1
|
Chamnanphon M, Sukprasong R, Gaedigk A, Manosuthi W, Chariyavilaskul P, Wittayalertpanya S, Koomdee N, Jantararoungtong T, Puangpetch A, Sukasem C. Influence of SULT1A1*2 Polymorphism on Plasma Efavirenz Concentration in Thai HIV-1 Patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:915-926. [PMID: 34335044 PMCID: PMC8318725 DOI: 10.2147/pgpm.s306358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 01/11/2023]
Abstract
Purpose Plasma efavirenz (EFV) concentrations within therapeutic levels are essential to successfully treat patients suffering from human immunodeficiency virus (HIV) type 1. In addition to the drug-metabolizing enzyme CYP2B6, other phase II drug-metabolizing enzymes and transporters may have an important role in the pharmacokinetics of EFV. Thus, the influence of phase II drug-metabolizing enzymes and drug transporters on plasma EFV levels was investigated in Thai HIV patients receiving EFV. Patients and Methods Genotyping was performed by TaqMan® real-time PCR in 149 HIV-infected Thai adults, and plasma efavirenz concentration was measured by a validated high-performance liquid chromatography in 12 hours after dosing steady-state plasma samples at week 12 and 24. Results Patients with three or more copies of SULT1A1 had significantly lower median plasma EFV concentrations than those carrying two copies at week 12 (p=0.046) and SULT1A1*2 (c.638G>A) carriers had significantly lower median plasma EFV concentrations compared to those not carrying the variant at week 24 (p=0.048). However, no significant association was found after adjusting for CYP2B6 genotype. Conclusion Genetic variation in a combination of SULT1A1*2 and SULT1A1 copy number may contribute to variability in EFV metabolism and thereby may impact drug response. The influence of a combination between the SULT1A1 and CYP2B6 genotype on EFV pharmacokinetics should be further investigated in a larger study population.
Collapse
Affiliation(s)
- Monpat Chamnanphon
- Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Nakornnayok, Thailand.,Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rattanaporn Sukprasong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Weerawat Manosuthi
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Pajaree Chariyavilaskul
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supeecha Wittayalertpanya
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| |
Collapse
|
2
|
A simple method to measure sulfonation in man using paracetamol as probe drug. Sci Rep 2021; 11:9036. [PMID: 33907224 PMCID: PMC8079418 DOI: 10.1038/s41598-021-88393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Sulfotransferase enzymes (SULT) catalyse sulfoconjugation of drugs, as well as endogenous mediators, gut microbiota metabolites and environmental xenobiotics. To address the limited evidence on sulfonation activity from clinical research, we developed a clinical metabolic phenotyping method using paracetamol as a probe substrate. Our aim was to estimate sulfonation capability of phenolic compounds and study its intraindividual variability in man. A total of 36 healthy adult volunteers (12 men, 12 women and 12 women on oral contraceptives) received paracetamol in a 1 g-tablet formulation on three separate occasions. Paracetamol and its metabolites were measured in plasma and spot urine samples using liquid chromatography-high resolution mass spectrometry. A metabolic ratio (Paracetamol Sulfonation Index—PSI) was used to estimate phenol SULT activity. PSI showed low intraindividual variability, with a good correlation between values in plasma and spot urine samples. Urinary PSI was independent of factors not related to SULT activity, such as urine pH or eGFR. Gender and oral contraceptive intake had no impact on PSI. Our SULT phenotyping method is a simple non-invasive procedure requiring urine spot samples, using the safe and convenient drug paracetamol as a probe substrate, and with low intraindividual coefficient of variation. Although it will not give us mechanistic information, it will provide us an empirical measure of an individual’s sulfonator status. To the best of our knowledge, our method provides the first standardised in vivo empirical measure of an individual’s phenol sulfonation capability and of its intraindividual variability. EUDRA-CT 2016-001395-29, NCT03182595 June 9, 2017.
