1
|
Elekes G, Csapó V, Szarka D, Szalay L, Korsós MM, Tálosi D, Török D, Tóth-Molnár E. The Role of Aquaporin 4 in Lacrimal Gland Ductal Fluid Secretion in Mice. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 38771571 PMCID: PMC11114615 DOI: 10.1167/iovs.65.5.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Earlier reports highlighted the predominant presence of aquaporin 4 (AQP4) in the duct cells of rabbit lacrimal glands (LGs). Whereas significant alterations in AQP4 mRNA levels have been observed in experimental dry eye and during pregnancy, the impact of AQP4 in LG ductal fluid production remains unclear. In our recent work, the role of AQP4 in LG ductal fluid secretion was investigated utilizing wild type (WT) and AQP4 knock out (KO) mice. Methods Tear production was assessed in both WT and KO animals. Immunostaining was used to identify AQP4 protein. Duct segments were harvested from LGs of WT and KO mice. Fluid secretion and filtration permeability (Pf) were quantified using video-microscopy. Ductal tear production, elicited by a cell-permeable cAMP analogue (8-bromo cAMP), carbachol, vasoactive intestinal peptide (VIP), and phenylephrine (PHE), were assessed in both WT and KO ducts. Results A higher expression of AQP4 protein was noted in the duct cells from WT mice when compared to acinar cells. Pf did not show notable alterations between WT and AQP4 KO ducts. Carbachol elicited comparable secretory responses in ducts from both WT and KO animals. However, 8-bromo cAMP, VIP, and PHE stimulation resulted in decreased secretion in ducts from AQP4 KO LGs. Conclusions Our findings underscore the functional relevance of AQP4 in the fluid production of mouse LG ducts. AQP4 seems to play different roles in fluid secretions elicited by different secretagogues. Specifically, cAMP-mediated, and adrenergic agonist-related secretions were reduced in AQP4 KO ducts.
Collapse
Affiliation(s)
- Gréta Elekes
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Virág Csapó
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Dóra Szarka
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - László Szalay
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | | | - Dorottya Tálosi
- Albert Szent-Gyorgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dénes Török
- Department of Anatomy, University of Szeged, Szeged, Hungary
| | - Edit Tóth-Molnár
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
3
|
Tanriverdi HI, Günşar C, Neşe N, Yılmaz Ö, Şencan A. Could increased expression of aquaporin-1 be an etiological cause in childhood noncommunicating hydroceles that do not regress spontaneously? J Pediatr Urol 2021; 17:706.e1-706.e4. [PMID: 34391691 DOI: 10.1016/j.jpurol.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Aquaporins are membrane water channel proteins that are expressed in the epithelium and endothelium. Their primary function is to control the flow of water in the membranes of the cells. OBJECTIVE In this study, we investigated whether there is increased expression of aquaporin-1 in the tunica vaginalis of hydrocele patients in childhood that do not regress spontaneously an whether it has an effect on the etiology of hydrocele. STUDY DESIGN Boys who were diagnosed with hydrocele and scheduled for surgery were included and formed the hydrocele group. Boys in the same age range who underwent surgery for inguinal hernia or undescended testicles were included as a control group. Aquaporin-1 expression was evaluated by immunohistochemical examination of capillaries in tissue samples taken from the tunica vaginalis during the operation. Aquaporin-1-positive vessels were counted by selecting 5 unrelated areas with the highest vascular density, and the average number of vessels was calculated for each case. RESULTS A total of 48 male patients were included in the study. Of these, 27 constituted the hydrocele group (mean age 3.51 ± 2.59 years), and 21 constituted the control group (inguinal hernia, n = 17; undescended testicle, n = 4) (mean age 3.95 ± 3.80 years). The mean ages of both groups were statistically similar (p = 0.32). The mean numbers of aquaporin-1-positive vessels at the capillaries in the tunica vaginalis of the patients were 20.74 ± 7.10 in hydrocele group and 17.23 ± 4.07 in the control group. The expression of aquaporin-1 in the hydrocele group was significantly higher (p = 0.037). DISCUSSION It was shown that aquaporin-1 expression was higher in adult cases with hydrocele. Also an increase in aquaporin-1 expression was detected in tunica vaginalis of children with hydrocele in our study. CONCLUSION It was thought that aquaporin-1 overexpression may play a role in non-communicating hydroceles in children.
