyproterone acetate, were evaluated in RL95-2, HEC-1A, and KLE cells using cell counting kit-8 assay. Flow cytometry was performed to detect cell cycle and apoptosis. The activity of Akt (protein kinase B), mTOR (mammalian target of rapamycin) and its downstream substrates 4EBP1 (4E-binding protein 1) and eIF4G (Eukaryotic translation initiation factor 4G) were assayed by Western blotting. Nude mice were used to assess antitumor effects in vivo. NOMAC inhibited the growth of RL95-2 and HEC-1A cells, accompanied by arresting the cell cycle at G0/G1 phase, inducing apoptosis, and markedly down-regulating the level of phosphorylated mTOR/4EBP1/eIF4G in both cell lines (p < 0.05). Metformin significantly increased the inhibitory effect of and apoptosis induced by NOMAC and strengthened the depressive effect of NOMAC on activity of mTOR and its downstream substrates, compared to their treatment alone (p < 0.05). In xenograft tumor tissues, metformin (100 mg/kg) enhanced the suppressive effect of NOMAC (100 mg/kg) on mTOR signaling and increased the average concentration of NOMAC by nearly 1.6 times compared to NOMAC treatment alone. Taken together, NOMAC suppressing the growth of EC cells likely correlates to down-regulating the activity of the mTOR pathway and metformin could strengthen this effect. Our findings open a new window for the selection of progestins in hormone therapy of EC.
Collapse
Affiliation(s)
- Can Cao
- Pharmacy School, Fudan University, Shanghai 200032, China
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Jie-Yun Zhou
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Shu-Wu Xie
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Xiang-Jie Guo
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Guo-Ting Li
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Yi-Juan Gong
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Wen-Jie Yang
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Zhao Li
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Rui-Hua Zhong
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Hai-Hao Shao
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Yan Zhu
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
40
|
COL1A2 is a TBX3 target that mediates its impact on fibrosarcoma and chondrosarcoma cell migration. Cancer Lett 2019; 459:227-239. [PMID: 31202624 DOI: 10.1016/j.canlet.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
Abstract
The developmentally important T-box transcription factor TBX3, is overexpressed in several cancers and contributes to tumorigenesis as either a tumour promoter or tumour suppressor. For example, TBX3 promotes cell proliferation, migration and invasion of chondrosarcoma cells but inhibits these processes in fibrosarcoma cells. This suggests that the cellular context influences TBX3 oncogenic functions, but the mechanism(s) involved has not been elucidated. COL1A2 encodes type I collagen and, like TBX3, plays important roles during embryogenesis and can act as either oncogene or tumour suppressor. Here we explore the possibility that COL1A2 may be a TBX3 target gene responsible for mediating its opposing oncogenic roles in chondrosarcoma and fibrosarcoma cells. Results from qRT-PCR, western blotting, luciferase reporter and chromatin immunoprecipitation assays show that TBX3 binds and activates the COL1A2 promoter. Furthermore, we show that TBX3 levels are regulated by AKT1 and that pseudo-phosphorylation of TBX3 at an AKT consensus serine site, enhances its ability to activate COL1A2. Importantly, we demonstrate that COL1A2 mediates the pro- and anti-migratory effects of TBX3 in chondrosarcoma and fibrosarcoma cells respectively. Our data reveal that the AKT1/TBX3/COL1A2 axis plays an important role in sarcomagenesis.
Collapse
|
41
|
Yang S, Wang H, Li D, Li M. Role of Endometrial Autophagy in Physiological and Pathophysiological Processes. J Cancer 2019; 10:3459-3471. [PMID: 31293650 PMCID: PMC6603423 DOI: 10.7150/jca.31742] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Endometrium is the mucosal lining of the uterus which expressed a cyclic process of proliferation, secretion and scaling under the control of hormones secreted by the ovary, and it also plays an indispensable role in the embryo implantation, the constitution of fetal-maternal interface, and the maintaining of pregnancy. In pathophysiological conditions, the abnormality or disorder of endometrium may lead to endometrium-related diseases, such as endometriosis, endometrium hyperplasia and even endometrial carcinoma. In recent years, more and more evidence revealed that autophagy exists in both the endometrium stroma cells and epithelial cells, and the activity of autophagy is changed in the different phases of menstruation, as well as in the endometrium-related diseases. Here, we aim to review the activity level, the regulatory factors and the function of autophagy in physiological and pathophysiological endometria, and to discuss the potential value of autophagy as a target for therapies of endometrium-related diseases.
