1
|
Ruspita I, Das P, Miyoshi K, Noma T, Snead ML, Bei M. Enam expression is regulated by Msx2. Dev Dyn 2023; 252:1292-1302. [PMID: 37191055 PMCID: PMC10592542 DOI: 10.1002/dvdy.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The precise formation of mineralized dental tissues such as enamel and/or dentin require tight transcriptional control of the secretion of matrix proteins. Here, we have investigated the transcriptional regulation of the second most prominent enamel matrix protein, enamelin, and its regulation through the major odontogenic transcription factor, MSX2. RESULTS Using in vitro and in vivo approaches, we identified that (a) Enam expression is reduced in the Msx2 mouse mutant pre-secretory and secretory ameloblasts, (b) Enam is an early response gene whose expression is under the control of Msx2, (c) Msx2 binds to Enam promoter in vitro, suggesting that enam is a direct target for Msx2 and that (d) Msx2 alone represses Enam gene expression. CONCLUSIONS Collectively, these results illustrate that Enam gene expression is controlled by Msx2 in a spatio-temporal manner. They also suggest that Msx2 may interact with other transcription factors to control spatial and temporal expression of Enam and hence amelogenesis and enamel biomineralization.
Collapse
Affiliation(s)
- Intan Ruspita
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, USA
- Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Pragnya Das
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, USA
- Cooper University Hospital, Camden, NJ, USA
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takafumi Noma
- Faculty of Human Life Studies, Hiroshima Jogakuin University, Hiroshima, Japan
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, LA, CA
| | - Marianna Bei
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston MA, USA
- Department of Surgery, Harvard Medical School, Boston MA, USA
- Shriners Hospital for Children, Boston, MA
| |
Collapse
|
2
|
Ruspita I, Das P, Xia Y, Kelangi S, Miyoshi K, Noma T, Snead ML, D'Souza RN, Bei M. An Msx2- Sp6-Follistatin Pathway Operates During Late Stages of Tooth Development to Control Amelogenesis. Front Physiol 2020; 11:582610. [PMID: 33192593 PMCID: PMC7649293 DOI: 10.3389/fphys.2020.582610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ameloblasts are epithelially derived cells responsible for enamel formation through a process known as amelogenesis. Amongst the several transcription factors that are expressed during amelogenesis, both Msx2 and Sp6 transcription factors play important role. Msx2 and Sp6 mouse mutants, exhibit similar amelogenesis defects, namely enamel hypoplasia, while humans with amelogenesis imperfecta (AI) carry mutations in the human homologues of MSX2 or SP6 genes. These across species similarities in function indicate that these two transcription factors may reside in the same developmental pathway. In this paper, we test whether they work in a coordinated manner to exert their effect during amelogenesis. Methods Two different dental epithelial cell lines, the mouse LS8 and the rat G5 were used for either overexpression or silencing of Msx2 or Sp6 or both. Msx2 mutant mouse embryos or pups were used for in vivo studies. In situ hybridization, semi-quantitative and quantitative real time PCR were employed to study gene expression pattern. MatInspector was used to identify several potential putative Msx2 binding sites upstream of the murine Sp6 promoter region. Chromatin Immunoprecipitation (chIP) was used to confirm the binding of Msx2 to Sp6 promoter at the putative sites. Results Using the above methods we identified that (i) Msx2 and Sp6 exhibit overlapping expression in secretory ameloblasts, (ii) Sp6 expression is reduced in the Msx2 mouse mutant secretoty ameloblasts, and (iii) that Msx2, like Sp6 inhibits follistatin expression. Specifically, our loss-of function studies by silencing Msx2 and/or Sp6 in mouse dental epithelial (LS8) cells showed significant downregulation of Sp6 but upregulation of Fst expression. Transient transfection of Msx2 overexpression plasmid, up-regulated Sp6 and downregulated Fst expression. Additionally, using MatInspector, we identified several potential putative Msx2 binding sites, 3.5 kb upstream of the murine Sp6 promoter region. By chIP, we confirmed the binding of Msx2 to Sp6 promoter at these sites, thus suggesting that Sp6 is a direct target of Msx2. Conclusion Collectively, these results show that Sp6 and Msx2 work in a concerted manner to form part of a network of transcription factors that operate during later stages of tooth development controlling ameloblast life cycle and amelogenesis.
