1
|
Liu Y, Dong X, Wu B, Cheng Z, Zhang J, Wang J. Promising Pharmacological Interventions for Posterior Capsule Opacification: A Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400181. [PMID: 39679290 PMCID: PMC11637782 DOI: 10.1002/gch2.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/18/2024] [Indexed: 12/17/2024]
Abstract
Phacoemulsification combined with intraocular lens implantation is the primary treatment for cataract. Although this treatment strategy benefits patients with cataracts, posterior capsule opacification (PCO) remains a common complication that impairs vision and affects treatment outcomes. The pathogenesis of PCO is associated with the proliferation, migration, and fibrogenesis activity of residual lens epithelial cells, with epithelial-mesenchymal transition (EMT) serving as a key mechanism underlying the condition. Transforming growth factor-beta 2 (TGF-β2) is a major promotor of EMT, thereby driving PCO development. Most studies have shown that drugs and miRNAs mitigate EMT by inhibiting, clearing, or eliminating LECs. In addition, targeting EMT-related signaling pathways in TGF-β2-stimulated LECs has garnered attention as a research focus. This review highlights potential treatments for PCO and details the mechanisms by which drugs and miRNAs counter EMT.
Collapse
Affiliation(s)
- Yuxuan Liu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Xiaoming Dong
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Bin Wu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Zhigang Cheng
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Chaoyang Aier Eye HospitalChaoyangLiaoning Province122000China
| | - Jinsong Zhang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Jing Wang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
- Aier Academy of OphthalmologyCentral South UniversityNo. 188, Furong South Road, Tianxin DistrictChangshaHunan410004P. R. China
| |
Collapse
|
2
|
Sugiyama Y, Nakazawa Y, Sakagami T, Kawata S, Nagai N, Yamamoto N, Funakoshi-Tago M, Tamura H. Capsaicin attenuates TGFβ2-induced epithelial-mesenchymal-transition in lens epithelial cells in vivo and in vitro. Exp Eye Res 2021; 213:108840. [PMID: 34798144 DOI: 10.1016/j.exer.2021.108840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023]
Abstract
Posterior capsule opacification (PCO), the most common complication of cataract surgery occurring in 20-50% of patients after 2-5 years of cataract surgery, is a major problem in the aging society. The epithelial-mesenchymal transition (EMT) of lens epithelial cells after cataract surgery has been proposed as a major cause of PCO. Capsaicin, widely used as a food additive and analgesic agent, is a major pungent ingredient in red pepper. Although the effect of capsaicin on EMT has been reported in cancer cells, the biological reaction of capsaicin was unique in each cell type, and there have been no reports describing its effects on EMT earlier. In this study, we demonstrated that treatment with capsaicin inhibited TGFβ2-induced EMT in vitro lens epithelial cells and ex vivo explant lens epithelial cells. Furthermore, eye drops of capsaicin inhibited the PCO model mice in vivo. Finally, we showed that capsaicin inhibited non-canonically induced Smad2/3 activation via suppression of EGFR activation and ERK phosphorylation. Our findings indicate that capsaicin and its derivatives are good candidate compounds for preventing PCO after cataract surgery.
Collapse
Affiliation(s)
| | | | | | - Sara Kawata
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Naoki Yamamoto
- Research Promotion and Support Headquarters, Fujita Health University, Japan
| | | | | |
Collapse
|
3
|
Y. Muti H, Olimat S. HPLC Method of Analysis for Determination and Standardization of Luteolin and Vanillic Acid in Dry Extract of Paronychia Argentea Lam. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/ojc/340605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main objective of this study was to establish a chromatographic method for analysis, determination and standardization of the two main components vanillic acid and luteolin as major components in Paronychia argentea Lam dry extract. This analytical method was designed to be a simple and fast with an appropriate separation of the two main components of the extract. High pressure liquid chromatography (HPLC) method of analysis was developed to quantitatively determine, identify and standardize the two main active constituents in the pharmaceutical dry extract against luteolin and vanillic acid as primary reference standards as it is the major active constituents of the dry extract of P. Argentea, where the linearity obtained was higher than R2 = 0.99981 and 0.99908 respectively. Although the method was proven to be suitable, further specific analysis validation was conducted to include the following: linearity, precision, range, limit of detection, limit of quantitation and filter compatibility. The luteolin and vanillic acid were completely separated from the other components in the herbal dry extract with an Rf value of 1.3 and 5.7 minutes respectively. The concentration of Luteolin is 0.4% while vanillic acid content is 0.1% in the dry extract.