Collapse
Affiliation(s)
- Shaoliang Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
| | - Haiyan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Dajin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
| | - Mingqing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| |
Collapse
|
42
|
Lin Q, Chen H, Zhang M, Xiong H, Jiang Q. Knocking down FAM83B inhibits endometrial cancer cell proliferation and metastasis by silencing the PI3K/AKT/mTOR pathway. Biomed Pharmacother 2019; 115:108939. [PMID: 31079003 DOI: 10.1016/j.biopha.2019.108939] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 01/27/2023] Open
Abstract
Family with sequence similarity 83 member B (FAM83B) has been recently identified as an oncogene involved in the development of various human cancers. However, the role of FAM83B in endometrial cancer tumorigenesis and metastasis is unclear. In this study, we found that the expression of FAM83B was upregulated in endometrial cancer tissues and cell lines. FAM83B expression in endometrial cancer tissues was significantly higher than that in normal tissues and higher FAM83B expression was closely related to poorly survival rate according to TCGA analysis. Moreover, FAM83B expression was correlated with International Federation of Gynecology and Obstetrics (FIGO)stage and myometrial invasion but had no significant correlation with age or histological grade. FAM83B knockdown inhibited endometrial cancer cell proliferation, migration, and invasion arrested the cell cycle at the G1/S stage and promoted apoptosis. FAM83B knockdown also inhibited endometrial cancer growth and lung metastasis in vivo. FAM83B knockdown silenced the PI3K/AKT/mTOR pathway and promoted autophagy. Furthermore, activation of the PI3K/AKT/mTOR pathway reversed FAM83B knockdown-induced autophagy promotion and inhibition of proliferation, migration, and invasion in endometrial cancer cells. Taken together, these results indicate that FAM83B promotes endometrial cancer cell proliferation and metastasis by inhibiting autophagy via activating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Qiongyan Lin
- Department of Gynecology and Obstetrics, Guangzhou Institute of Obstetrics & Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - Hui Chen
- Department of Pathology, Central Laboratory of Third Affiliated Hospital of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - Minfen Zhang
- Department of Pathology, Central Laboratory of Third Affiliated Hospital of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - Hanzhen Xiong
- Department of Pathology, Central Laboratory of Third Affiliated Hospital of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China.
| | - Qingping Jiang
- Department of Pathology, Central Laboratory of Third Affiliated Hospital of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| |
Collapse
|
43
|
Wang H, Tang Z, Li T, Liu M, Li Y, Xing B. CRISPR/Cas9-Mediated Gene Knockout of ARID1A Promotes Primary Progesterone Resistance by Downregulating Progesterone Receptor B in Endometrial Cancer Cells. Oncol Res 2019; 27:1051-1060. [PMID: 31072420 PMCID: PMC7848330 DOI: 10.3727/096504019x15561873320465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Medroxyprogesterone (MPA) is used for the conservative treatment of endometrial cancer. Unfortunately, progesterone resistance seriously affects its therapeutic effect. The purpose of the current study was to investigate the influence of deletion of AT-rich interactive domain 1A (ARID1A) in progesterone resistance in Ishikawa cells. Ablation of ARID1A was conducted through the CRISPR/Cas9 technology. Acquired progesterone-resistant Ishikawa (Ishikawa-PR) cells were generated by chronic exposure of Ishikawa cells to MPA. The sensitivity of the parental Ishikawa, Ishikawa-PR, and ARID1A-deficient cells to MPA and/or LY294002 was determined using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis. In addition, Western blot analysis and reverse transcription-polymerase chain reaction was performed to evaluate the mRNA and protein expression levels of ARID1A, progesterone receptor B (PRB), and P-AKT. Both Ishikawa-PR and ARID1A knockout cells showed insensitivity to MPA, downregulation of PRB, and hyperphosphorylation of AKT compared to the parental Ishikawa cells. Pretreatment with LY294002 significantly enhanced the ability of MPA to suppress proliferation and to induce apoptosis in the parental and Ishikawa-PR cells via the inhibition of AKT activation and upregulation of PRB transcriptional activity. However, the PRB transcriptional activity and insensitivity to MPA were irreversible by LY294002 in ARID1A-deficient cells. Ablation of ARID1A is associated with low PRB expression, which serves an important role in primary progesterone resistance. Akt inhibition cannot rescue PRB or sensitize to MPA in ARID1A knockout cells. These findings suggest that ARID1A may act as a reliable biomarker to predict the response for the combination of AKT inhibitor and MPA treatment.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Zhenghua Tang
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Ting Li
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Menglu Liu
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Yong Li
- Department of Gynecology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Baoling Xing
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| |
Collapse
|
44
|
Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep 2019; 19:4529-4535. [PMID: 30942405 PMCID: PMC6522820 DOI: 10.3892/mmr.2019.10121] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is involved in the regulation of multiple cellular physiological processes by activating downstream corresponding effector molecules, which serve an important role in the cell cycle, growth and proliferation. This is a common phenomenon; overactivation of the pathway is present in human malignancies and has been implicated in cancer progression, hence one of the important approaches to the treatment of tumors is rational drug design using molecular targets in the PI3K/AKT signaling pathway. In brief, the present review analyzed the effects of the PI3K/AKT signaling pathway on certain gynecological cancer types.