Collapse
Affiliation(s)
| | - Cüneyt Günşar
- Manisa Celal Bayar University Medical School, Department of Pediatric Surgery, Manisa, Turkey.
| | - Nalan Neşe
- Manisa Celal Bayar University Medical School, Department of Pathology, Manisa, Turkey.
| | - Ömer Yılmaz
- Manisa Celal Bayar University Medical School, Department of Pediatric Surgery, Manisa, Turkey.
| | - Aydın Şencan
- Manisa Celal Bayar University Medical School, Department of Pediatric Surgery, Manisa, Turkey.
| |
Collapse
|
4
|
Tóth-Molnár E, Ding C. New insight into lacrimal gland function: Role of the duct epithelium in tear secretion. Ocul Surf 2020; 18:595-603. [DOI: 10.1016/j.jtos.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
|
5
|
Kannan A, Panneerselvam A, Mariajoseph-Antony LF, Loganathan C, Prahalathan C. Role of Aquaporins in Spermatogenesis and Testicular Steroidogenesis. J Membr Biol 2020; 253:109-114. [DOI: 10.1007/s00232-020-00114-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/14/2020] [Indexed: 01/25/2023]
|
6
|
Sisto M, Ribatti D, Lisi S. Aquaporin water channels: New perspectives on the potential role in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:311-345. [PMID: 31036295 DOI: 10.1016/bs.apcsb.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that osmotically modulate water fluid homeostasis in several tissues; some of them also transport small solutes such as glycerol. At the cellular level, the AQPs regulate not only cell migration and transepithelial fluid transport across membranes, but also common events that are crucial for the inflammatory response. Emerging data reveal a new function of AQPs in the inflammatory process, as demonstrated by their dysregulation in a wide range of inflammatory diseases including edematous states, cancer, obesity, wound healing and several autoimmune diseases. This chapter summarizes the discoveries made so far about the structure and functions of the AQPs and provides updated information on the underlying mechanisms of AQPs in several human inflammatory diseases. The discovery of new functions for AQPs opens new vistas offering promise for the discovery of mechanisms and therapeutic opportunities in inflammatory disorders.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
7
|
Venglovecz V, Pallagi P, Kemény LV, Balázs A, Balla Z, Becskeházi E, Gál E, Tóth E, Zvara Á, Puskás LG, Borka K, Sendler M, Lerch MM, Mayerle J, Kühn JP, Rakonczay Z, Hegyi P. The Importance of Aquaporin 1 in Pancreatitis and Its Relation to the CFTR Cl - Channel. Front Physiol 2018; 9:854. [PMID: 30050452 PMCID: PMC6052342 DOI: 10.3389/fphys.2018.00854] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Aquaporins (AQPs) facilitate the transepithelial water flow involved in epithelial fluid secretion in numerous tissues; however, their function in the pancreas is less characterized. Acute pancreatitis (AP) is a serious disorder in which specific treatment is still not possible. Accumulating evidence indicate that decreased pancreatic ductal fluid secretion plays an essential role in AP; therefore, the aim of this study was to investigate the physiological and pathophysiological role of AQPs in the pancreas. Expression and localization of AQPs were investigated by real-time PCR and immunocytochemistry, whereas osmotic transmembrane water permeability was estimated by the dye dilution technique, in Capan-1 cells. The presence of AQP1 and CFTR in the mice and human pancreas were investigated by immunohistochemistry. Pancreatic ductal HCO3- and fluid secretion were studied on pancreatic ducts isolated from wild-type (WT) and AQP1 knock out (KO) mice using microfluorometry and videomicroscopy, respectively. In vivo pancreatic fluid secretion was estimated by magnetic resonance imaging. AP was induced by intraperitoneal injection of cerulein and disease severity was assessed by measuring biochemical and histological parameters. In the mice, the presence of AQP1 was detected throughout the whole plasma membrane of the ductal cells and its expression highly depends on the presence of CFTR Cl- channel. In contrast, the expression of AQP1 is mainly localized to the apical membrane of ductal cells in the human pancreas. Bile acid treatment dose- and time-dependently decreased mRNA and protein expression of AQP1 and reduced expression of this channel was also demonstrated in patients suffering from acute and chronic pancreatitis. HCO3- and fluid secretion significantly decreased in AQP1 KO versus WT mice and the absence of AQP1 also worsened the severity of pancreatitis. Our results suggest that AQP1 plays an essential role in pancreatic ductal fluid and HCO3- secretion and decreased expression of the channel alters fluid secretion which probably contribute to increased susceptibility of the pancreas to inflammation.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Lajos V. Kemény
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Eszter Becskeházi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin Borka
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
- Department of Medicine II, Klinikum Grosshadern, Universitätsklinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens-Peter Kühn
- Institute of Radiology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
- Institute and Policlinic of Radiology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine and First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Yu H, Liu L, Wang K, Wu H, Wang W, Zhang X, Cui G, Cui X, Huang J. Upregulation of aquaporin 3 expression by diterpenoids in Euphorbia pekinensis is associated with activation of the NF-κB signaling pathway in the co-culture system of HT-29 and RAW 264.7 cells. Biochimie 2018; 144:153-159. [DOI: 10.1016/j.biochi.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
|
9
|
Indo HP, Hawkins CL, Nakanishi I, Matsumoto KI, Matsui H, Suenaga S, Davies MJ, St Clair DK, Ozawa T, Majima HJ. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function. Handb Exp Pharmacol 2017; 240:439-456. [PMID: 28176043 DOI: 10.1007/164_2016_117] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture, 305-8575, Japan
| | - Shigeaki Suenaga
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - Daret K St Clair
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Toshihiko Ozawa
- Division of Oxidative Stress Research, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
| |
Collapse
|
10
|
Abstract
Aquaporins (AQPs ) are expressed in most exocrine and endocrine secretory glands. Consequently, summarizing the expression and functions of AQPs in secretory glands represents a daunting task considering the important number of glands present in the body, as well as the number of mammalian AQPs - thirteen. The roles played by AQPs in secretory processes have been investigated in many secretory glands. However, despite considerable research, additional studies are clearly needed to pursue our understanding of the role played by AQPs in secretory processes. This book chapter will focus on summarizing the current knowledge on AQPs expression and function in the gastrointestinal tract , including salivary glands, gastric glands, Duodenal Brunner's gland, liver and gallbladder, intestinal goblets cells, exocrine and endocrine pancreas, as well as few other secretory glands including airway submucosal glands, lacrimal glands, mammary glands and eccrine sweat glands.