Collapse
Affiliation(s)
- Intan Ruspita
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, United States.,Department of Prosthodontics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Pragnya Das
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, United States.,Division of Neonatology, Cooper University Hospital, Camden, NJ, United States
| | - Yan Xia
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, United States
| | - Sarah Kelangi
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Shriners Hospital for Children, Boston, MA, United States
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takafumi Noma
- Faculty of Human Life Studies, Hiroshima Jogakuin University, Hiroshima, Japan
| | - Malcolm L Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | | | - Marianna Bei
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Shriners Hospital for Children, Boston, MA, United States
| |
Collapse
|
3
|
Hu X, Lee JW, Zheng X, Zhang J, Lin X, Song Y, Wang B, Hu X, Chang HH, Chen Y, Lin CP, Zhang Y. Efficient induction of functional ameloblasts from human keratinocyte stem cells. Stem Cell Res Ther 2018; 9:126. [PMID: 29720250 PMCID: PMC5930762 DOI: 10.1186/s13287-018-0822-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Although adult human tissue-derived epidermal stem cells are capable of differentiating into enamel-secreting ameloblasts and forming teeth with regenerated enamel when recombined with mouse dental mesenchyme that possesses odontogenic potential, the induction rate is relatively low. In addition, whether the regenerated enamel retains a running pattern of prism identical to and acquires mechanical properties comparable with human enamel indeed warrants further study. METHODS Cultured human keratinocyte stem cells (hKSCs) were treated with fibroblast growth factor 8 (FGF8) and Sonic hedgehog (SHH) for 18 h or 36 h prior to being recombined with E13.5 mouse dental mesenchyme with implantation of FGF8 and SHH-soaked agarose beads into reconstructed chimeric tooth germs. Recombinant tooth germs were subjected to kidney capsule culture in nude mice. Harvested samples at various time points were processed for histological, immunohistochemical, TUNEL, and western blot analysis. Scanning electronic microscopy and a nanoindentation test were further employed to analyze the prism running pattern and mechanical properties of the regenerated enamel. RESULTS Treatment of hKSCs with both FGF8 and SHH prior to tissue recombination greatly enhanced the rate of tooth-like structure formation to about 70%. FGF8 and SHH dramatically enhanced stemness of cultured hKSCs. Scanning electron microscopic analysis revealed the running pattern of intact prisms of regenerated enamel is similar to that of human enamel. The nanoindentation test indicated that, although much softer than human child and adult mouse enamel, mechanical properties of the regenerated enamel improved as the culture time was extended. CONCLUSIONS Application of FGF8 and SHH proteins in cultured hKSCs improves stemness but does not facilitate odontogenic fate of hKSCs, resulting in an enhanced efficiency of ameloblastic differentiation of hKSCs and tooth formation in human-mouse chimeric tooth germs.
Collapse
Affiliation(s)
- Xuefeng Hu
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou, 350108 China
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 China
| | - Jyh-Wei Lee
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei, 24301 Taiwan
- Center for Thin Film Technologies and Applications, Ming Chi University of Technology, New Taipei, 24301 Taiwan
- College of Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
| | - Xi Zheng
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 China
| | - Junhua Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 China
| | - Xin Lin
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 China
| | - Yingnan Song
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 China
| | - Bingmei Wang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 China
| | - Xiaoxiao Hu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 China
| | - Hao-Hueng Chang
- School of Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei, 10048 Taiwan
| | - Yiping Chen
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou, 350108 China
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118 USA
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei, 10048 Taiwan
| | - Yanding Zhang
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou, 350108 China
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 China
| |
Collapse
|
4
|
Arinawati DY, Miyoshi K, Tanimura A, Horiguchi T, Hagita H, Noma T. Deciphering defective amelogenesis using in vitro culture systems. J Biosci Bioeng 2018; 125:479-489. [PMID: 29397320 DOI: 10.1016/j.jbiosc.2017.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022]
Abstract
The conventional two-dimensional (2D) in vitro culture system is frequently used to analyze the gene expression with or without extracellular signals. However, the cells derived from primary culture and cell lines frequently deviate the gene expression profile compared to the corresponding in vivo samples, which sometimes misleads the actual gene regulation in vivo. To overcome this gap, we developed the comparative 2D and 3D in vitro culture systems and applied them to the genetic study of amelogenesis imperfecta (AI) as a model. Recently, we found specificity protein 6 (Sp6) mutation in an autosomal-recessive AI rat that was previously named AMI. We constructed 3D structure of ARE-B30 cells (AMI-derived rat dental epithelial cells) or G5 (control wild type cells) combined with RPC-C2A cells (rat pulp cell line) separated by the collagen membrane, while in 2D structure, ARE-B30 or G5 was cultured with or without the collagen membrane. Comparative analysis of amelogenesis-related gene expression in ARE-B30 and G5 using our 2D and 3D in vitro systems revealed distinct expression profiles, showing the causative outcomes. Bone morphogenetic protein 2 and follistatin were reciprocally expressed in G5, but not in ARE-B30 cells. All-or-none expression of amelotin, kallikrein-related peptidase 4, and nerve growth factor receptor was observed in both cell types. In conclusion, our in vitro culture systems detected the phenotypical differences in the expression of the stage-specific amelogenesis-related genes. Parallel analysis with 2D and 3D culture systems may provide a platform to understand the molecular basis for defective amelogenesis caused by Sp6 mutation.