Collapse
Affiliation(s)
- Hasan Y. Muti
- Faculty of Pharmacy and Medical Sciences, Al-Ahliyya Amman University, Amman–Jordan
| | - Suleiman Olimat
- Faculty of Pharmacy and Medical Sciences, Al-Ahliyya Amman University, Amman–Jordan
| |
Collapse
|
4
|
Shin YH, Kim JM, Park K. The Effect of Capsaicin on Salivary Gland Dysfunction. Molecules 2016; 21:molecules21070835. [PMID: 27347918 PMCID: PMC6274068 DOI: 10.3390/molecules21070835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/28/2022] Open
Abstract
Capsaicin (trans-8-methyl-N-vanilyl-6-nonenamide) is a unique alkaloid isolated from hot chili peppers of the capsicum family. Capsaicin is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), which is expressed in nociceptive sensory neurons and a range of secretory epithelia, including salivary glands. Capsaicin has analgesic and anti-inflammatory properties in sensory neurons. Recently, increasing evidence has indicated that capsaicin also affects saliva secretion and inflammation in salivary glands. Applying capsaicin increases salivary secretion in human and animal models. Capsaicin appears to increase salivation mainly by modulating the paracellular pathway in salivary glands. Capsaicin activates TRPV1, which modulates the permeability of tight junctions (TJ) by regulating the expression and function of putative intercellular adhesion molecules in an ERK (extracelluar signal-regulated kinase) -dependent manner. Capsaicin also improved dysfunction in transplanted salivary glands. Aside from the secretory effects of capsaicin, it has anti-inflammatory effects in salivary glands. The anti-inflammatory effect of capsaicin is, however, not mediated by TRPV1, but by inhibition of the NF-κB pathway. In conclusion, capsaicin might be a potential drug for alleviating dry mouth symptoms and inflammation of salivary glands.
Collapse
Affiliation(s)
- Yong-Hwan Shin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea.
| | - Jin Man Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea.
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea.
| |
Collapse
|
5
|
Buntinx L, Vermeersch S, de Hoon J. Development of anti-migraine therapeutics using the capsaicin-induced dermal blood flow model. Br J Clin Pharmacol 2015; 80:992-1000. [PMID: 26114340 DOI: 10.1111/bcp.12704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022] Open
Abstract
The efficacy of calcitonin gene-related peptide (receptor) (CGRP-(R)) blocking therapeutics in the treatment of acute migraine headache provided proof-of-concept for the involvement of CGRP in the pathophysiology of this disorder. One of the major hurdles for the development of any class of drugs, including CGRP blocking therapeutics, is the early clinical development process during which toxic and inefficacious compounds need to be eliminated as early as possible in order to focus on the most promising molecules. At this stage, human models providing proof of target engagement, combined with safety and tolerability studies, are extremely valuable in focusing on those therapeutics that have the highest engagement from the lowest exposure. They guide the go/no-go decision making, establish confidence in the candidate molecule by de-risking toxicity and safety issues and thereby speed up the early clinical development. In this review the focus is on the so called 'capsaicin model' as a typical example of a target engagement biomarker used as a human model for the development of CGRP blocking therapeutics. By applying capsaicin onto the skin, TRPV1 channels are activated and a CGRP-mediated increase in dermal blood flow can be quantified with laser Doppler perfusion imaging. Effective CGRP blocking therapeutics in turn, display blockade of this response. The translation of this biomarker model from animals to humans is discussed as well as the limitations of the assay in predicting the efficacy of anti-migraine drugs.