Collapse
Affiliation(s)
- Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
11
|
Jin BJ, Verkman AS. Microfluidic platform for rapid measurement of transepithelial water transport. LAB ON A CHIP 2017; 17:887-895. [PMID: 28184395 PMCID: PMC5453641 DOI: 10.1039/c6lc01456a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water transport across epithelial monolayers is of central importance in mammalian fluid homeostasis, and epithelial aquaporin (AQP) water channels are potential drug targets. Current methods to measure transepithelial water permeability based on indicator dilution have limited accuracy and can require hours for a single measurement. We report here a microfluidics platform for rapid and accurate measurement of water transport across a conventionally cultured epithelial monolayer on a porous filter requiring only a single image obtained using a standard laboratory fluorescence microscope. The undersurface of a porous polyester filter containing cultured epithelial cells on top is contacted with a perfused microfluidic channel of 100 μm width, 20 μm height and 10 cm length with folded geometry, with in-plane size of 3.2 × 3.2 mm2 for visualization with a 2× objective lens. Osmotic water permeability is measured from the steady-state concentration profile along the length of the channel of a membrane-impermeant fluorescent dye in the perfusate, in which an osmotic gradient is imposed by an anisosmolar solution overlying the epithelial monolayer; diffusional water permeability is measured using a D2O/H2O-sensing fluorescent dye in the perfusate with a D2O-containing isosmolar solution overlying the cell layer. Permeability values are deduced from single fluorescence images. The method, named fluid transport on a chip (FT-on-Chip), was applied to measure transepithelial osmotic and diffusional water permeability in control and AQP4-expressing epithelial cell monolayers. FT-on-Chip allows for rapid, accurate and repeated measurements of transepithelial water permeability, and is generalizable to transport measurements of ions and solutes using suitable indicator dyes.
Collapse
Affiliation(s)
- Byung-Ju Jin
- Departments of Medicine and Physiology, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA.
| | - A S Verkman
- Departments of Medicine and Physiology, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA.
| |
Collapse
|
12
|
Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines. Int J Mol Sci 2016; 17:ijms17091399. [PMID: 27589719 PMCID: PMC5037679 DOI: 10.3390/ijms17091399] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.
Collapse
|
13
|
Pelagalli A, Squillacioti C, Mirabella N, Meli R. Aquaporins in Health and Disease: An Overview Focusing on the Gut of Different Species. Int J Mol Sci 2016; 17:1213. [PMID: 27472320 PMCID: PMC5000611 DOI: 10.3390/ijms17081213] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) play a pivotal role in gut homeostasis since their distribution and function is modulated both in physiological and in pathophysiological conditions. The transport of water and solutes through gut epithelia is essential for osmoregulation and digestive and absorptive functions. This passage is regulated by different AQP isoforms and characterized by their peculiar distribution in the gastrointestinal tract. To date, AQP localization has been identified in the gut and associated organs of several mammalian species by different techniques (immunohistochemical, western blotting, and RT-PCR). The present review describes the modulation of AQP expression, distribution, and function in gut pathophysiology. At the same time, the comparative description of AQP in animal species sheds light on the full range of AQP functions and the screening of their activity as transport modulators, diagnostic biomarkers, and drug targets. Moreover, the phenotype of knockout mice for several AQPs and their compensatory role and the use of specific AQP inhibitors have been also reviewed. The reported data could be useful to design future research in both basic and clinical fields.
Collapse
Affiliation(s)
- Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy.
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Veterinaria 1, 80137 Naples, Italy.
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Veterinaria 1, 80137 Naples, Italy.
| | - Rosaria Meli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
14
|
Jiang Y, Liu H, Liu WJ, Tong HB, Chen CJ, Lin FG, Zhuo YH, Qian XZ, Wang ZB, Wang Y, Zhang P, Jia HL. Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c. Mol Cells 2016; 39:292-298. [PMID: 26923194 PMCID: PMC4844935 DOI: 10.14348/molcells.2016.2223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022] Open
Abstract
Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells.