Collapse
Affiliation(s)
- Dian Yosi Arinawati
- Graduate School of Oral Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Ayako Tanimura
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Taigo Horiguchi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Hiroko Hagita
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| |
Collapse
|
5
|
Kim Y, Hur SW, Jeong BC, Oh SH, Hwang YC, Kim SH, Koh JT. The Fam50a positively regulates ameloblast differentiation via interacting with Runx2. J Cell Physiol 2017; 233:1512-1522. [PMID: 28574578 DOI: 10.1002/jcp.26038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/01/2017] [Indexed: 11/12/2022]
Abstract
Differentiated ameloblasts secret enamel matrix proteins such as amelogenin, ameloblastin, and enamelin. Expression levels of these proteins are regulated by various factors. To find a new regulatory factor for ameloblast differentiation, we performed 2D-PAGE analysis using mouse ameloblast lineage cell line (mALCs) cultured with mineralizing medium. Of identified proteins, family with sequence similarity 50 member A (Fam50a) was significantly increased during differentiation of mALCs. Fam50a protein was also highly expressed in secretory ameloblasts of mouse tooth germs. In mALCs cultures, forced expression of Fam50a up-regulated the expression of enamel matrix protein genes such as amelogenin, ameloblastin, and enamelin. In addition, up-regulation of Fam50a also increased ALP activity and mineralized nodule formation in a dose-dependent manner. In contrast, knockdown of Fam50a decreased expression levels of enamel matrix protein genes, ALP activity, and mineralized nodule formation. By fluorescence microscopy, endogenous Fam50a protein was found to be localized to the nucleus of ameloblasts. In addition, Fam50a synergistically increased Ambn transactivation by Runx2. Moreover, Fam50a increased binding affinity of Runx2 to Ambn promoter by physically interacting with Runx2. Taken together, these results suggest Fam50a might be a new positive regulator of ameloblast differentiation.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sung-Woong Hur
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Byung-Chul Jeong
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sin-Hye Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Yun-Chan Hwang
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sun-Hun Kim
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Shi L, Resaul J, Owen S, Ye L, Jiang WG. Clinical and Therapeutic Implications of Follistatin in Solid Tumours. Cancer Genomics Proteomics 2017; 13:425-435. [PMID: 27807065 DOI: 10.21873/cgp.20005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Follistatin (FST), as a single-chain glycosylated protein, has two major isoforms, FST288 and FST315. The FST315 isoform is the predominant form whilst the FST288 variant accounts for less than 5% of the encoded mRNA. FST is differentially expressed in human tissues and aberrant expression has been observed in a variety of solid tumours, including gonadal, gastric and lung cancer, hepatocellular carcinoma, basal cell carcinoma and melanoma. Based on the current evidence, FST is an antagonist of transforming growth factor beta family members, such as activin and bone morphogenetic proteins (BMPs). FST plays a role in tumourigenesis, metastasis and angiogenesis of solid tumours through its interaction with activin and BMPs, thus resulting in pathophysiological function. In terms of diagnosis, prognosis and therapy, FST has shown strong promise. Through a better understanding of its biological functions, potential clinical applications may yet emerge.
Collapse
Affiliation(s)
- Lei Shi
- Urology Department, Yantai Yu Huang Ding Hospital, Yantai, Shandong Province, P.R. China.,Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Jeyna Resaul
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K.
| |
Collapse
|
7
|
Yanuaryska RD, Miyoshi K, Adiningrat A, Horiguchi T, Tanimura A, Hagita H, Noma T. Sp6 regulation of Rock1 promoter activity in dental epithelial cells. THE JOURNAL OF MEDICAL INVESTIGATION 2016; 61:306-17. [PMID: 25264049 DOI: 10.2152/jmi.61.306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sp6 is a transcription factor of the SP/KLF family and an indispensable regulator of the morphological dynamics of ameloblast differentiation during tooth development. However, the underlying molecular mechanisms remain unclear. We have previously identified one of the Sp6 downstream genes, Rock1, which is involved in ameloblast polarization. In this study, we investigated the transcriptional regulatory mechanisms of Rock1 by Sp6. First, we identified the transcription start sites (TSS) and cloned the 5'-flanking region of Rock1. Serial deletion analyses identified a critical region for Rock1 promoter activity within the 249-bp upstream region of TSS, and chromatin immunoprecipitation assays revealed Sp6-binding to this region. Subsequent transient transfection experiments showed that Rock1 promoter activity is enhanced by Sp6, but reduced by Sp1. Treatment of dental epithelial cells with the GC-selective DNA binding inhibitor, mithramycin A, affected Rock1 promoter activity in loss of enhancement by Sp6, but not repression by Sp1. Further site-directed mutagenesis indicated that the region from -206 to -150 contains responsive elements for Sp6. Taken together, we conclude that Sp6 positively regulates Rock1 transcription by direct binding to the Rock1 promoter region from -206 to -150, which functionally distinct from Sp1.