Collapse
Affiliation(s)
- Linde Buntinx
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steve Vermeersch
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jan de Hoon
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
6
|
Rudd JA, Nalivaiko E, Matsuki N, Wan C, Andrews PL. The involvement of TRPV1 in emesis and anti-emesis. Temperature (Austin) 2015; 2:258-76. [PMID: 27227028 PMCID: PMC4843889 DOI: 10.1080/23328940.2015.1043042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/29/2022] Open
Abstract
Diverse transmitter systems (e.g. acetylcholine, dopamine, endocannabinoids, endorphins, glutamate, histamine, 5-hydroxytryptamine, substance P) have been implicated in the pathways by which nausea and vomiting are induced and are targets for anti-emetic drugs (e.g. 5-hydroxytryptamine3 and tachykinin NK1 antagonists). The involvement of TRPV1 in emesis was discovered in the early 1990s and may have been overlooked previously as TRPV1 pharmacology was studied in rodents (mice, rats) lacking an emetic reflex. Acute subcutaneous administration of resiniferatoxin in the ferret, dog and Suncus murinus revealed that it had “broad–spectrum” anti-emetic effects against stimuli acting via both central (vestibular system, area postrema) and peripheral (abdominal vagal afferents) inputs. One of several hypotheses discussed here is that the anti-emetic effect is due to acute depletion of substance P (or another peptide) at a critical site (e.g. nucleus tractus solitarius) in the central emetic pathway. Studies in Suncus murinus revealed a potential for a long lasting (one month) effect against the chemotherapeutic agent cisplatin. Subsequent studies using telemetry in the conscious ferret compared the anti-emetic, hypothermic and hypertensive effects of resiniferatoxin (pungent) and olvanil (non-pungent) and showed that the anti-emetic effect was present (but reduced) with olvanil which although inducing hypothermia it did not have the marked hypertensive effects of resiniferatoxin. The review concludes by discussing general insights into emetic pathways and their pharmacology revealed by these relatively overlooked studies with TRPV1 activators (pungent an non-pungent; high and low lipophilicity) and antagonists and the potential clinical utility of agents targeted at the TRPV1 system.
Collapse
Key Words
- 12-HPETE, 12-hydroperoxy-eicosatetraenoic acid
- 5-HT, 5-hydroxytryptamine
- 5-HT3, 5-hdroxytryptamine3
- 8-OH-DPAT, (±)-8-Hydroxy-2-dipropylaminotetralin
- AM404
- AM404, N-arachidonoylaminophenol
- AMT, anandamide membrane transporter
- AP, area postrema
- BBB, blood brain barrier
- CB1, cannabinoid1
- CGRP, calcitonin gene-related peptide
- CINV, chemotherapy-induced nausea and vomiting
- CP 99,994
- CTA, conditioned taste aversion
- CVO's, circumventricular organs
- D2, dopamine2
- DRG, dorsal root ganglia
- FAAH, fatty acid amide hydrolase
- H1, histamine1
- LTB4, leukotriene B4
- NADA, N-arachidonoyl-dopamine
- NK1, neurokinin1
- POAH, preoptic anterior hypothalamus
- RTX
- Suncus murinus
- TRPV1
- TRPV1, transient receptor potential vanilloid receptor1
- anti-emetic
- capsaicin
- ferret
- i.v., intravenous
- nausea
- olvanil
- thermoregulation
- vanilloid
- vomiting
Collapse
Affiliation(s)
- John A Rudd
- Brain and Mind Institute; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR; School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy; University of Newcastle ; Callaghan, NSW, Australia
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo ; Tokyo, Japan
| | - Christina Wan
- School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong ; Shatin; New Territories, Hong Kong SAR
| | - Paul Lr Andrews
- Division of Biomedical Sciences; St George's University of London ; London, UK
| |
Collapse
|
7
|
Abstract
In recent years, natural products have emerged as modulators of many cellular responses, with potential applications as therapeutic drugs in many disorders. Among them, capsaicin, the pungent agent in chili peppers, has been demonstrated to have a role as a tumor suppressor for prostate cancer. Capsaicin potently suppresses the growth of human prostate carcinoma cells in vitro and in vivo. The antiproliferative activity of capsaicin correlates with oxidative stress induction and apoptosis. Capsaicin also induces ceramide accumulation and endoplasmic reticulum stress in androgen-resistant prostate cells. In androgen-sensitive prostate cancer cells, capsaicin exerts a biphasic effect, promoting growth at low doses and inducing apoptosis at doses over 200 µM. This article will draw upon multiple lines of evidence to provide a comprehensive description on the current state of knowledge that implicates the effect of capsaicin on prostate cancer cells.
