1
|
Srivastava R, Jaiswal N, Kharkwal H, Dubey NK, Srivastava R. Phytomedical Properties of Carica papaya for Boosting Human Immunity Against Viral Infections. Viruses 2025; 17:271. [PMID: 40007026 PMCID: PMC11861161 DOI: 10.3390/v17020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Carica papaya, a tropical fruit-bearing plant, has attracted significant attention for its diverse phytomedical properties and its ability to regulate both innate and adaptive immunity, making it a promising natural therapeutic agent. C. papaya is rich in bioactive compounds that play a multifaceted role in immunomodulation. These bioactive constituents have demonstrated efficacy not only against the dengue virus but also against other viral infections, including COVID-19 (Corona Virus Disease 2019), Human Immunodeficiency Virus (HIV), Zika virus, and others. The antiviral effects of C. papaya are achieved through its ability to enhance host immunity, mitigate inflammation, reduce oxidative stress, inhibit viral replication, and modulate immune responses. These mechanisms highlight its potential as a candidate for antiviral therapies, paving the way for further exploration of its pharmacological applications and promoting eco-friendly, accessible healthcare solutions for combating viral diseases. This review highlights the antiviral potential of C. papaya extracts in inhibiting viral replication and modulating immune responses, emphasizing the need for further studies and clinical trials to validate their efficacy against other medically significant viruses causing human diseases.
Collapse
Affiliation(s)
- Rashmi Srivastava
- School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Neeshma Jaiswal
- School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Harsha Kharkwal
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida 201313, Uttar Pradesh, India
| | - Neeraj Kumar Dubey
- Botany Department, Rashtriya PG College, Jaunpur 222003, Uttar Pradesh, India
| | - Rakesh Srivastava
- Research and Development, Helix Biosciences, New Delhi 110028, Delhi, India
| |
Collapse
|
2
|
Mishra KP, Bakshi J, Sharma G, Singh S, Panjwani U. A Comparative Analysis of Effectiveness of Recombinant Interleukin-11 Versus Papaya Leaf Extract for Treatment of Thrombocytopenia: A Review. Indian J Clin Biochem 2023; 38:297-304. [PMID: 37234180 PMCID: PMC10205934 DOI: 10.1007/s12291-022-01097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
Platelets or thrombocytes play an important role in thrombosis and maintaining hemostasis. Thrombocytes help in forming blood clots at the site of the wound. When the level of platelets decreases, uncontrolled bleeding occurs which can result in mortality. A decrease in the blood platelet level is known as thrombocytopenia which can be caused due to various reasons. A variety of treatment options are available for thrombocytopenia like platelet transfusion, splenectomy, platelet management with various types of corticosteroids, and recombinant interleukin-11 (rhIL-11). The use of rhIL-11 is approved by FDA for the treatment of thrombocytopenia. rhIL-11 is a recombinant cytokine that is administered to patients suffering from chemotherapy-induced thrombocytopenia as it enhances megakaryocytic proliferation which aids in platelet production. But this treatment has various side effects and is costly. Hence, there is a crucial need to identify cost-effective alternative strategies that present no side effects. The majority of the population in low-income countries requires a functional and cost-effective treatment for low thrombocyte count. Carica papaya is a tropical herbaceous plant that has been reported in recovering low platelet count during dengue virus infection. Even though multiple benefits of the Carica papaya leaf extract (CPLE) are popular, the active compound present in it, which mediates these benefits, remains to be identified. This review aims to highlight the different aspects of rhIL-11 and CPLE-induced platelet counts and their limitations and benefits in the treatment of thrombocytopenia. The literature related to the treatment of thrombocytopenia using rhIL-11 and CPLE from 1970 to 2022 was searched using PubMed and Google Scholar databases with the keywords Recombinant Interleukin-11, Papaya Leaf Extract, Thrombocytopenia, and Platelets.