Collapse
|
3
|
Decreased phenol sulfotransferase activities associated with hyperserotonemia in autism spectrum disorders. Transl Psychiatry 2021; 11:23. [PMID: 33414449 PMCID: PMC7791095 DOI: 10.1038/s41398-020-01125-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/29/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
Hyperserotonemia is the most replicated biochemical abnormality associated with autism spectrum disorders (ASD). However, previous studies of serotonin synthesis, catabolism, and transport have not elucidated the mechanisms underlying this hyperserotonemia. Here we investigated serotonin sulfation by phenol sulfotransferases (PST) in blood samples from 97 individuals with ASD and their first-degree relatives (138 parents and 56 siblings), compared with 106 controls. We report a deficient activity of both PST isoforms (M and P) in platelets from individuals with ASD (35% and 78% of patients, respectively), confirmed in autoptic tissues (9 pineal gland samples from individuals with ASD-an important source of serotonin). Platelet PST-M deficiency was strongly associated with hyperserotonemia in individuals with ASD. We then explore genetic or pharmacologic modulation of PST activities in mice: variations of PST activities were associated with marked variations of blood serotonin, demonstrating the influence of the sulfation pathway on serotonemia. We also conducted in 1645 individuals an extensive study of SULT1A genes, encoding PST and mapping at highly polymorphic 16p11.2 locus, which did not reveal an association between copy number or single nucleotide variations and PST activity, blood serotonin or the risk of ASD. In contrast, our broader assessment of sulfation metabolism in ASD showed impairments of other sulfation-related markers, including inorganic sulfate, heparan-sulfate, and heparin sulfate-sulfotransferase. Our study proposes for the first time a compelling mechanism for hyperserotonemia, in a context of global impairment of sulfation metabolism in ASD.
Collapse
|
4
|
Vijzelaar R, Botton MR, Stolk L, Martis S, Desnick RJ, Scott SA. Multi-ethnic SULT1A1 copy number profiling with multiplex ligation-dependent probe amplification. Pharmacogenomics 2018; 19:761-770. [PMID: 29790428 PMCID: PMC6021911 DOI: 10.2217/pgs-2018-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/30/2018] [Indexed: 02/03/2023] Open
Abstract
AIM To develop a SULT1A1 multiplex ligation-dependent probe amplification assay and to investigate multi-ethnic copy number variant frequencies. METHODS A novel multiplex ligation-dependent probe amplification assay was developed and tested on 472 African-American, Asian, Caucasian, Hispanic and Ashkenazi Jewish individuals. RESULTS The frequencies of atypical total copy number (i.e., greater or less than two) were 38.7% for Hispanics, 38.9% for Ashkenazi Jewish, 43.2% for Caucasians, 53.6% for Asians and 64.1% for African-Americans. Heterozygous SULT1A1 deletion carriers (slow sulfators) were most common among Caucasians (8.4%), whereas African-Americans had the highest frequencies of three or more copies (rapid sulfators; 60.9%). CONCLUSION Different ethnic and racial populations have varying degrees of SULT1A1-mediated sulfation activity, which warrants further research and that may have utility for drug response prediction among SULT1A1-metabolized medications.
Collapse
Affiliation(s)
- Raymon Vijzelaar
- MRC-Holland, Willem Schoutenstraat 1, Amsterdam, The Netherlands
| | - Mariana R Botton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, A Mount Sinai Venture, Stamford, CT 06902, USA
| | - Lisette Stolk
- MRC-Holland, Willem Schoutenstraat 1, Amsterdam, The Netherlands
| | - Suparna Martis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart A Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, A Mount Sinai Venture, Stamford, CT 06902, USA
| |
Collapse
|
5
|
Dornbos P, LaPres JJ. Incorporating population-level genetic variability within laboratory models in toxicology: From the individual to the population. Toxicology 2018; 395:1-8. [PMID: 29275117 PMCID: PMC5801153 DOI: 10.1016/j.tox.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Humans respond to chemical exposures differently due to many factors, such as previous and concurrent stressors, age, sex, and genetic background. The vast majority of laboratory-based toxicology studies, however, have not considered the impact of population-level variability within dose-response relationships. The lack of data dealing with the influence of genetic diversity on the response to chemical exposure provides a difficult challenge for risk assessment as individuals within the population will display a wide-range of responses following toxicant challenge. Notably, the genetic background of individuals plays a major role in the variability seen in a population-level response to a drug or chemical and, thus, there is growing interest in including genetic diversity into laboratory-models. Here we outline several laboratory-based models that can be used to assay the influence of genetic variability on an individual's response to chemicals: 1) genetically-diverse cell lines, 2) human primary cells, 3) and genetically-diverse mouse panels. We also provide a succinct review for several seminal studies to highlight the capability, feasibility, and power of each of these models. This article is intended to highlight the need to include population-level genetic diversity into toxicological study designs via laboratory-based models with the goal to provide and supplement evidence in assessing the risk posed by chemicals to the human population. As such, incorporation of genetic variability will positively impact human-based risk assessment and provide empirical data to aid and influence decision-making processes in relation to chemical exposures.