Collapse
Affiliation(s)
- Ryna Dwi Yanuaryska
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | | | | | | | | | |
Collapse
|
8
|
Adiningrat A, Tanimura A, Miyoshi K, Hagita H, Yanuaryska RD, Arinawati DY, Horiguchi T, Noma T. Isolation and characterization of dental epithelial cells derived from amelogenesis imperfecta rat. Oral Dis 2015; 22:132-9. [PMID: 26582753 DOI: 10.1111/odi.12396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/29/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Disruption of the third zinc finger domain of specificity protein 6 (SP6) presents an enamel-specific defect in a rat model of amelogenesis imperfecta (AMI rats). To understand the molecular basis of amelogenesis imperfecta caused by the Sp6 mutation, we established and characterized AMI-derived rat dental epithelial (ARE) cells. MATERIALS AND METHODS ARE cell clones were isolated from the mandibular incisors of AMI rats, and amelogenesis-related gene expression was analyzed by reverse transcription polymerase chain reaction (RT-PCR). Localization of wild-type SP6 (SP6WT) and mutant-type SP6 (SP6AMI) was analyzed by immunocytochemistry. SP6 transcriptional activity was monitored by rho-associated protein kinase 1 (Rock1) promoter activity with its specific binding to the promoter region in dental (G5 and ARE) and non-dental (COS-7) epithelial cells. RESULTS Isolated ARE cells were varied in morphology and gene expression. Both SP6WT and SP6AMI were mainly detected in nuclei. The promoter analysis revealed that SP6WT and SP6AMI enhanced Rock1 promoter activity in G5 cells but that enhancement by SP6AMI was weaker, whereas no enhancement was observed in the ARE and COS-7 cells, even though SP6WT and SP6AMI bound to the promoter in all instances. CONCLUSION ARE cell clones can provide a useful in vitro model to study the mechanism of SP6-mediated amelogenesis imperfecta.
Collapse
Affiliation(s)
- A Adiningrat
- Graduate School of Oral Sciences, Tokushima University, Tokushima, Japan
| | - A Tanimura
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - K Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - H Hagita
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - R D Yanuaryska
- Graduate School of Oral Sciences, Tokushima University, Tokushima, Japan.,Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - D Y Arinawati
- Graduate School of Oral Sciences, Tokushima University, Tokushima, Japan
| | - T Horiguchi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - T Noma
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
9
|
Adiningrat A, Tanimura A, Miyoshi K, Yanuaryska RD, Hagita H, Horiguchi T, Noma T. Ctip2-mediated Sp6 transcriptional regulation in dental epithelium-derived cells. THE JOURNAL OF MEDICAL INVESTIGATION 2015; 61:126-36. [PMID: 24705758 DOI: 10.2152/jmi.61.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tooth development relies on the interaction between the oral ectoderm and underlying mesenchyme, and is regulated by a complex genetic cascade. This transcriptional cascade is regulated by the spatiotemporal activation and deactivation of transcription factors. The specificity proteins 6 (Sp6) and chicken ovalbumin upstream promoter transcription factor-interacting protein 2 (Ctip2) were identified in loss-of-function studies as key transcription factors required for tooth development. Ctip2 binds to the Sp6 promoter in vivo; however, its role in Sp6 expression remains unclear. In this study, we investigated Sp6 transcriptional regulation by Ctip2. Immunohistochemical analysis revealed that Sp6 and Ctip2 colocalize in the rat incisor during tooth development. We examined whether Ctip2 regulates Sp6 promoter activity in dental epithelial cells. Cotransfection experiments using serial Sp6 promoter-luciferase constructs and Ctip2 expression plasmids showed that Ctip2 significantly suppressed the Sp6 second promoter activity, although the Sp6 first promoter activity was unaffected. Ctip2 was able to bind to the proximal region of the Sp6 first promoter, as previously demonstrated, and also to the novel distal region of the first, and second promoter regions. Our findings indicate that Ctip2 regulates Sp6 gene expression through direct binding to the Sp6 second promoter region. J. Med. Invest. 61: 126-136, February, 2014.