Collapse
Affiliation(s)
- Inés Díaz-Laviada
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Alcala, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
8
|
Abstract
Capsaicin dermal patch is an adhesive patch containing a high concentration (8% w/w) of synthetic capsaicin. It is indicated in the EU for the treatment of peripheral neuropathic pain in non-diabetic adults using a single 30- or 60-minute application repeated every 90 days, as required, and in the US for the treatment of neuropathic pain associated with postherpetic neuralgia (PHN). In pivotal, randomized, double-blind, multicentre trials in adults with PHN, a single 60-minute application of capsaicin dermal patch reduced the mean Numeric Pain Rating Scale (NPRS) scores from baseline to a significantly greater extent than a low-concentration (0.04% w/w capsaicin) control patch during weeks 2-8. In randomized, double-blind, multicentre trials in patients with HIV-associated neuropathy, capsaicin dermal patch reduced the mean NPRS scores from baseline significantly more than control in one study for the 30- and 90-minute, but not the 60-minute, application during weeks 2-12. In another study, the differences between capsaicin (30- and 60-minute applications) and control did not reach statistical significance. An integrated analysis of both studies showed that the 30-minute application of capsaicin dermal patch was significantly better than control for the reduction from baseline in mean NPRS scores during weeks 2-12. The efficacy of capsaicin dermal patch was maintained for up to 1 year in extension studies in which patients could receive up to three or four repeat treatments. Capsaicin dermal patch was generally well tolerated in clinical trials. The most common adverse events were transient, mostly mild to moderate, application-site reactions.
Collapse
|
9
|
Messeguer A, Planells-Cases R, Ferrer-Montiel A. Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 2010; 4:1-15. [PMID: 18615132 DOI: 10.2174/157015906775202995] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The identification and cloning of the vanilloid receptor 1 (TRPV1) represented a significant step for the understanding of the molecular mechanisms underlying the transduction of noxious chemical and thermal stimuli by peripheral nociceptors. TRPV1 is a non-selective cation channel gated by noxious heat, vanilloids and extracellular protons. TRPV1 channel activity is remarkably potentiated by pro-inflammatory agents, a phenomenon that is thought to underlie the peripheral sensitisation of nociceptors that leads to thermal hyperalgesia. Cumulative evidence is building a strong case for the involvement of this receptor in the etiology of both peripheral and visceral inflammatory pain, such as inflammatory bowel disease, bladder inflammation and cancer pain. The validation of TRPV1 receptor as a key therapeutic target for pain management has thrust intensive drug discovery programs aimed at developing orally active antagonists of the receptor protein. Nonetheless, the real challenge of these drug discovery platforms is to develop antagonists that preserve the physiological activity of TRPV1 receptors while correcting over-active channels. This is a condition to ensure normal pro-prioceptive and nociceptive responses that represent a safety mechanism to prevent tissue injury. Recent and exciting advances in the function, dysfunction and modulation of this receptor will be the focus of this review.
Collapse
Affiliation(s)
- Angel Messeguer
- Department of Biological Organic Chemistry, IIQAB-CSIC, J. Girona 23, 080034 Barcelona, Spain
| | | | | |
Collapse
|
10
|
Chu KM, Ngan MP, Wai MK, Yeung CK, Andrews PLR, Percie du Sert N, Rudd JA. Olvanil: a non-pungent TRPV1 activator has anti-emetic properties in the ferret. Neuropharmacology 2009; 58:383-91. [PMID: 19825380 DOI: 10.1016/j.neuropharm.2009.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 01/31/2023]
Abstract
Anti-emetic drugs such as the tachykinin NK(1) receptor antagonists are useful to control emesis induced by diverse challenges. Evidence suggests pungent capsaicin-like TRPV1 activators also have broad inhibitory anti-emetic activity. However, pungent compounds are associated with undesirable effects including adverse actions on the cardiovascular system and on temperature homeostasis. In the present investigations using the ferret, we examine if the non-pungent vanilloid, olvanil, has useful anti-emetic properties without adversely affecting behaviour, blood pressure or temperature control. Olvanil (0.05-5 mg/kg, s.c.) was compared to the pungent vanilloid, resiniferatoxin (RTX; 0.1 mg/kg, s.c.), and to the anandamide reuptake inhibitor, AM404 (10 mg/kg, s.c.), for a potential to inhibit emesis induced by apomorphine (0.25 mg/kg, s.c.), copper sulphate (50 mg/kg, intragastric), and cisplatin (10 mg/kg, i.p.). Changes in blood pressure and temperature were also recorded using radiotelemetry implants. In peripheral administration studies, RTX caused transient hypertension, hypothermia and reduced food and water intake, but also significantly inhibited emesis induced by apomorphine, copper sulphate, or cisplatin. Olvanil did not have a similar adverse profile, and antagonised apomorphine- and cisplatin-induced emesis but not that induced by copper sulphate. AM404 reduced only emesis induced by cisplatin without affecting other parameters measured. Following intracerebral administration only olvanil antagonised cisplatin-induced emesis, but this was associated with transient hypothermia. In conclusion, olvanil demonstrated clear anti-emetic activity in the absence of overt cardiovascular, homeostatic, or behavioural effects associated with the pungent vanilloid, RTX. Our studies indicate that non-pungent vanilloids may have a useful spectrum of anti-emetic properties via central and/or peripheral mechanisms after peripheral administration.