Collapse
Affiliation(s)
- Peter Dornbos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - John J LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Liu J, Zhao R, Ye Z, Frey AJ, Schriver ER, Snyder NW, Hebbring SJ. Relationship of SULT1A1 copy number variation with estrogen metabolism and human health. J Steroid Biochem Mol Biol 2017; 174:169-175. [PMID: 28867356 PMCID: PMC5675753 DOI: 10.1016/j.jsbmb.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/28/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022]
Abstract
Human cytosolic sulfotransferase 1A1 (SULT1A1) is considered to be one of the most important SULT isoforms for metabolism, detoxification, and carcinogenesis. This theory is driven by observations that SULT1A1 is widely expressed in multiple tissues and acts on a wide range of phenolic substrates. SULT1A1 is subject to functional common copy number variation (CNV) including deletions or duplications. However, it is less clear how SULT1A1 CNV impacts health and disease. To better understand the biological role of SULT1A1 in human health, we genotyped CNV in 14,275 Marshfield Clinic patients linked to an extensive electronic health record. Since SULT1A1 is linked to steroid metabolism, select serum steroid hormones were measured in 100 individuals with a wide spectrum of SULT1A1 CNV genotypes. Furthermore, comprehensive phenome-wide association studies (PheWAS) were conducted using diagnostic codes and clinical text data. For the first time, individuals homozygous null for SULT1A1 were identified in a human population. Thirty-six percent of the population carried >2 copies of SULT1A1 whereas 4% had ≤1 copy. Results indicate SULT1A1 CNV was negatively correlated with estrone-sulfate to estrone ratio predominantly in males (E1S/E1; p=0.03, r=-0.21) and may be associated with increased risk for common allergies. The effect of SULT1A1 CNV on circulating estrogen metabolites was opposite to the predicted CNV-metabolite trend based on enzymatic function. This finding, and the potential association with common allergies reported herein, warrants future studies.
Collapse
Affiliation(s)
- Jixia Liu
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - Ran Zhao
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - Zhan Ye
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - Alexander J Frey
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Emily R Schriver
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA; Division of Infectious Diseases, Children's Hospital of Philadelphia, PA, USA
| | | | - Scott J Hebbring
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI, USA.
| |
Collapse
|
7
|
Roth AD, Lee MY. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9176937. [PMID: 28133614 PMCID: PMC5241492 DOI: 10.1155/2017/9176937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions focusing on each of the mechanisms described in the background. Finally, we examine current trends in developing comprehensive models for examining these mechanisms. There is an urgent need to develop a panel of multiparametric assays for diagnosing individual toxicity potential.
Collapse
Affiliation(s)
- Alexander D. Roth
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| |
Collapse
|
8
|
French JE, Gatti DM, Morgan DL, Kissling GE, Shockley KR, Knudsen GA, Shepard KG, Price HC, King D, Witt KL, Pedersen LC, Munger SC, Svenson KL, Churchill GA. Diversity Outbred Mice Identify Population-Based Exposure Thresholds and Genetic Factors that Influence Benzene-Induced Genotoxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:237-45. [PMID: 25376053 PMCID: PMC4348743 DOI: 10.1289/ehp.1408202] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/31/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inhalation of benzene at levels below the current exposure limit values leads to hematotoxicity in occupationally exposed workers. OBJECTIVE We sought to evaluate Diversity Outbred (DO) mice as a tool for exposure threshold assessment and to identify genetic factors that influence benzene-induced genotoxicity. METHODS We exposed male DO mice to benzene (0, 1, 10, or 100 ppm; 75 mice/exposure group) via inhalation for 28 days (6 hr/day for 5 days/week). The study was repeated using two independent cohorts of 300 animals each. We measured micronuclei frequency in reticulocytes from peripheral blood and bone marrow and applied benchmark concentration modeling to estimate exposure thresholds. We genotyped the mice and performed linkage analysis. RESULTS We observed a dose-dependent increase in benzene-induced chromosomal damage and estimated a benchmark concentration limit of 0.205 ppm benzene using DO mice. This estimate is an order of magnitude below the value estimated using B6C3F1 mice. We identified a locus on Chr 10 (31.87 Mb) that contained a pair of overexpressed sulfotransferases that were inversely correlated with genotoxicity. CONCLUSIONS The genetically diverse DO mice provided a reproducible response to benzene exposure. The DO mice display interindividual variation in toxicity response and, as such, may more accurately reflect the range of response that is observed in human populations. Studies using DO mice can localize genetic associations with high precision. The identification of sulfotransferases as candidate genes suggests that DO mice may provide additional insight into benzene-induced genotoxicity.