Collapse
Affiliation(s)
- Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingjing Wang
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Yu Lei
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Caofan Cong
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Dailin Tan
- Department of Clinical Laboratory, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xianrong Zhou
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
45
|
Li W, Wang S, Qiu C, Liu Z, Zhou Q, Kong D, Ma X, Jiang J. Comprehensive bioinformatics analysis of acquired progesterone resistance in endometrial cancer cell line. J Transl Med 2019; 17:58. [PMID: 30813939 PMCID: PMC6391799 DOI: 10.1186/s12967-019-1814-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Progesterone resistance is a problem in endometrial carcinoma, and its underlying molecular mechanisms remain poorly understood. The aim of this study was to elucidate the molecular mechanisms of progesterone resistance and to identify the key genes and pathways mediating progesterone resistance in endometrial cancer using bioinformatics analysis. METHODS We developed a stable MPA (medroxyprogesterone acetate)-resistant endometrial cancer cell subline named IshikawaPR. Microarray analysis was used to identify differentially expressed genes (DEGs) from triplicate samples of Ishikawa and IshikawaPR cells. PANTHER, DAVID and Metascape were used to perform gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and cBioPortal for progesterone receptor (PGR) coexpression analysis. GEO microarray (GSE17025) was utilized for validation. The protein-protein interaction network (PPI) and modular analyses were performed using Metascape and Cytoscape. Further validation were performed by real-time polymerase chain reaction (RT-PCR). RESULTS In total, 821 DEGs were found and further analyzed by GO, KEGG pathway enrichment and PPI analyses. We found that lipid metabolism, immune system and inflammation, extracellular environment-related processes and pathways accounted for a significant portion of the enriched terms. PGR coexpression analysis revealed 7 PGR coexpressed genes (ANO1, SOX17, CGNL1, DACH1, RUNDC3B, SH3YL1 and CRISPLD1) that were also dramatically changed in IshikawaPR cells. Kaplan-Meier survival statistics revealed clinical significance for 4 out of 7 target genes. Furthermore, 8 hub genes and 4 molecular complex detections (MCODEs) were identified. CONCLUSIONS Using microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network of progesterone resistance. We offered several possible mechanisms of progesterone resistance and identified therapeutic and prognostic targets of progesterone resistance in endometrial cancer.
Collapse
Affiliation(s)
- Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Shufen Wang
- Department of Obstetrics and Gynecology, Ningjin County Planned Parenthood Maternal and Child Health Care Service Center, Dezhou, 253400, Shandong, China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Qing Zhou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China.,Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Deshui Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Xiaohong Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
46
|
Yang Y, Wang HX, Zhang L, Huo W, Li XD, Qi RQ, Song XY, Wei S, Gao XH, Han S, Cao L. Inhibition of Heme Oxygenase-1 enhances hyperthermia-induced autophagy and antiviral effect. Int J Biol Sci 2019; 15:568-578. [PMID: 30745843 PMCID: PMC6367586 DOI: 10.7150/ijbs.29759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Hyperthermia has been clinically utilized as an adjuvant therapy in the treatment of cervical carcinoma. However, thermotolerance induced by heme oxygenase-1 (HO-1), a stress-inducible cytoprotective protein, limits the efficacy of hyperthermic therapy, for which the exact mechanism remains unknown. In the present study, we found that heat treatment induced HO-1 expression and decreased copy number of HPV16 in cervical cancer cells and tissues from cervical cancer and precursor lesions. Knockdown of HO-1 stimulated autophagy accompanied by downregulation of X-linked inhibitor of apoptosis protein. Furthermore, silencing of HO-1 led to cell intolerance to hyperthermia, as manifested by inhibition of cell viability and induction of autophagic apoptosis. Moreover, HO-1 modulated hyperthermia-induced, autophagy-dependent antiviral effect. Thus, the findings indicate that blockade of HO-1 enhances hyperthermia-induced autophagy, an event resulting in apoptosis of cervical cancer cells through an antiviral mechanism. These observations imply the potential clinical utility of hyperthermia in combination with HO-1 inhibition in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yang Yang
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China.,Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110122, China
| | - He-Xiao Wang
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Lan Zhang
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Wei Huo
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Xiao-Dong Li
- Department of Dermatology, Central Hospital Affiliated to Shen Yang Medical College, Shenyang, 110001, China
| | - Rui-Qun Qi
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Xiao-Yu Song