Collapse
Affiliation(s)
- Kit-Man Chu
- Emesis Research Group, Brain-Gut Laboratory, Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Carley DW, Radulovacki M. Pharmacology of vagal afferent influences on disordered breathing during sleep. Respir Physiol Neurobiol 2009; 164:197-203. [PMID: 18694851 DOI: 10.1016/j.resp.2008.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/27/2008] [Accepted: 06/29/2008] [Indexed: 10/21/2022]
Abstract
Sleep-related breathing disorders (SRBD) are a significant public health concern, with a prevalence in the US general population of approximately 2% of women and approximately 4% of men. Although significant strides have been made in our understanding of these disorders with respect to epidemiology, risk factors, pathogenesis and consequences, work to understand these factors in terms of the underlying cellular, molecular and neuromodulatory processes remains in its infancy. Current primary treatments are surgical or mechanical, with no drug treatments available. Basic investigations into the neurochemistry and neuropharmacology of sleep-related changes in respiratory pattern generation and modulation will be essential to clarify the pathogenic processes underlying SRBD and to identify rational and specific pharmacotherapeutic opportunities. Here we summarize emerging work suggesting the importance of vagal afferent feedback systems in sleep-related respiratory pattern disturbances and pointing toward a rich but complex array of neurochemical and neuromodulatory processes that may be involved.
Collapse
Affiliation(s)
- David W Carley
- Center for Narcolepsy, Sleep and Health Research, University of Illinois, Chicago, IL 60612, USA.
| | | |
Collapse
|
12
|
Székely JI, Pataki A. Recent findings on the pathogenesis of bronchial asthma. Part I. Asthma as a neurohumoral disorder, a pathological vago-vagal axon reflex. ACTA ACUST UNITED AC 2009; 96:1-17. [PMID: 19264038 DOI: 10.1556/aphysiol.96.2009.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The novel data on the pathogenesis of asthma are summarized in this three-part review. Its immunological background is well established but it is more than an immunological disorder. Multiple lines indicate that both peripheral and central neural mechanisms are also involved in the pathogenesis of asthma. In the present first part of the review asthma is described as vago-vagal axon reflex brought about by multiple positive feed-back mechanisms, receptor upregulation, wind-up, phenotypic switch and formation of a pathological conditioned reflex. In the coming second part the main dispositional (mostly hormonal) and external contributing factors are reviewed, while the third part deals with the role of inheritance, i.e., with gene alleles leading to enhanced production of mediators of asthma.
Collapse
Affiliation(s)
- J I Székely
- Department of Human Physiology, Medical School, Semmelweis University, Ulloi út 78/a, H-1085 Budapest, Hungary.
| | | |
Collapse
|
13
|
Ianowski JP, Choi JY, Wine JJ, Hanrahan JW. Substance P stimulates CFTR-dependent fluid secretion by mouse tracheal submucosal glands. Pflugers Arch 2008; 457:529-37. [DOI: 10.1007/s00424-008-0527-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 05/07/2008] [Indexed: 11/24/2022]
|
14
|
Abstract
Pain serves as a warning of impending injury, triggering appropriate protective responses. Emotional and cognitive processing in the brain is involved in the sensation of pain. As Ca(2+) waves in keratinocytes are mediated by the release of extracellular molecules such as signaling molecules, this may also affect the activity of surrounding cells such as sensory neurons. Although no junctions have been found between keratinocytes and sensory termini, ultrastructural studies have shown that keratinocytes come into contact with dorsal root ganglion neurons through membrane-membrane apposition. There is also indirect evidence that keratinocytes communicate with sensory neurons via extracellular molecules. Sensory neurons themselves sense various external stimuli, but there may also be skin-derived regulatory mechanisms by which sensory signaling is modulated.First, we will give a general outline of the subject: 1) Progress in identifying cortical loci that process pain messages is needed. 2) Far greater advances have been made in understanding the molecular mechanisms whereby primary sensory neurons detect pain-producing stimuli. 3) Genetic studies have facilitated the identification and functional characterization of molecules. 4) Now, the relationship between sensory and ion channels has become clear.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Physiology, Tokyo Dental College, Mihama-ku, Chiba, Japan
| |