Collapse
Affiliation(s)
- Arya Adiningrat
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | | | | | | | | | |
Collapse
|
10
|
Differential expression of adenine nucleotide converting enzymes in mitochondrial intermembrane space: a potential role of adenylate kinase isozyme 2 in neutrophil differentiation. PLoS One 2014; 9:e89916. [PMID: 24587121 PMCID: PMC3934953 DOI: 10.1371/journal.pone.0089916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/29/2014] [Indexed: 02/06/2023] Open
Abstract
Adenine nucleotide dynamics in the mitochondrial intermembrane space (IMS) play a key role in oxidative phosphorylation. In a previous study, Drosophila adenylate kinase isozyme 2 (Dak2) knockout was reported to cause developmental lethality at the larval stage in Drosophila melanogaster. In addition, two other studies reported that AK2 is a responsible gene for reticular dysgenesis (RD), a human disease that is characterized by severe combined immunodeficiency and deafness. Therefore, mitochondrial AK2 may play an important role in hematopoietic differentiation and ontogenesis. Three additional adenine nucleotide metabolizing enzymes, including mitochondrial creatine kinases (CKMT1 and CKMT2) and nucleoside diphosphate kinase isoform D (NDPK-D), have been found in IMS. Although these kinases generate ADP for ATP synthesis, their involvement in RD remains unclear and still an open question. In this study, mRNA and protein expressions of these mitochondrial kinases were firstly examined in mouse ES cells, day 8 embryos, and 7-week-old adult mice. It was found that their expressions are spatiotemporally regulated, and Ak2 is exclusively expressed in bone marrow, which is a major hematopoietic tissue in adults. In subsequent experiments, we identified increased expression of both AK2 and CKMT1 during macrophage differentiation and exclusive production of AK2 during neutrophil differentiation using HL-60 cells as an in vitro model of hematopoietic differentiation. Furthermore, AK2 knockdown specifically inhibited neutrophil differentiation without affecting macrophage differentiation. These data suggest that AK2 is indispensable for neutrophil differentiation and indicate a possible causative link between AK2 deficiency and neutropenia in RD.
Collapse
|
11
|
Muni T, Mrksich M, George A. Self-assembled monolayer facilitates epithelial-mesenchymal interactions mimicking odontogenesis. Connect Tissue Res 2014; 55:26-33. [PMID: 24437602 PMCID: PMC7570439 DOI: 10.3109/03008207.2013.867335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell-cell interactions are vital for embryonic organ development and normal function of differentiated cells and tissues. In this study we have developed a self-assembled monolayer-based co-culture system to study tooth morphogenesis. Specifically, we designed a 2-D microenvironment present in the dental tissue by creating a well-structured, laterally organized epithelial and mesenchymal cell co-culture system by patterning the cell-attachment substrate. Chemical modifications were used to develop tunable surface patterns to facilitate epithelial-mesenchymal interactions mimicking the developing tooth. Such a design promoted interactions between monolayer's of the 2 cell types and provided signaling cues that resulted in cellular differentiation and mineralized matrix formation. Gene expression analysis showed that these co-cultures mimicked in-vivo conditions than monolayer cultures of a single cell type.
Collapse
Affiliation(s)
- Tanvi Muni
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Anne George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Sepporta MV, Tumminello FM, Flandina C, Crescimanno M, Giammanco M, La Guardia M, di Majo D, Leto G. Follistatin as potential therapeutic target in prostate cancer. Target Oncol 2013; 8:215-23. [PMID: 23456439 DOI: 10.1007/s11523-013-0268-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/05/2013] [Indexed: 01/04/2023]
Abstract
Follistatin is a single-chain glycosylated protein whose primary function consists in binding and neutralizing some members of the transforming growth factor-β superfamily such as activin and bone morphogenic proteins. Emerging evidence indicates that this molecule may also play a role in the malignant progression of several human tumors including prostate cancer. In particular, recent findings suggest that, in this tumor, follistatin may also contribute to the formation of bone metastasis through multiple mechanisms, some of which are not related to its specific activin or bone morphogenic proteins' inhibitory activity. This review provides insight into the most recent advances in understanding the role of follistatin in the prostate cancer progression and discusses the clinical and therapeutic implications related to these findings.