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110122, China
| | - Shi Wei
- Department of Pathology, the University of Alabama at Birmingham, Birmingham, Alabama 35249, United States
| | - Xing-Hua Gao
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Shuai Han
- Department of Neurosurgery, No.1 Hospital of China Medical University, Shenyang 110001, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110122, China
| |
Collapse
|
47
|
Yang G, Bai Y, Wu X, Sun X, Sun M, Liu X, Yao X, Zhang C, Chu Q, Jiang L, Wang S. Patulin induced ROS-dependent autophagic cell death in Human Hepatoma G2 cells. Chem Biol Interact 2018; 288:24-31. [DOI: 10.1016/j.cbi.2018.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 02/02/2023]
|
48
|
Das S, Nayak A, Siddharth S, Nayak D, Narayan S, Kundu CN. TRAIL enhances quinacrine-mediated apoptosis in breast cancer cells through induction of autophagy via modulation of p21 and DR5 interactions. Cell Oncol (Dordr) 2017; 40:593-607. [PMID: 28936683 DOI: 10.1007/s13402-017-0347-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Previously, we reported that quinacrine (QC) may cause apoptosis in breast and colon cancer cells by activating the death receptor 5 (DR5), resulting in autophagic cell death through p21 modulation. Here, we systematically evaluated the combined role of p21 and DR5 and their crosstalk in QC-mediated autophagy and apoptosis in breast cancer cells using in vitro and in vivo models. METHODS Multiple breast cancer-derived cell lines (MCF-7, ZR-75-1, T47D, MDA-MB-231 and MCF-10A-Tr) and a mouse xenograft model were used. Also, multiple assays, including Western blotting, immunoprecipitation, staining for autophagy and apoptosis, gene silencing, hematoxylin and eosin staining, immunohistochemistry, cell viability assessment, fluorescence imaging and cell sorting were used. RESULTS We found that QC activates p21 and DR5 in combination with the apoptosis inducer TRAIL in the breast cancer-derived cells tested. Combined TRAIL and QC treatment increased autophagy and apoptosis by increasing the interaction between, and co-localization of, p21 and DR5 in the death-inducing signaling complex (DISC). We found that this combination also inhibited the mTOR/PI3K/AKT signaling cascade and modulated reactive oxygen species (ROS) and nitric oxide (NO) production. Reductions in autophagy and apoptosis in DR5-knockout cells and a lack of change in p21-DR5-silenced cells were noted after TRAIL + QC treatment. This result explains dependence of the death (autophagy and apoptosis) cascade on these two key regulatory proteins. In addition, we found in an in vivo mouse xenograft model that increased expression and enhanced co-localization of p21 and DR5 after TRAIL + QC treatment supported a joint regulatory role of these proteins in the co-prevalence of autophagy and apoptosis. CONCLUSION Our data suggest that a combined treatment of TRAIL and QC causes cell death in breast cancer-derived cells via autophagy and apoptosis by increasing the interaction of p21 and DR5, as indicated by both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Sarita Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India
| | - Anmada Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India
| | - Sumit Siddharth
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India
| | - Deepika Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India
| | - Satya Narayan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India.
| |
Collapse
|
49
|
Qian M, Fang X, Wang X. Autophagy and inflammation. Clin Transl Med 2017; 6:24. [PMID: 28748360 PMCID: PMC5529308 DOI: 10.1186/s40169-017-0154-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a homeostatic mechanism involved in the disposal of damaged organelles, denatured proteins as well as invaded pathogens through a lysosomal degradation pathway. Recently, increasing evidences have demonstrated its role in both innate and adaptive immunity, and thereby influence the pathogenesis of inflammatory diseases. The detection of autophagy machinery facilitated the measurement of autophagy during physiological and pathophysiological processes. Autophagy plays critical roles in inflammation through influencing the development, homeostasis and survival of inflammatory cells, including macrophages, neutrophils and lymphocytes; effecting the transcription, processing and secretion of a number of cytokines, as well as being regulated by cytokines. Recently, autophagy-dependent mechanisms have been studied in the pathogenesis of several inflammatory diseases, including infectious diseases, Crohn’s disease, cystic fibrosis, pulmonary hypertension, chronic obstructive pulmonary diseases and so on. These studies suggested that modulation of autophagy might lead to therapeutic interventions for diseases associated with inflammation. Here we highlight recent advances in investigating the roles of autophagy in inflammation as well as inflammatory diseases.
Collapse
Affiliation(s)
- Mengjia Qian
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Medical School, Shanghai, China
| | - Xiaocong Fang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Medical School, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Medical School, Shanghai, China.
| |
Collapse
|