Collapse
Affiliation(s)
- Yong Jiang
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - He Liu
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Wen-jing Liu
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Hai-bin Tong
- Life Science Research Center, Beihua University, Jilin, People’s
Republic of China
| | - Chang-jun Chen
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Fu-gui Lin
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Yan-hang Zhuo
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Xiao-zhen Qian
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Zeng-bin Wang
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Yu Wang
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Peng Zhang
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Hong-liang Jia
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| |
Collapse
|
15
|
Polyphenols as Modulators of Aquaporin Family in Health and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:196914. [PMID: 26346093 PMCID: PMC4539495 DOI: 10.1155/2015/196914] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 07/21/2015] [Indexed: 11/24/2022]
Abstract
Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.
Collapse
|
16
|
Frauenfelder C, Woods C, Hussey D, Ooi E, Klebe S, Carney AS. Aquaporin expression profiles in normal sinonasal mucosa and chronic rhinosinusitis. Int Forum Allergy Rhinol 2014; 4:901-8. [PMID: 25243928 DOI: 10.1002/alr.21415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 07/18/2014] [Accepted: 08/20/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Thickened secretions, mucosal edema, and polyp formation are pathological features in chronic rhinosinusitis (CRS) that could theoretically be caused by aberrant water flow through sinonasal mucosa. Aquaporins (AQPs) are a family of proteins with roles in water transport, with tissue-specific expression profiles. This study aims to determine if AQP expression in sinonasal mucosa is different between normal controls and patients with CRS, either with (CRSwNP) or without (CRSsNP) nasal polyps. METHODS During endoscopic sinus surgery or transsphenoidal surgery, sinonasal tissue was collected and classified as CRSwNP (n = 13), CRSsNP (n = 10), or normal (n = 10). Messenger RNA (mRNA) expression of human AQP0 to AQP12b was determined using quantitative real-time polymerase chain reaction (qRT-PCR). Cellular localization of AQP1, AQP3, AQP4, AQP5, AQP7, and AQP11 was determined by immunohistochemistry. RESULTS mRNA of AQP0 to AQP11 was identified in all samples. AQP12b mRNA was not detected. Significant differences in the mRNA expression levels of AQP4 and AQP11 were identified between normal and CRSwNP patients (p < 0.05). Differences in the cellular localization of AQPs were observed in both CRSsNP and CRSwNP patients vs normal controls. More intense localization to the cell cytoplasm was observed for AQP5 in glandular epithelium (CRSwNP; p < 0.05) and surface epithelium (CRSsNP; p < 0.05), and AQP4 in glandular epithelium (CRSsNP; p < 0.05). CONCLUSION This study characterized AQP mRNA expression and protein localization in normal human sinonasal tissue. Significant differences in mRNA expression were found for AQP4 and AQP11 in CRSwNP and differences in protein localization patterns of AQP4 and AQP5 were identified in both types of CRS.
Collapse
Affiliation(s)
- Claire Frauenfelder
- Department of Surgery, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Saccà SC, Izzotti A. Focus on molecular events in the anterior chamber leading to glaucoma. Cell Mol Life Sci 2014; 71:2197-218. [PMID: 24142347 PMCID: PMC11113507 DOI: 10.1007/s00018-013-1493-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Abstract
Primary open-angle glaucoma is a multifactorial disease that affects the retinal ganglion cells, but currently its therapy is to lower the eye pressure. This indicates a definite involvement of the trabecular meshwork, key region in the pathogenesis of glaucoma. This is the first target of glaucoma, and its functional complexity is a real challenge to search. Its functions are those to allow the outflow of aqueous humor and not the reflux. This article describes the morphological and functional changes that happen in anterior chamber. The "primus movens" is oxidative stress that affects trabecular meshwork, particularly its endothelial cells. In these develops a real mitochondriopaty. This leads to functional impotence, the trabecular meshwork altering both motility and cytoarchitecture. Its cells die by apoptosis, losing barrier functions and altering the aqueous humor outflow. All the morphological alterations occur that can be observed under a microscope. Intraocular pressure rises and the malfunctioning trabecular meshwork endotelial cells express proteins that completely alter the aqueous humor. This is a liquid whose functional proteomics complies with the conditions of the trabecular meshwork. Indeed, in glaucoma, it is possible detect the presence of proteins which testify to what occurs in the anterior chamber. There are six classes of proteins which confirm the vascular endothelium nature of the anterior chamber and are the result of the morphofunctional trabecular meshwork decay. It is possible that, all or in part, these proteins can be used as a signal to the posterior pole.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Ophthalmology Unit, Department of Head and Neck Pathologies, St Martino Hospital, Viale Benedetto XV, 16132, Genoa, Italy,
| | | |
Collapse
|
18
|
Overexpression of aquaporin 1 in the tunica vaginalis may contribute to adult-onset primary hydrocele testis. Adv Urol 2014; 2014:202434. [PMID: 24817884 PMCID: PMC4000961 DOI: 10.1155/2014/202434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 02/03/2023] Open
Abstract
To investigate the cause of the adult-onset primary noncommunicating hydrocele testis, protein expressions of water channel aquaporins (AQPs) 1 and 3 in the tunica vaginalis were assessed. Frozen tunica vaginalis specimens from patients with adult-onset primary hydrocele testis and control male nonhydrocele patients were subjected to Western blot analysis for the detection of AQP1 and AQP3 proteins. Paraffin-embedded sections of tunica vaginalis specimens were histochemically stained with anti-AQP1 and anti-AQP3 antibodies as well as an anti-podoplanin antibody to stain lymphatic endothelia. Hydrocele fluid was subjected to biochemical analysis. AQP1 protein expression in the tunica vaginalis was significantly higher in patients with adult-onset hydrocele testis than in the controls. The AQP3 protein was not detected in the tunica vaginalis. Histochemically, AQP1 expression in the tunica vaginalis was localized in vascular endothelial and smooth muscle cells. The densities of AQP1-expressing capillaries and lymphatic vessels were similar between the tunica vaginalis of the controls and those of hydrocele patients. Sodium levels were higher in the hydrocele fluid than in the serum. In conclusion, overexpression of the AQP1 protein in individual capillary endothelial cells of the tunica vaginalis may contribute to the development of adult-onset primary noncommunicating hydrocele testis as another aquaporin-related disease.