Collapse
Affiliation(s)
- K. P. Mishra
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Jyotsana Bakshi
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Gitika Sharma
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Somnath Singh
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Usha Panjwani
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| |
Collapse
|
3
|
Palanichamy Kala M, St. John AL, Rathore APS. Dengue: Update on Clinically Relevant Therapeutic Strategies and Vaccines. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2023; 15:27-52. [PMID: 37124673 PMCID: PMC10111087 DOI: 10.1007/s40506-023-00263-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/02/2023]
Abstract
Dengue viruses (DENV) continue to circulate worldwide, resulting in a significant burden on human health. There are four antigenically distinct serotypes of DENV, an infection of which could result in a potentially life-threatening disease. Current treatment options are limited and rely on supportive care. Although one dengue vaccine is approved for dengue-immune individuals and has modest efficacy, there is still a need for therapeutics and vaccines that can reduce dengue morbidities and lower the infection burden. There have been recent advances in the development of promising drugs for the treatment of dengue. These include direct antivirals that can reduce virus replication as well as host-targeted drugs for reducing inflammation and/or vascular pathologies. There are also new vaccine candidates that are being evaluated for their safety and efficacy in preventing dengue disease. This review highlights nuances in the current standard-of-care treatment of dengue. We also discuss emerging treatment options, therapeutic drugs, and vaccines that are currently being pursued at various stages of preclinical and clinical development.
Collapse
Affiliation(s)
- Monica Palanichamy Kala
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 8 College Rd., Level 9, Singapore, 169857 Singapore
| | - Ashley L. St. John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 8 College Rd., Level 9, Singapore, 169857 Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, 207 Research Rd, Durham, NC 27705 USA
| | - Abhay P. S. Rathore
- Department of Pathology, Duke University Medical Center, 207 Research Rd, Durham, NC 27705 USA
| |
Collapse
|
4
|
Madushanka A, Verma N, Freindorf M, Kraka E. Papaya Leaf Extracts as Potential Dengue Treatment: An In-Silico Study. Int J Mol Sci 2022; 23:12310. [PMID: 36293162 PMCID: PMC9610845 DOI: 10.3390/ijms232012310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) cause serious public health problems, with nearly 390 million people affected and 20,000 deaths per year in tropical and subtropical countries. Despite numerous attempts, no antiviral drug or vaccine is currently available to combat the manifestation. The challenge of discovering an efficient vaccine is enhanced by the surplus presence of efficient vectors and drug resistance from the virus. For centuries, papaya (Carica papaya) extracts have been traditionally used to treat DF, DHF, and DSS. In the present study, we systematically investigated seven compounds isolated from papaya leaf extract with regard to their potential as inhibitors for non-structural (NS) proteins, NS3 and NS5, which play a crucial role in viral RNA replication. The computational tools applied stretched across classical molecular docking, molecular dynamics (MD) simulations and SwissADME used to calculate binding affinities; binding free energies; Absorption, Distribution, Metabolism, and Excretion (ADME); and drug-likeness properties, thus, identifying Kaempferol, Chlorogenic acid, and Quercetin as potential candidates, with Kaempferol and Quercetin scoring best. Therefore, for the Kaempferol and Quercetin complexes, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry and frequency calculations were performed, followed by the local mode analysis developed in our group to quantify Kaempferol-NS and Quercetin-NS hydrogen bonding. Given the non-toxic nature and the wide availability of the Kaempferol and Quercetin papaya extract in almost all of the susceptible regions, and our results showing high NS3 and NS5 binding affinities and energies, strong hydrogen bonding with both NS3 and NS5, and excellent ADME properties, we suggest Kaempferol and Quercetin as a strong NS3 and NS5 inhibitor to be further investigated in vitro.