Collapse
|
15
|
Takano F, Yamaguchi M, Takada S, Shoda S, Yahagi N, Takahashi T, Ohta T. Capsicum ethanol extracts and capsaicin enhance interleukin-2 and interferon-gamma production in cultured murine Peyer's patch cells ex vivo. Life Sci 2007; 80:1553-63. [PMID: 17306834 DOI: 10.1016/j.lfs.2007.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 12/25/2006] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
We investigated the effects of red pepper (Capsicum annuum Lin.) extracts (capsicum extract) and its main pungent capsaicin on T helper 1 (Th1) and 2 (Th2) cytokine production in cultured murine Peyer's patch (PP) cells in vitro and ex vivo. Direct administration of capsicum extract (1 and 10 mug/ml) and capsaicin (3 and 30 muM) resulted in suppression of interleukin (IL)-2, interferon (IFN)-gamma, IL-4 and IL-5 production. In an ex vivo experiment using PP cells removed from the mice after oral administration of capsicum extract (10 mg/kg/day for 4 consecutive days), IL-2, IFN-gamma and IL-5 increased in response to concanavalin A (Con A). Oral administration of 3 mg/kg/day capsaicin, one active constituent of the extract, also enhanced IL-2, INF-gamma and IL-4 production in response to Con A stimulation but did not influence the production of IL-5. Orally administered capsazepine (3 mg/kg/day), a selective transient receptor potential vanilloid 1 (TRPV1) antagonist, slightly enhanced IL-2 production also irrespective of Con A stimulation. The capsaicin-induced enhancement of both IL-2 and IFN-gamma production was not reduced by oral administration of capsazepine (3 mg/kg/day), suggesting a TRPV1 receptor-independent mechanism. Flow cytometric analysis revealed that the population of CD3(+) cells in the PP cells was significantly reduced while CD19(+) cells increased after oral administration of capsicum extract (1 and 10 mg/kg/day) and capsaicin (0.3 and 3 mg/kg/day). Capsazepine (3 mg/kg/day) weakly but significantly reversed these effects. Orally administered capsicum extract and capsaicin did not change the T cell subset (CD4(+) and CD8(+)), Th1 (IFN-gamma(+)) and T2 (IL-4(+)) ratio. These findings indicate that capsicum extract and capsaicin modulate T cell-immune responses, and their immunomodulatory effects on murine PP cells are partly due to both TRPV1-dependent and -independent pathway.
Collapse
Affiliation(s)
- Fumihide Takano
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ianowski JP, Choi JY, Wine JJ, Hanrahan JW. Mucus secretion by single tracheal submucosal glands from normal and cystic fibrosis transmembrane conductance regulator knockout mice. J Physiol 2007; 580:301-14. [PMID: 17204498 PMCID: PMC2075436 DOI: 10.1113/jphysiol.2006.123653] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Submucosal glands line the cartilaginous airways and produce most of the antimicrobial mucus that keeps the airways sterile. The glands are defective in cystic fibrosis (CF), but how this impacts airway health remains uncertain. Although most CF mouse strains exhibit mild airway defects, those with the C57Bl/6 genetic background have increased airway pathology and susceptibility to Pseudomonas. Thus, they offer the possibility of studying whether, and if so how, abnormal submucosal gland function contributes to CF airway disease. We used optical methods to study fluid secretion by individual glands in tracheas from normal, wild-type (WT) mice and from cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice (Cftr(m1UNC)/Cftr(m1UNC); CF mice). Glands from WT mice qualitatively resembled those in humans by responding to carbachol and vasoactive intestinal peptide (VIP), although the relative rates of VIP- and forskolin-stimulated secretion were much lower in mice than in large mammals. The pharmacology of mouse gland secretion was also similar to that in humans; adding bumetanide or replacement of HCO(3)(-) by Hepes reduced the carbachol response by approximately 50%, and this inhibition increased to 80% when both manoeuvres were performed simultaneously. It is important to note that glands from CFTR knockout mice responded to carbachol but did not secrete when exposed to VIP or forskolin, as has been shown previously for glands from CF patients. Tracheal glands from WT and CF mice both had robust secretory responses to electrical field stimulation that were blocked by tetrodotoxin. It is interesting that local irritation of the mucosa using chili pepper oil elicited secretion from WT glands but did not stimulate glands from CF mice. These results clarify the mechanisms of murine submucosal gland secretion and reveal a novel defect in local regulation of glands lacking CFTR which may also compromise airway defence in CF patients.