Collapse
Affiliation(s)
- John E French
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Resources (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cytosolic SULT1A1 participates in the bioconversion of a plethora of endogenous and xenobiotic substances. Genetic variation in this important enzyme such as SNPs can vary by ethnicity and have functional consequences on its activity. Most SULT1A1 genetic variability studies have been centered on the SULT1A1*1/2 SNP. Highlighted here are not only this SNP, but other genetic variants associated with SULT1A1 that could modify drug efficacy and xenobiotic metabolism. Some studies have investigated how differential metabolism of xenobiotic substances influences susceptibility to or protection from cancer in multiple sites. This review will focus primarily on the impact of SULT1A1 genetic variation on the response to anticancer therapeutic agents and subsequently how it relates to environmental and dietary exposure to both cancer-causing and cancer-preventative compounds.
Collapse
Affiliation(s)
- Jaclyn Daniels
- University of Arkansas for Medical Sciences, COM Department of Medical Genetics, 4301 W. Markham, #580 Little Rock, AR 72205, USA
| | | |
Collapse
|
10
|
Liu K, Ye J, Huang Y, Qin C, Li P, Liu B, Li J, Yin C. Quantitative analysis of the association between sulfotransferase isoform 1A1 polymorphism and risk of urothelial carcinoma. Mol Clin Oncol 2014; 3:93-100. [PMID: 25469277 DOI: 10.3892/mco.2014.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/05/2014] [Indexed: 11/06/2022] Open
Abstract
Sulfotransferase isoform 1A1 (SULT1A1) is a member of the sulfotransferase family that plays an important role in the biotransformation of numerous carcinogenic and mutagenic compounds through sulfation. A number of case-control studies were conducted to investigate the association between the Arg213His polymorphism in SULT1A1 and the risk of urothelial carcinoma (UC) in humans. However, the results were inconsistent. A meta-analysis based on 10 case-control studies was performed to address this issue. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the strength of this association. Between-study heterogeneity was assessed with the Chi-square-based Q test. Overall, a possibly decreased risk of UC was associated with the SULT1A1 A/A polymorphism for the heterozygote model (OR=0.86, 95% CI: 0.76-0.98, P=0.471). In the subgroup analysis by cancer type, the results indicated that individuals with the G/G genotype had a significantly higher bladder cancer (BC) risk (GA vs. GG: OR=0.88, 95% CI: 0.74-0.99, P=0.626; GA/AA vs. GG: OR=0.85, 95% CI: 0.74-0.97, P=0.504), which was contrary to the results of the upper urinary tract urothelial carcinoma (UTUC) group (AA vs. GG: OR=2.18, 95% CI: 1.28-3.69; AA vs. GA/GG OR=2.05, 95% CI: 1.24-3.38). In addition, stratification by smoking status demonstrated that the Arg213His polymorphism was associated with a decreased risk of UC in non-smokers (OR=0.70, 95% CI: 0.53-0.92) but not in smokers (OR=0.85, 95% CI: 0.70-1.03) under the dominant model. In conclusion, this meta-analysis demonstrated a significant association between the SULT1A1 Arg213His polymorphism and BC. However, there was insufficient evidence to support a consistent association between this polymorphism and UC, partly due to the differences between BC and UTUC.
Collapse
Affiliation(s)
- Kang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiaxin Ye
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuan Huang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Changjun Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|