Collapse
Affiliation(s)
| | | | | | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, P.O. Box 750314, Dallas, TX 75275, USA
| |
Collapse
|
5
|
Kranjcec I, Abdovic S, Buljan D, Matijasic N, Slukan M, Stepan J. Complementary Medicine Practice and Use of Dietary Supplements in Pediatric Cancer Patients in Croatia. Cureus 2022; 14:e30246. [PMID: 36381903 PMCID: PMC9652699 DOI: 10.7759/cureus.30246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction: The use of complementary and alternative medicine (CAM) has become a customary practice among pediatric cancer patients worldwide. The frequency of its use by pediatric cancer patients in Croatia has not been previously determined. Methodology: In order to establish the frequency and detect factors affecting the use of CAM, a single-center, observational, cross-sectional study was conducted at the Children's Hospital Zagreb during a two-year period. The patients' parents and caregivers were offered an anonymous, multi-item questionnaire that collected socio-economic and clinical data, as well as details on CAM and dietary supplement practice. Results: Almost half of the participants reported CAM and more than two-thirds reported dietary supplement consumption, predominantly in the intensive phase of the treatment. Factors regarding children or parents had no effect on CAM and supplement utilization. Herbal medicine, vitamins, and minerals were among the most commonly used items. Every 10th child experienced at least one adverse event during CAM and supplement use. Conclusion: Awareness of the CAM and dietary supplement application in pediatric oncology patients needs to be raised due to the potential interactions with conventional treatment modalities. For this reason, it is extremely important to inform parents and caregivers of pediatric oncology patients about the use of CAM and dietary supplements to predict and mitigate the occurrence and intensity of the side effects. In the majority of our cases, the patient's guardians informed the healthcare professionals about the CAM and supplement implementation in their children, therefore, they were offered additional information about the possible negative impact of CAM and supplement use on standard medical care in a timely manner.
Collapse
|
6
|
Haber RA, Garcia RD, Hernandez JN, Jamieson S, Mondal A, Bishayee A. Papaya ( Carica papaya L.) for cancer prevention: Progress and promise. Crit Rev Food Sci Nutr 2022; 63:10499-10519. [PMID: 35638309 DOI: 10.1080/10408398.2022.2079607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Cancer is a leading cause of morbidity and mortality across the globe. Emerging evidence suggests that consumption of a well-balanced diet containing a wide variety of vegetables, fruits, and whole grains can prevent the development of, halt, or reverse cancer progression. Carica papaya L. (papaya) has a wide distribution throughout many countries. Although the fruits of C. papaya are primarily consumed as food, various parts of this tree, including the bark, fruits, latex, seeds, and roots, have been used in traditional medicine for health promotion and disease mitigation. While numerous individual studies have investigated anticancer efficacies of various products and constituents of C. papaya, an up-to-date, comprehensive, and critical evaluation of available research data covering its role in the prevention and intervention of various human malignancies has not been conducted according to our knowledge. The purpose of this review is to present a systematic, comprehensive, and critical analysis of the cancer-preventive potential of C. papaya extracts, fractions, and isolated phytochemicals with a special emphasis on the cellular and molecular mechanisms of action. Moreover, the bioavailability, pharmacokinetics, and safety profiles of individual phytochemicals of C. papaya, as well as current limitations, challenges, and future directions of research, have also been discussed.
Collapse
Affiliation(s)
- Rebecca A Haber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Reicelle D Garcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jamie N Hernandez
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sarah Jamieson
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
7
|
Munir S, Liu ZW, Tariq T, Rabail R, Kowalczewski PŁ, Lewandowicz J, Blecharczyk A, Abid M, Inam-Ur-Raheem M, Aadil RM. Delving into the Therapeutic Potential of Carica papaya Leaf against Thrombocytopenia. Molecules 2022; 27:2760. [PMID: 35566112 PMCID: PMC9104069 DOI: 10.3390/molecules27092760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Thrombocytopenia is a clinical manifestation that refers to the low platelet count, i.e., <150 × 103/μL, of blood, resulting in imbalanced hemostasis, which leads to several fatal complications. The causative factors vary greatly, but, as a consequence, they interfere with platelet production and promote destruction, leading to death. Carica papaya leaf has unique therapeutic and medicinal characteristics against thrombocytopenia, and this is supported by scientific studies. Secondary metabolites and minerals in the leaf, such as carpaine and quercetin, promote platelet production, inhibit platelet destruction, and maintain platelet membrane through gene expression activity and the ceasing of viral proteases, respectively. This review explores the scientific studies that support the role of papaya leaf in the form of juice, extract, or powder against thrombocytopenia through animal modeling and clinical trials. Phytochemical profiles of C. papaya leaf revealed the presence of flavonoids, alkaloids, phenols, cardiac glycosides, tannins, terpenes, and saponins, which impart therapeutic potential to the leaf. The therapeutic benefits of the leaf include immunomodulatory, antiviral, antidiabetic, anticancer, antimalarial, antiangiogenic, antibacterial, and antioxidant activities. Several conducted scientific research studies have proved the efficacy of C. papaya leaf against thrombocytopenia, expanding the implication of natural sources to eradicate numerous ailments.