Collapse
Affiliation(s)
- Maria Vittoria Sepporta
- Operative Unit of Physiology and Pharmacology, University of Palermo, via Augusto Elia, 3, 90127, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Moriguchi M, Kosika M, Miake Y, Yamaguchi Y, Yamazaki T, Yamamoto H. Immunolocalization of SP6, LEF1 and Associated Factors in the Tooth Germ of Rat Molars. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Ibarretxe G, Aurrekoetxea M, Crende O, Badiola I, Jimenez-Rojo L, Nakamura T, Yamada Y, Unda F. Epiprofin/Sp6 regulates Wnt-BMP signaling and the establishment of cellular junctions during the bell stage of tooth development. Cell Tissue Res 2012; 350:95-107. [PMID: 22868911 DOI: 10.1007/s00441-012-1459-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/24/2012] [Indexed: 11/27/2022]
Abstract
Epiprofin/Specificity Protein 6 (Epfn) is a Krüppel-like family (KLF) transcription factor that is critically involved in tooth morphogenesis and dental cell differentiation. However, its mechanism of action is still not fully understood. We have employed both loss-of-function and gain-of-function approaches to address the role of Epfn in the formation of cell junctions in dental cells and in the regulation of junction-associated signal transduction pathways. We have evaluated the expression of junction proteins in bell-stage incisor and molar tooth sections from Epfn(-/-) mice and in dental pulp MDPC-23 cells overexpressing Epfn. In Epfn(-/-) mice, a dramatic reduction occurs in the expression of tight junction and adherens junction proteins and of the adherens-junction-associated β-catenin protein, a major effector of canonical Wnt signaling. Loss of cell junctions and β-catenin in Epfn(-/-) mice is correlated with a clear decrease in bone morphogenetic protein 4 (BMP-4) expression, a decrease in nestin in the tooth mesenchyme, altered cell proliferation, and failure of ameloblast cell differentiation. Overexpression of Epfn in MDPC-23 cells results in an increased cellular accumulation of β-catenin protein, indicative of upregulation of canonical Wnt signaling. Together, these results suggest that Epfn enhances canonical Wnt/β-catenin signaling in the developing dental pulp mesenchyme, a condition that promotes the activity of other downstream signaling pathways, such as BMP, which are fundamental for cellular induction and ameloblast differentiation. These altered signaling events might underlie some of the most prominent dental defects observed in Epfn(-/-) mice, such as the absence of ameloblasts and enamel, and might throw light on developmental malformations of the tooth, including hyperdontia.
Collapse
Affiliation(s)
- Gaskon Ibarretxe
- Cell Biology & Histology Department, Faculty of Medicine and Dentistry, University of the Basque Country, 48940 Bizkaia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Muto T, Miyoshi K, Horiguchi T, Noma T. Dissection of morphological and metabolic differentiation of ameloblasts via ectopic SP6 expression. THE JOURNAL OF MEDICAL INVESTIGATION 2012; 59:59-68. [PMID: 22449994 DOI: 10.2152/jmi.59.59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tooth enamel is the hardest organ in the body. In rodent incisor, the enamel is exclusively produced by ameloblasts with yellowish-brown pigmentation, indicating normal enamel formation. However, the molecular mechanisms of ameloblast differentiation and amelogenesis are not fully understood. Specificity protein (Sp) 6 has been reported as one of the critical factors for tooth development. To explore SP6 function, we generated Sp6 transgenic (Tg) rats. Unexpectedly, the enamel surfaces of the incisors in Tg rats were discolored, even though enamel formation and serum iron concentrations were normal. Histological analysis of incisors from 6-week-old Tg rats demonstrated that the ameloblast layer at the pigmentation stage was elongated up to the gingival margin with ectopic SP6 expression in longitudinal incisor sections. In contrast, the incisors from 10-week-old Tg rats revealed that the pigmented ameloblasts were morphologically changed to those of the reduced stage, concomitant with the sporadic disappearance of ectopic SP6 expression. Here we report that morphological differentiation and metabolism of the iron-containing pigment in ameloblasts are independently regulated during amelogenesis by means of ectopic SP6 expression.