Collapse
Affiliation(s)
- Juan P Ianowski
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6.
| | | | | | | |
Collapse
|
17
|
Tsunezuka Y, Oda M, Moriyama H. [A case of a second cancer of metachronous multiple primary non-small cell lung cancer successfully treated with TS-1 and CDDP chemotherapy]. Gan To Kagaku Ryoho 2006; 33:651-3. [PMID: 16685165 DOI: 10.2217/14750708.3.5.651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The patient was a 66-year-old man who had undergone right upper lobectomy and ND 2a systematic lymph node dissection for lung cancer (M/D adenocarcinoma, p-stage IB) in March of 1999 . On November 2003, postoperative routine chest computed tomography(CT) demonstrated a mass in left S6, and pathological diagnosis revealed P/D squamous cell carcinoma (cT1N2M0, stage IIIA) by CT-guided needle biopsy and mediastinoscopy. At first, we tried two courses of a combination chemotherapy consisting of carboplatin (CBDCA) and paclitaxel every 3 weeks. After 2 courses, the regimen was stopped because of grade 3 arthritis. Then, two courses of CBDCA and gemcitabine were performed. The evaluation of the response was SD by the guidelines of Response Evaluation Criteria in Solid Tumor Groups. Next, gefitinib was orally administered for 6 months but the tumor and mediastinal lymph nodes were growing. In January 2005, oral administration of TS-1 (60 mg/1, 2 courses, 75 mg/3-6 courses) was begun twice a day for 21 consecutive days while cisplatin (60 mg/m(2)) was administered intravenously on day 8. The response was PR (the tumor decreased by 46%), no serious adverse effect was observed, and the patient maintained good quality of life throughout the chemotherapy. This case suggests that TS-1+CDDP chemotherapy may be an effective treatment in patients with advanced lung cancer even after many protocols of chemotherapy.
Collapse
Affiliation(s)
- Yoshio Tsunezuka
- Dept. of General Thoracic Surgery, Ishikawa Prefectural Central Hospital
| | | | | |
Collapse
|
18
|
Kanai A, de Groat W, Birder L, Chai T, Hultgren S, Fowler C, Fry C. Symposium Report on Urothelial Dysfunction: Pathophysiology and Novel Therapies. J Urol 2006; 175:1624-9. [PMID: 16600715 DOI: 10.1016/s0022-5347(05)00977-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Indexed: 02/06/2023]
Abstract
PURPOSE The basic premise of this symposium (Workshop 7) at the 2004 International Continence Society meeting in Paris was to elucidate different mechanisms of urothelial cell pathology, explore their impact on bladder function and discuss novel therapeutic interventions. RESULTS The topics included 1) urothelial structure and function, 2) the role of adenosine triphosphate in urothelial signaling and cystitis, 3) lamina propria myofibroblasts and purinergic receptors, 4) antiproliferative factor involvement in interstitial cystitis, 5) the urothelium as a reservoir for bacterial infections, 6) radiation cystitis, nitric oxide and gene therapy, and 7) intravesical treatments. DISCUSSION It was agreed that the urothelium can no longer be regarded merely as a passive barrier separating urine from the underlying tissues. The epithelial cells of the urothelium form part of an integrated network that also includes afferent and possibly efferent nerves, and suburothelial myofibroblasts. It has a central role in several functions, including bladder wall sensation, local blood flow modulation, pathogen removal and active barrier provision. These functions are achieved through several autocrine and paracrine pathways that involve transmitter release from the urothelium and its ability to integrate incoming signals through its battery of membrane receptors. Several pathological processes were discussed using this knowledge, including the role of small glycoproteins released during interstitial cystitis, the molecular basis of radiation induced urothelial damage, the origin of recurrent urinary tract infections and the mode of action of potential intravesical treatments for overactive bladder. CONCLUSIONS Overall it was concluded that the urothelium has a key role in regulating lower urinary tract physiology and pathology.