Collapse
Affiliation(s)
- Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (S.M.); (T.T.); (R.R.)
| | - Zhi-Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (S.M.); (T.T.); (R.R.)
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (S.M.); (T.T.); (R.R.)
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego Str., 60-624 Poznań, Poland
| | - Jacek Lewandowicz
- Department of Production Management and Logistics, Poznan University of Technology, 2 Jacka Rychlewskiego Str., 60-965 Poznań, Poland;
| | - Andrzej Blecharczyk
- Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd Str., 60-632 Poznań, Poland;
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Per Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan;
| | - Muhammad Inam-Ur-Raheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (S.M.); (T.T.); (R.R.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (S.M.); (T.T.); (R.R.)
| |
Collapse
|
8
|
Chikowe I, Mtewa AG, Tembo D, Smith D, Ibrahim E, Mwamatope B, Nkhungulu J, Kumpalume P, Maroyi A. Potential of Malawi's medicinal plants in Covid-19 disease management: A review. Malawi Med J 2021; 33:85-107. [PMID: 34777704 PMCID: PMC8560350 DOI: 10.4314/mmj.v33i2.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered an international pandemic that has led to significant public health problems. To date, limited evidence exists to suggest that drugs are effective against the disease. As possible treatments are being investigated, herbal medicines have shown potential for producing novel antiviral agents for the COVID-19 disease. Aim This review explored the potential of Malawi's traditional medicinal plants for the management of COVID-19. Methods The authors searched on PubMed and Google scholar for medicinal plants that are used in Malawi and published in openly available peer reviewed journals. Plants linked with antiviral treatment, anti-COVID-19 activity or COVID-19 symptoms management were targeted. These included activity against pneumonia, inflammation, cough, difficulty in breathing, pain/aches, fever, diarrhoea, rheumatism, fatigue, asthma, immunocompromised and cardiovascular diseases. Results 11 studies were found with 306 plant species. 127 plant species had at least one COVID-19 related pharmacological activity. Of these plant species, the number of herbal entities used for each indication was: pain/aches (87), fever (2), pneumonia (9), breathing/asthma problems (5), coughing (11), diarrhoea (1), immunosuppression (8), blood issues (10), fatigue (2), heart problems (11), inflammation (8), rheumatism (10) and viral diseases (12). Thirty (30) species were used for more than one disease and Azedarachta indica topped the list (6 of the 13 COVID-19 related diseases). The majority of the species had phytochemicals known to have antiviral activity or mechanisms of actions linked to COVID-19 and consequent diseases' treatment pathways. Conclusion Medicinal plants are a promising source of compounds that can be used for drug development of COVID-19 related diseases. This review highlights potential targets for the World Health Organization and other research entities to explore in order to assist in controlling the pandemic.