Collapse
Affiliation(s)
- Taro Muto
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | |
Collapse
|
16
|
Muto T, Miyoshi K, Horiguchi T, Hagita H, Noma T. Novel genetic linkage of rat Sp6 mutation to Amelogenesis imperfecta. Orphanet J Rare Dis 2012; 7:34. [PMID: 22676574 PMCID: PMC3464675 DOI: 10.1186/1750-1172-7-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Background Amelogenesis imperfecta (AI) is an inherited disorder characterized by abnormal formation of tooth enamel. Although several genes responsible for AI have been reported, not all causative genes for human AI have been identified to date. AMI rat has been reported as an autosomal recessive mutant with hypoplastic AI isolated from a colony of stroke-prone spontaneously hypertensive rat strain, but the causative gene has not yet been clarified. Through a genetic screen, we identified the causative gene of autosomal recessive AI in AMI and analyzed its role in amelogenesis. Methods cDNA sequencing of possible AI-candidate genes so far identified using total RNA of day 6 AMI rat molars identified a novel responsible mutation in specificity protein 6 (Sp6). Genetic linkage analysis was performed between Sp6 and AI phenotype in AMI. To understand a role of SP6 in AI, we generated the transgenic rats harboring Sp6 transgene in AMI (Ami/Ami + Tg). Histological analyses were performed using the thin sections of control rats, AMI, and Ami/Ami + Tg incisors in maxillae, respectively. Results We found the novel genetic linkage between a 2-bp insertional mutation of Sp6 gene and the AI phenotype in AMI rats. The position of mutation was located in the coding region of Sp6, which caused frameshift mutation and disruption of the third zinc finger domain of SP6 with 11 cryptic amino acid residues and a stop codon. Transfection studies showed that the mutant protein can be translated and localized in the nucleus in the same manner as the wild-type SP6 protein. When we introduced the CMV promoter-driven wild-type Sp6 transgene into AMI rats, the SP6 protein was ectopically expressed in the maturation stage of ameloblasts associated with the extended maturation stage and the shortened reduced stage without any other phenotypical changes. Conclusion We propose the addition of Sp6 mutation as a new molecular diagnostic criterion for the autosomal recessive AI patients. Our findings expand the spectrum of genetic causes of autosomal recessive AI and sheds light on the molecular diagnosis for the classification of AI. Furthermore, tight regulation of the temporospatial expression of SP6 may have critical roles in completing amelogenesis.
Collapse
Affiliation(s)
- Taro Muto
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Japan
| | | | | | | | | |
Collapse
|
17
|
Karve TM, Preet A, Sneed R, Salamanca C, Li X, Xu J, Kumar D, Rosen EM, Saha T. BRCA1 regulates follistatin function in ovarian cancer and human ovarian surface epithelial cells. PLoS One 2012; 7:e37697. [PMID: 22685544 PMCID: PMC3365892 DOI: 10.1371/journal.pone.0037697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.
Collapse
Affiliation(s)
- Tejaswita M. Karve
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Anju Preet
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Rosie Sneed
- University of District of Columbia, Washington, D.C., United States of America
| | - Clara Salamanca
- Canadian Ovarian Tissue Bank, BC Cancer Research Centre, Vancouver, B.C., Canada
| | - Xin Li
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Jingwen Xu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Deepak Kumar
- University of District of Columbia, Washington, D.C., United States of America
| | - Eliot M. Rosen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Tapas Saha
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail: (TS)
| |
Collapse
|
18
|
Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization. J Biomed Biotechnol 2011; 2011:320987. [PMID: 22046099 PMCID: PMC3199210 DOI: 10.1155/2011/320987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/09/2011] [Indexed: 11/17/2022] Open
Abstract
Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.
Collapse
|
19
|
Talamillo A, Delgado I, Nakamura T, de-Vega S, Yoshitomi Y, Unda F, Birchmeier W, Yamada Y, Ros MA. Role of Epiprofin, a zinc-finger transcription factor, in limb development. Dev Biol 2009; 337:363-74. [PMID: 19913006 DOI: 10.1016/j.ydbio.2009.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/29/2022]
Abstract
The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. In the present work, we have investigated the role of Epiprofin (Epfn/Sp6), a member of the SP/KLF transcription factor family that is expressed in the limb ectoderm and the AER, during limb development. Epfn mutant mice have a defective autopod that shows mesoaxial syndactyly in the forelimb and synostosis (bony fusion) in the hindlimb and partial bidorsal digital tips. Epfn mutants also show a defect in the maturation of the AER that appears flat and broad, with a double ridge phenotype. By genetic analysis, we also show that Epfn is controlled by WNT/b-CATENIN signaling in the limb ectoderm. Since the less severe phenotypes of the conditional removal of b-catenin in the limb ectoderm strongly resemble the limb phenotype of Epfn mutants, we propose that EPFN very likely functions as a modulator of WNT signaling in the limb ectoderm.