Collapse
|
19
|
Sahoo S, Aurich MK, Jonsson JJ, Thiele I. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front Physiol 2014; 5:91. [PMID: 24653705 PMCID: PMC3949408 DOI: 10.3389/fphys.2014.00091] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
Membrane transporters enable efficient cellular metabolism, aid in nutrient sensing, and have been associated with various diseases, such as obesity and cancer. Genome-scale metabolic network reconstructions capture genomic, physiological, and biochemical knowledge of a target organism, along with a detailed representation of the cellular metabolite transport mechanisms. Since the first reconstruction of human metabolism, Recon 1, published in 2007, progress has been made in the field of metabolite transport. Recently, we published an updated reconstruction, Recon 2, which significantly improved the metabolic coverage and functionality. Human metabolic reconstructions have been used to investigate the role of metabolism in disease and to predict biomarkers and drug targets. Given the importance of cellular transport systems in understanding human metabolism in health and disease, we analyzed the coverage of transport systems for various metabolite classes in Recon 2. We will review the current knowledge on transporters (i.e., their preferred substrates, transport mechanisms, metabolic relevance, and disease association for each metabolite class). We will assess missing coverage and propose modifications and additions through a transport module that is functional when combined with Recon 2. This information will be valuable for further refinements. These data will also provide starting points for further experiments by highlighting areas of incomplete knowledge. This review represents the first comprehensive overview of the transporters involved in central metabolism and their transport mechanisms, thus serving as a compendium of metabolite transporters specific for human metabolic reconstructions.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Maike K Aurich
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Jon J Jonsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland Reykjavik, Iceland ; Department of Genetics and Molecular Medicine, Landspitali, National University Hospital of Iceland Reykjavik, Iceland
| | - Ines Thiele
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| |
Collapse
|
20
|
Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids-dependent relaxation. Pflugers Arch 2013; 466:237-51. [PMID: 23873354 DOI: 10.1007/s00424-013-1325-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 12/21/2022]
Abstract
The water channels, aquaporins (AQPs) are key mediators of transcellular fluid transport. However, their expression and role in cardiac tissue is poorly characterized. Particularly, AQP1 was suggested to transport other molecules (nitric oxide (NO), hydrogen peroxide (H2O2)) with potential major bearing on cardiovascular physiology. We therefore examined the expression of all AQPs and the phenotype of AQP1 knockout mice (vs. wild-type littermates) under implanted telemetry in vivo, as well as endothelium-dependent relaxation in isolated aortas and resistance vessels ex vivo. Four aquaporins were expressed in wild-type heart tissue (AQP1, AQP7, AQP4, AQP8) and two aquaporins in aortic and mesenteric vessels (AQP1-AQP7). AQP1 was expressed in endothelial as well as cardiac and vascular muscle cells and co-segregated with caveolin-1. AQP1 knockout (KO) mice exhibited a prominent microcardia and decreased myocyte transverse dimensions despite no change in capillary density. Both male and female AQP1 KO mice had lower mean BP, which was not attributable to altered water balance or autonomic dysfunction (from baroreflex and frequency analysis of BP and HR variability). NO-dependent BP variability was unperturbed. Accordingly, endothelium-derived hyperpolarizing factor (EDH(F)) or NO-dependent relaxation were unchanged in aorta or resistance vessels ex vivo. However, AQP1 KO mesenteric vessels exhibited an increase in endothelial prostanoids-dependent relaxation, together with increased expression of COX-2. This enhanced relaxation was abrogated by COX inhibition. We conclude that AQP1 does not regulate the endothelial EDH or NO-dependent relaxation ex vivo or in vivo, but its deletion decreases baseline BP together with increased prostanoids-dependent relaxation in resistance vessels. Strikingly, this was associated with microcardia, unrelated to perturbed angiogenesis. This may raise interest for new inhibitors of AQP1 and their use to treat hypertrophic cardiac remodeling.