Collapse
Affiliation(s)
- Ibrahim Chikowe
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre, Malawi/Kamuzu University of Health Sciences
| | - Andrew G Mtewa
- Chemistry Section, Malawi Institute of Technology, Malawi University of Science and Technology, Thyolo, Malawi
| | - David Tembo
- The Polytechnic, University of Malawi, Blantyre, Malawi/Malawi University of Business and Applied Sciences
| | - Dallas Smith
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre, Malawi/Kamuzu University of Health Sciences
| | - Edna Ibrahim
- The Polytechnic, University of Malawi, Blantyre, Malawi/Malawi University of Business and Applied Sciences
| | | | - Justin Nkhungulu
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre, Malawi/Kamuzu University of Health Sciences
| | - Peter Kumpalume
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre, Malawi/Kamuzu University of Health Sciences
| | | |
Collapse
|
9
|
Lim XY, Chan JSW, Japri N, Lee JC, Tan TYC. Carica papaya L. Leaf: A Systematic Scoping Review on Biological Safety and Herb-Drug Interactions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5511221. [PMID: 34040647 PMCID: PMC8121580 DOI: 10.1155/2021/5511221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The Carica papaya L. leaf is gaining interest as a potential therapeutic agent for alleviating dengue- and non-dengue-associated thrombocytopaenia. In that regard, safety considerations are as important as efficacy potential. The safety evaluation of botanical products for human use is complicated by variable formulations, complex phytochemical composition, and extrinsic toxicants. This review aimed to systematically collate related safety clinical and preclinical data, as well as reports on herb-drug interactions of C. papaya leaf consumption. METHODS A systematic search using predetermined keywords on electronic databases (MEDLINE, Cochrane Library Central, LILACS, and Web of Science) and grey literature was conducted. Relevant clinical and preclinical studies were identified, screened, and analysed to present an overall safety profile of C. papaya leaf consumption. RESULTS A total of 41 articles were included (23 clinical, 5 ongoing trials, and 13 preclinical) for descriptive analysis on study characteristics, adverse reactions, toxicity findings, and herb-drug interactions, from which 13 randomised controlled and quasiexperimental trials were further assessed for risk of bias and reporting quality. Overall, C. papaya leaf consumption (in the form of juice and standardised aqueous extract) was well tolerated by adult humans for short durations ( CONCLUSION C. papaya leaf consumption in adults is generally safe for short-term use though cautioned in pregnancy and people with liver impairment. It has potential herb-drug interactions with oral hypoglycaemic agents, p-glycoprotein substrates, and antibiotics with cation chelating properties.
Collapse
Affiliation(s)
- X. Y. Lim
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Shah Alam, Malaysia
| | - J. S. W. Chan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Shah Alam, Malaysia
| | - N. Japri
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Shah Alam, Malaysia
| | - J. C. Lee
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Shah Alam, Malaysia
| | - T. Y. C. Tan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Shah Alam, Malaysia
| |
Collapse
|
10
|
Sarker MMR, Khan F, Mohamed IN. Dengue Fever: Therapeutic Potential of Carica papaya L. Leaves. Front Pharmacol 2021; 12:610912. [PMID: 33981215 PMCID: PMC8109180 DOI: 10.3389/fphar.2021.610912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue, a very widespread mosquito-borne infectious disease caused by Aedes aegypti virus, has been occurring during the monsoons every year. The prevalence and incidence of dengue fever and death due to its complications have been increased drastically in these recent years in Bangladesh, Philippines, Thailand, Brazil, and India. Recently, dengue had spread in an epidemic form in Bangladesh, Thailand, and Philippines. Although the infection affected a large number of people around the world, there is no established specific and effective treatment by synthetic medicines. In this subcontinent, Malaysia could effectively control its incidences and death of patients using alternative medication treatment mainly prepared from Carica papaya L. leaves along with proper care and hospitalization. Papaya leaves, their juice or extract, as well as their different forms of preparation have long been used traditionally for treating dengue fever and its complications to save patients’ lives. Although it is recommended by traditional healers, and the general public use Papaya leaves juice or their other preparations in dengue fever, this treatment option is strictly denied by the physicians offering treatment in hospitals in Bangladesh as they do not believe in the effectiveness of papaya leaves, thus suggesting to patients that they should not use them. In Bangladesh, 1,01,354 dengue patients have been hospitalized, with 179 deaths in the year 2019 according to information from the Institute of Epidemiology, Disease Control, and Research as well as the Directorate General of Health Services of Bangladesh. Most of the patients died because of the falling down of platelets to dangerous levels and hemorrhage or serious bleeding. Therefore, this paper aims to critically review the scientific basis and effectiveness of Carica papaya L. leaves in treating dengue fever based on preclinical and clinical reports. Thrombocytopenia is one of the major conditions that is typical in cases of dengue infection. Besides, the infection and impairment of immunity are concerned with dengue patients. This review summarizes all the scientific reports on Carica papaya L. for its ability on three aspects of dengue: antiviral activities, prevention of thrombocytopenia and improvement of immunity during dengue fever.