Collapse
Affiliation(s)
- Ana Talamillo
- Departamento de Anatomía y Biología Celular. Facultad de Medicina. Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bei M. Molecular genetics of ameloblast cell lineage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:437-44. [PMID: 19090561 DOI: 10.1002/jez.b.21261] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Late tooth morphogenesis is characterized by a series of events that determine crown morphogenesis and the histodifferentiation of epithelial cells into enamel-secreting ameloblasts and of mesenchymal cells into dentin-secreting odontoblasts. Functional ameloblasts are tall, columnar, polarized cells that synthesize and secrete a number of enamel-specific proteins. After depositing the full thickness of enamel matrix, ameloblasts shrink in size and regulate enamel maturation. Amelogenesis imperfecta (AI) is a heterogeneous group of inherited defects in enamel formation. Clinically, AI presents as a spectrum of enamel malformations that are categorized as hypoplastic, hypocalcified, or hypomaturation types, based upon the thickness and hardness of the enamel. The different types of AI are inherited, either as X-linked, autosomal-dominant, or autosomal-recessive traits. Recently, several gene mutations have been identified to cause the subtypes of AI. How these genes, however, coordinate their function to control amelogenesis is not understood. In this review, we discuss the role of genes that play definitive role on the determination of ameloblast cell fate and life cycle based on studies in transgenic animals.
Collapse
Affiliation(s)
- Marianna Bei
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
21
|
Miyoshi K, Akazawa Y, Horiguchi T, Noma T. Localization of adenylate kinase 4 in mouse tissues. Acta Histochem Cytochem 2009; 42:55-64. [PMID: 19492028 PMCID: PMC2685024 DOI: 10.1267/ahc.08012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 02/16/2009] [Indexed: 11/30/2022] Open
Abstract
Adenylate kinase (AK) is a key enzyme in the high-energy phosphoryl transfer reaction in living cells. Of its isoforms, AK4 has a similar sequence and subcellular localization to that of AK3 in the mitochondrial matrix. However, unlike AK3, AK4 lacks the guanosine triphosphate: adenosine monophosphate phosphotransferase activity. To elucidate the physiological role of AK4, we explored the protein localization of AK4 in various mouse tissues by immunohistochemical analysis. AK4 protein was detected in the kidney, liver, brain, heart, stomach, intestine, and gonads but not in the lung and spleen. Interestingly, cell-type specific expression was evident in the brain, gastrointestinal tract, and gonads. In the cerebellum, AK4 was detected in granular cells but not in Purkinje cell bodies. In the gastrointestinal tract, AK4 was highly expressed in epithelia. In the ovary, AK4 was detected in oocytes and corpora lutea. In the testis, AK4 was detected in spermatocytes but not in spermatogonia. Our findings demonstrate that AK4 localizes uniquely in a cell-type and tissue-specific manner in mouse tissues.
Collapse
Affiliation(s)
- Keiko Miyoshi
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Yuki Akazawa
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Taigo Horiguchi
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School
| |
Collapse
|
22
|
Miyoshi K, Nagata H, Horiguchi T, Abe K, Arie Wahyudi I, Baba Y, Harada H, Noma T. BMP2-induced gene profiling in dental epithelial cell line. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 55:216-26. [PMID: 18797134 DOI: 10.2152/jmi.55.216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tooth development is regulated by epithelial-mesenchymal interactions and their reciprocal molecular signaling. Bone morphogenetic protein 2 (BMP2) is known as one of the inducers for tooth development. To analyze the molecular mechanisms of BMP2 on ameloblast differentiation (amelogenesis), we performed microarray analyses using rat dental epithelial cell line, HAT-7. After confirming that BMP2 could activate the canonical BMP-Smads signaling in HAT-7 cells, we analyzed the effects of BMP2 on 14,815 gene expressions and profiled them. Seventy-three genes were up-regulated and 28 genes were down-regulated by BMP2 treatment for 24 hours in HAT-7 cells. Functional classification revealed that 18% of up-regulated genes were ECM/adhesion molecules present in the enamel organ. Furthermore, we examined the expression of several differentiation markers in dental epithelial four cell-lineages including inner enamel epithelium (ameloblasts), stratum intermedium, stratum reticulum, and outer enamel epithelium. The results indicated that BMP2 might induce at least two different cell-lineage markers including a BMP antagonist expressed in HAT-7 cells, suggesting that BMP2 could accelerate amelogenesis via BMP signaling.
Collapse
Affiliation(s)
- Keiko Miyoshi
- Department of Molecular Biology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Adiningrat A, Tanimura A, Miyoshi K, Dwi Yanuaryska R, Hagita H, Horiguchi T, Noma T. <b>Ctip2-mediated </b><b><i>Sp6 </i></b><b>transcriptional regulation in dental </b><b>epithelium-derived cells </b>. THE JOURNAL OF MEDICAL INVESTIGATION 2000. [DOI: 10.2152/jmi.40.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Arya Adiningrat
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Ayako Tanimura
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Ryna Dwi Yanuaryska
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Hiroko Hagita
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Taigo Horiguchi
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|