Collapse
|
21
|
Nico M, Melo J, Lourenço S. Cheilitis glandularis: immunohistochemical expression of protein water channels (aquaporins) in minor labial salivary glands. J Eur Acad Dermatol Venereol 2013; 28:382-7. [DOI: 10.1111/jdv.12059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Li ZZ, Xing L, Zhao ZZ, Li JS, Xue R, Chandra A, Nørregaard R, Wen JG. Decrease of renal aquaporins 1-4 is associated with renal function impairment in pediatric congenital hydronephrosis. World J Pediatr 2012; 8:335-41. [PMID: 23151861 DOI: 10.1007/s12519-012-0378-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 04/23/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Renal aquaporins (AQP1-4) concentration is downregulated and is in proportion to the degree of hydronephrosis graded by ultrasound in pediatric congenital hydronephrosis (CH). However, the relationship between the expression of AQP1-4 with the changes of renal function impairment (RFI) evaluated by (99m)Tc-DTPA renal dynamic imaging is still unclear. This study aimed to investigate the relationship between AQP1-4 expression and degree of RFI in children with CH. METHODS The expression of AQP1-4 was evaluated in 45 children with unilateral ureteropelvic junction obstruction (28 boys and 17 girls, average age: 28±10 months) and 15 children undergoing nephrectomy for nephroblastoma (8 boys and 7 girls, average age: 26±8 months) by immunoblotting and immunohistochemistry. Renal function was graded into mild and severe RFI by (99m)Tc-DTPA renal dynamic imaging. RESULTS One-way analysis of variance with Bonferonni's correction showed a significantly reduced protein expression of AQP1-4 in the severe RFI group compared with those in both mild RFI group and controls (AQP1: 0.52±0.09 vs. 0.91±0.06 vs. 1.23±0.033; AQP2: 0.68±0.12 vs. 1.09±0.06 vs. 1.52±0.08; AQP3: 0.59±0.16 vs. 0.94±0.08 vs. 1.31±0.07; AQP4: 0.64±0.06 vs. 1.14±0.07 vs. 1.61±0.07; P<0.001, respectively). In kidneys with severe RFI, there was a reduction in the protein concentration of all four AQP isoforms which was more pronounced compared with those seen in kidneys with mild RFI and in the controls. CONCLUSION AQP1-4 expression is reduced in proportion with the impairment degree of renal function graded by (99m)Tc-DTPA renal dynamic imaging in human CH.
Collapse
Affiliation(s)
- Zhen-Zhen Li
- The Institute of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Jardim MJ, Dailey L, Silbajoris R, Diaz-Sanchez D. Distinct MicroRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-Associated Gene. Am J Respir Cell Mol Biol 2012; 47:536-42. [DOI: 10.1165/rcmb.2011-0160oc] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
24
|
Abstract
The aquaporins are a family of membrane water channels, some of which also transport glycerol. They are involved in a wide range of physiological functions (including water/salt homeostasis, exocrine fluid secretion, and epidermal hydration) and human diseases (including glaucoma, cancer, epilepsy, and obesity). At the cellular level, aquaporin-mediated osmotic water transport across cell plasma membranes facilitates transepithelial fluid transport, cell migration, and neuroexcitation; aquaporin-mediated glycerol transport regulates cell proliferation, adipocyte metabolism, and epidermal water retention. Genetic diseases caused by loss-of-function mutations in aquaporins include nephrogenic diabetes insipidus and congenital cataracts. The neuroinflammatory demyelinating disease neuromyelitis optica is marked by pathogenic autoantibodies against astrocyte water channel aquaporin-4. There remain broad opportunities for the development of aquaporin-based diagnostics and therapeutics. Disease-relevant aquaporin polymorphisms are beginning to be explored. There is great promise in the development of small-molecule aquaporin modulators for therapy of some types of refractory edema, brain swelling, neuroinflammation, glaucoma, epilepsy, cancer, pain, and obesity.
Collapse
Affiliation(s)
- A S Verkman
- Department of Medicine, University of California, San Francisco, California 94143-0521, USA.
| |
Collapse
|
25
|
Toczyłowska-Mamińska R, Dołowy K. Ion transporting proteins of human bronchial epithelium. J Cell Biochem 2012; 113:426-32. [PMID: 21975871 DOI: 10.1002/jcb.23393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The electrolyte transport system across human airway epithelium followed by water movement is essential for the normal mucociliary clearance that allows the maintenance of the aseptic condition of the respiratory tract. The function of epithelial cells is to control and regulate ionic composition and volume of fluids in the airways. Various types of proteins taking part in assuring effective ions and water transport in apical and basolateral membranes of the airway epithelium have been found (e.g., CFTR, ENaC, CaCC, ORCC, potassium channels, NaKATPase, aquaporins). The paper reviews the current state of the art in the field of ion channels, transporters, and other signaling proteins identified in the human bronchial epithelium.