Collapse
Affiliation(s)
- Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Farzana Khan
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Cheras, Malaysia
| |
Collapse
|
11
|
Singh SP, Kumar S, Mathan SV, Tomar MS, Singh RK, Verma PK, Kumar A, Kumar S, Singh RP, Acharya A. Therapeutic application of Carica papaya leaf extract in the management of human diseases. Daru 2020; 28:735-744. [PMID: 32367410 PMCID: PMC7704890 DOI: 10.1007/s40199-020-00348-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Papaya (Carica papaya Linn.) belongs to the family Caricaceae and is well known for its therapeutic and nutritional properties all over the world. The different parts of the papaya plant have been used since ancient times for its therapeutic applications. Herein, we aimed to review the anticancer, anti-inflammatory, antidiabetic and antiviral activities of papaya leaf. METHODS All information presented in this review article regarding the therapeutic application of Carica papaya leaf extract has been acquired by approaching various electronic databases, including Scopus, Google scholar, Web of science, and PubMed. The keywords Carica papaya, anticancer, anti-inflammatory, immunomodulatory, and phytochemicals were explored until December 2019. RESULTS The papaya plant, including fruit, leaf, seed, bark, latex, and their ingredients play a major role in the management of disease progression. Carica papaya leaf contains active components such as alkaloids, glycosides, tannins, saponins, and flavonoids, which are responsible for its medicinal activity. Additionally, the leaf juice of papaya increases the platelet counts in people suffering from dengue fever. CONCLUSION The major findings revealed that papaya leaf extract has strong medicinal properties such as antibacterial, antiviral, antitumor, hypoglycaemic and anti-inflammatory activity. Furthermore, clinical trials are needed to explore the medicative potential of papaya leaf. Graphical abstract Graphical abstract showing the medicinal properties of Carica papaya leaf.
Collapse
Affiliation(s)
- Surya P Singh
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Sanjay Kumar
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V Mathan
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Rishi Kant Singh
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | | | - Amit Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Sandeep Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Rana P Singh
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Arbind Acharya
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
12
|
Diorio C, Kelly KM, Afungchwi GM, Ladas EJ, Marjerrison S. Nutritional traditional and complementary medicine strategies in pediatric cancer: A narrative review. Pediatr Blood Cancer 2020; 67 Suppl 3:e28324. [PMID: 32614139 DOI: 10.1002/pbc.28324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/25/2020] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
Traditional and complementary medicine (T&CM) strategies are commonly used by pediatric cancer patients. Nutritional approaches to T&CM include bioactive compounds, supplements, and herbs as well as dietary approaches. Pediatric cancer patients and their families commonly request and use nutritional T&CM strategies. We review the potential risks and benefits of nutritional T&CM use in pediatric cancer care and provide an overview of some commonly used and requested supplements, including probiotics, antioxidants, cannabinoids, vitamins, turmeric, mistletoe, Carica papaya, and others. We also discuss the role of specific diets such as the ketogenic diet, caloric restriction diets, whole-food diets, and immune modulating diets. There is a growing body of evidence to support the use of some T&CM agents for the supportive care of children with cancer. However, further study is needed into these agents and approaches. Open communication with families about T&CM use is critical.
Collapse
Affiliation(s)
- Caroline Diorio
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kara M Kelly
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Elena J Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Medical Center, New York, New York
| | - Stacey Marjerrison
- Division of Pediatric Hematology/Oncology, McMaster Children's Hospital, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
13
|
Saranya V, Radhika R, Shankar R, Vijayakumar S. In silico studies of the inhibition mechanism of dengue with papain. J Biomol Struct Dyn 2020; 39:1912-1927. [PMID: 32249700 DOI: 10.1080/07391102.2020.1742205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dengue virus is becoming a major global disease; the envelope protein is the major target for vaccine development against Dengue. Nowadays, the attention has focused on developing inhibitors based on Papain is a promising target for treating Dengue. In the present work, the theoretical studies of E-protein(Cys74-Glu79;Lys110)…Papain(Cys25, Asn175 and His159) complexes are analysed by Density Functional Theory (M06-2X/cc-pVDZ) method. Among the E-protein(Cys74-Glu79;Lys110)…Papain(Cys25, Asn175 and Hys159) complexes, E-protein(Glu76)…Papain(Cys25) complex has the highest interaction value of -352.22 kcal/mol. Moreover, the natural bond orbital analysis also supports the above results. The 100 ns Molecular Dynamics simulation reveals that, E-protein(Ala54-Ile129)…Papain(Cys25) complex had the lowest root mean square deviation value of 1 Å compared to the E-protein(Ala54-Ile129)… Papain(Asn175 & His159) complexes. The salt bridge formation between the Asp103 and Lys110 residues are the important stabilizing factor in E-protein(Ala54-Ile129)…Papain(Cys25) complex. This result can extend our knowledge of the functional behaviour of Papain and provides structural insight to target Envelope protein as forthcoming drug targets in Dengue.
Collapse
|
14
|
Rajapakse S, de Silva NL, Weeratunga P, Rodrigo C, Sigera C, Fernando SD. Carica papaya extract in dengue: a systematic review and meta-analysis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:265. [PMID: 31601215 PMCID: PMC6788024 DOI: 10.1186/s12906-019-2678-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022]
Abstract
Background Carica papaya (CP) extract is becoming popular as an unlicensed herbal remedy purported to hasten recovery in dengue infection, mostly based on observations that it may increase platelet counts. This systematic review and meta-analysis aims to critically analyze the evidence from controlled clinical trials on the efficacy and safety of CP extract in the treatment of dengue infection. Methods PubMed, LILACS and Google Scholar were searched for randomized or non-randomized trials enrolling patients with suspected or confirmed dengue where CP extract was compared, as a treatment measure, against standard treatment. Recovery of platelet counts as well as other clinical indicators of favourable outcome (duration of hospital stay, prevention of plasma leakage, life threatening complications, and mortality) were assessed. Results Nine studies (India-6, Pakistan-1, Indonesia-1, Malaysia-1) met the inclusion criteria. Seven studies showed an increase in platelet counts in patients receiving CP extract, while one study showed no significant difference between the two groups, and direct comparison was not possible in the remaining study. Serious adverse events were not reported. CP extract may reduce the duration of hospital stay (mean difference − 1.98 days, 95% confidence interval − 1.83 to − 2.12, 3 studies, 580 participants, low quality evidence), and cause improvement in mean platelet counts between the first and fifth day of treatment (mean difference 35.45, 95% confidence interval 23.74 to 47.15, 3 studies, 129 participants, low quality evidence). No evidence was available regarding other clinical outcomes. Conclusions The clinical value of improvement in platelet count or early discharge is unclear in the absence of more robust indicators of favourable clinical outcome. Current evidence is insufficient to comment on the role of CP extract in dengue. There is a need for further well designed clinical trials examining the effect of CP on platelet counts, plasma leakage, other serious manifestations of dengue, and mortality, with clearly defined outcome measures.
Collapse
|
15
|
Masri MFB, Rathore APS, St. John AL. Therapeutics for Dengue. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2019. [DOI: 10.1007/s40506-019-00193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|