Collapse
Affiliation(s)
- Renata Toczyłowska-Mamińska
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska St, 0-776 Warsaw, Poland.
| | | |
Collapse
|
26
|
Yi F, Khan M, Gao H, Hao F, Sun M, Zhong L, Lu C, Feng X, Ma T. Increased differentiation capacity of bone marrow-derived mesenchymal stem cells in aquaporin-5 deficiency. Stem Cells Dev 2012; 21:2495-507. [PMID: 22420587 DOI: 10.1089/scd.2011.0597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells with a self-renewal and multipotent capability and express extensively in multitudinous tissues. We found that water channel aquaporin-5 (AQP5) is expressed in bone marrow-derived MSCs (BMMSCs) in the plasma membrane pattern. BMMSCs from AQP5(-/-) mice showed significantly lower plasma membrane water permeability than those from AQP5(+/+) mice. In characterizing the cultured BMMSCs from AQP5(-/-) and AQP5(+/+) mice, we found no obvious differences in morphology and proliferation between the 2 genotypes. However, the multiple differentiation capacity was significantly higher in AQP5(-/-) than AQP5(+/+) BMMSCs as revealed by representative staining by Oil Red O (adipogenesis); Alizarin Red S and alkaline phosphatase (ALP; osteogenesis); and type II collagen and Safranin O (chondrogenesis) after directional induction. Relative mRNA expression levels of 3 lineage differentiation markers, including PPARγ2, C/EBPα, adipsin, collagen 1a, osteopontin, ALP, collagen 11a, collagen 2a, and aggrecan, were significantly higher in AQP5(-/-) -differentiating BMMSCs, supporting an increased differentiation capacity of AQP5(-/-) BMMSCs. Furthermore, a bone-healing process was accelerated in AQP5(-/-) mice in a drill-hole injury model. Mechanistic studies indicated a significantly lower apoptosis rate in AQP5(-/-) than AQP5(+/+) BMMSCs. Apoptosis inhibitor Z-VAD-FMK increased the differentiation capacity to a greater extent in AQP5(+/+) than AQP5(-/-) BMMSCs. We conclude that AQP5-mediated high plasma membrane water permeability enhances the apoptosis rate of differentiating BMMSCs, thus decreasing their differentiation capacity. These data implicate AQP5 as a novel determinant of differentiation of BMMSCs and therefore a new molecular target for regulating differentiation of BMMSCs during tissue repair and regeneration.
Collapse
Affiliation(s)
- Fei Yi
- Membrane Channel Research Laboratory, Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ding C, Lu M, Huang J. Changes of the ocular surface and aquaporins in the lacrimal glands of rabbits during pregnancy. Mol Vis 2011; 17:2847-55. [PMID: 22128232 PMCID: PMC3224838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/29/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To test the hypotheses that pregnancy represents a physiologic condition that is associated with dry eye symptoms, and the expression of aquaporin 4 (AQP4) and AQP5 are altered in the lacrimal gland (LG) from term pregnant rabbits. METHODS Schirmer's test, tear break-up time (BUT), and Rose Bengal staining were used to evaluate ocular surface health. LG were obtained from term pregnant rabbits and age-matched female control rabbits and then processed for laser capture microdissection (LCM), real time RT-PCR, western blot, and immunofluorescence for the detection and quantification of mRNA and proteins of AQP4 and AQP5. RESULTS Pregnant rabbits demonstrated typical clinical symptoms of dry eye, including decreased Schirmer score and BUT as well as increased Rose Bengal staining of cornea. In term pregnant rabbits, mRNA for AQP5 from whole LG was significantly lower than that of control rabbits, while mRNA for AQP4 was not. Levels of mRNA for AQP4 and AQP5 underwent significant changes in acini and epithelial cells from specific duct segments during pregnancy. Western blot from whole LG lysates demonstrated that expression of AQP4 was 24% more abundant in term pregnant rabbits while AQP5 was 22% less when compared to control rabbits respectively. At term pregnancy, AQP4 immunoreactivity (AQP4-IR) was increased in acini while its intensity remained the same in ducts. AQP5-IR was present in both apical and basolateral membranes of acinar cells in normal control and pregnant rabbits, while ductal cells in pregnant rabbits also showed significant amount of AQP5-IR. CONCLUSIONS The data presented here demonstrated significant dry eye symptoms in pregnant rabbits. Our data also showed altered expressions of AQP4 and AQP5 during pregnancy and suggested that these changes may contribute to the altered LG secretion and dry eye symptoms during pregnancy.
Collapse
|
28
|
Simões T, Charro N, Blonder J, Faria D, Couto FM, Chan KC, Waybright T, Isaaq HJ, Veenstra TD, Penque D. Molecular profiling of the human nasal epithelium: A proteomics approach. J Proteomics 2011; 75:56-69. [PMID: 21621024 PMCID: PMC7185466 DOI: 10.1016/j.jprot.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/05/2011] [Indexed: 12/25/2022]
Abstract
A comprehensive proteomic profiling of nasal epithelium (NE) is described. This study relies on simple subcellular fractionation used to obtain soluble- and membrane-enriched fractions followed by 2-dimensional liquid chromatography (2D-LC) separation and tandem mass spectrometry (MS/MS). The cells were collected using a brushing technique applied on NE of clinically evaluated volunteers. Subsequently, the soluble- and the membrane-protein enriched fractions were prepared and analyzed in parallel using 2D-LC-MS/MS. In a set of 1482 identified proteins, 947 (63.9%) proteins were found to be associated to membrane fraction. Grand average hydropathy value index (GRAVY) analysis, the transmembrane protein mapping and annotations of primary location deposited in the Human Protein Reference Database (HPRD) confirmed an enrichment of hydrophobic proteins on this dataset. Ingenuity Pathway Analysis (IPA) of soluble fraction revealed an enrichment of molecular and cellular functions associated with cell death, protein folding and drug metabolism while in membrane fraction showed an enrichment of functions associated with molecular transport, protein trafficking and cell-to-cell signaling and interaction. The IPA showed similar enrichment of functions associated with cellular growth and proliferation in both soluble and membrane subproteomes. This finding was in agreement with protein content analysis using exponentially modified protein abundance index (emPAI). A comparison of our data with previously published studies focusing on respiratory tract epithelium revealed similarities related to identification of proteins associated with physical barrier function and immunological defence. In summary, we extended the NE molecular profile by identifying and characterizing proteins associated to pivotal functions of a respiratory epithelium, including the control of fluid volume and ionic composition at the airways' surface, physical barrier maintenance, detoxification and immunological defence. The extent of similarities supports the applicability of a less invasive analysis of NE to assess prognosis and treatment response of lung diseases such as asthma, cystic fibrosis and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Tânia Simões
- Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, INSA I.P., Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ding C, Nandoskar P, Lu M, Thomas P, Trousdale MD, Wang Y. Changes of aquaporins in the lacrimal glands of a rabbit model of Sjögren's syndrome. Curr Eye Res 2011; 36:571-8. [PMID: 21524183 DOI: 10.3109/02713683.2011.574330] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS To test the hypothesis that the expression of aquaporins (AQPs) 4 and 5 is altered in the lacrimal glands (LG) of rabbits with induced autoimmune dacryoadenitis (IAD). MATERIALS AND METHODS LGs were obtained from adult female rabbits with IAD, and age-matched female control rabbits. LGs were processed for laser capture microdissection (LCM), real time RT-PCR, Western blot, and immunofluorescence for the detection and quantification of protein and mRNAs of AQP4 and AQP5 in whole LGs, and purified acinar cells and duct cells from specific duct segments. RESULTS In rabbits with IAD, abundances of mRNAs for AQP4 and AQP5 from whole LGs were significantly lower than controls. Levels of mRNA for AQP4 were lower in most duct segments from rabbits with IAD. However, the mRNA abundance for AQP5 was significantly lower in acini from rabbits with IAD, while its abundance was higher in each duct segment. Western blot showed that the expression of AQP4 in LGs from rabbits with IAD was 36% more abundant than normal controls, whereas AQP5 was 72% less abundant. Immunofluorescence indicated that AQP4 immunoreactivity (AQP4-IR) was present on the basolateral membranes of acinar and ductal cells in control and diseased LGs, with ductal cells showing stronger AQP4-IR than acinar cells. AQP5-IR was found on apical and basolateral membranes of acinar cells, and showed a "mosaic" pattern, i.e., with some acini and/or acinar cells showing stronger AQP5-IR than others. Minimal AQP5-IR was detected in ductal cells from control animals, while its intensity was significantly increased in rabbits with IAD. CONCLUSIONS These data strongly support our hypothesis that expressions of AQPs are altered in rabbits with IAD, and that specific ductal segment play important roles in lacrimal secretion.
Collapse
Affiliation(s)
- Chuanqing Ding
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, Los Angeles, California 90089-9112, USA
| | | | | | | | | | | |
Collapse
|
30
|
Thanos CG, Bintz BE, Goddard M, Boekelheide K, Hall S, Emerich DF. Functional modulation of choroid plexus epithelial clusters in vitro for tissue repair applications. Cell Transplant 2011; 20:1659-72. [PMID: 21396169 DOI: 10.3727/096368911x564985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
One of the primary obstacles in the restoration or repair of damaged tissues is the temporospatial orchestration of biological and physiological events. Cellular transplantation is an important component of tissue repair as grafted cells can serve as replacement cells or as a source of secreted factors. But few, if any, primary cells can perform more than a single tissue repair function. Epithelial cells, derived from the choroid plexus (CP), are an exception to this rule, as transplanted CP is protective and regenerative in animal models as diverse as CNS degeneration and dermal wound repair. They secrete a myriad of proteins with therapeutic potential as well as matrix and adhesion factors, and contain responsive cytoskeletal components potentially capable of precise manipulation of cellular and extracellular niches. Here we isolated CP from neonatal porcine lateral ventricles and cultured the cells under a variety of conditions to specifically modulate tissue morphology (2D vs. 3D) and protein expression. Using qRT-PCR analysis, transmission electron microscopy, and gene microarray studies we demonstrate a fine level of control over CP epithelial cell clusters opening further opportunities for exploration of the therapeutic potential of this unique tissue source.
Collapse
Affiliation(s)
- C G Thanos
- CytoSolv, Inc., Providence, RI 02905, USA.
| | | | | | | | | | | |
Collapse
|