Collapse
Affiliation(s)
- A Kanai
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Márquez N, De Petrocellis L, Caballero FJ, Macho A, Schiano-Moriello A, Minassi A, Appendino G, Muñoz E, Di Marzo V. Iodinated N-acylvanillamines: potential "multiple-target" anti-inflammatory agents acting via the inhibition of t-cell activation and antagonism at vanilloid TRPV1 channels. Mol Pharmacol 2006; 69:1373-82. [PMID: 16394182 DOI: 10.1124/mol.105.019786] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synthetic N-acylvanillamines were designed and developed as metabolically stable compounds with pharmacological potential in analgesia and inflammation because of their interaction with cannabinoid receptors and the vanilloid receptor (TRPV1). Here, we show that arvanil inhibits early events in T-cell receptor (TCR)-mediated T-cell activation, such as calcium mobilization and nuclear factor of activated T-cell activation, and in late events in TCR-mediated activation, such as interleukin (IL)-2 gene transcription, IL-2R expression, and cell-cycle progression. Arvanil also prevents tumor necrosis factor-alpha-induced nuclear factor-kappaB (NF-kappaB) activation by direct inhibition of IkappaBalpha degradation, NF-kappaB binding to DNA, and NF-kappaB-dependent transcription. Aromatic iodination meta to the phenolic hydroxyl (on the 6'-carbon atom) converts arvanil and olvanil from TRPV1 agonists into antagonists. However, this structural modification did not affect the immunosuppressive and proapoptotic activity of these compounds. In summary, we described here novel activities of arvanil on T-cell functions and the development of two novel inhibitors of neurogenic inflammation (6'-I-olvanil and 6'-I-arvanil) endowed with a unique combination of TRPV1 antagonistic-, immunosuppressive-, and NF-kappaB-inhibitory properties. Our findings provide new mechanistic insights into the biological activities of N-alkylvanillamines and should foster the synthesis of improved analogs amenable to pharmaceutical development as analgesic and anti-inflammatory agents.
Collapse
Affiliation(s)
- Nieves Márquez
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Medicina, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The specific pathway of "pure," histaminergic itch is traced from the mechano-insensitive nerve fibers in the skin to their central cortical projections. Neuropathic itch created at different levels of this anatomical pathway is reviewed. In this review the present author discusses damage to pruritoceptors in the skin, entrapment syndromes, damage to spinal ganglia, nerve root impingement, injury of the spinal cord, and cerebral damage in the distribution of the middle cerebral artery, capsula interna, or thalamus. Itch in inflamed skin resulting from interactions between nerve transmitters and other mediators of inflammation is described.
Collapse
Affiliation(s)
- Joanna Wallengren
- Department of Dermatology, Clinical Sciences, University Hospital, Lund, Sweden.
| |
Collapse
|
21
|
Birder LA. Role of the urothelium in urinary bladder dysfunction following spinal cord injury. PROGRESS IN BRAIN RESEARCH 2006; 152:135-46. [PMID: 16198698 DOI: 10.1016/s0079-6123(05)52009-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A consequence of spinal cord injury is a change in bladder reflex pathways resulting in the emergence of detrusor hyperreflexia and increased activity of the urethral sphincter. A basis for some of these alterations could be changes in the environment of bladder sensory nerve endings at the target organ. Recent evidence suggests that the urothelium (the lining of the urinary bladder) plays a prominent role in modulating bladder sensory nerve ending excitability. It is conceivable that factors and processes affecting the plasticity of bladder neurons after spinal cord injury may be partly due to changes occurring in the urothelium. Although the urothelium has classically been thought of as a passive barrier to ions/solutes, a number of novel properties have been recently attributed to these cells. Our work and that of others clearly demonstrates that the urothelium exhibits both "sensor" (expression of sensor molecules or response to thermal, mechanical and chemical stimuli) as well as "transducer" (release of factors/transmitters) properties. Taken together, these and other findings discussed in this chapter suggest a sensory function for the urothelium and that alterations in urothelial properties may contribute to afferent abnormalities following spinal cord injury.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
22
|
Sato J, Segami N, Yoshitake Y, Kaneyama K, Abe A, Yoshimura H, Fujimura K. Expression of capsaicin receptor TRPV-1 in synovial tissues of patients with symptomatic internal derangement of the temporomandibular joint and joint pain. ACTA ACUST UNITED AC 2005; 100:674-81. [PMID: 16301147 DOI: 10.1016/j.tripleo.2005.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 02/12/2005] [Accepted: 03/17/2005] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To elucidate expression of capsaicin receptor TRPV-1 in synovial tissues of the human temporomandibular joint (TMJ) with internal derangement and discuss its relationship with joint pain. STUDY DESIGN Fifty-four TMJs in 54 patients were examined using an immunohistochemical technique. As controls, 10 TMJs with habitual dislocation without pain were also examined. RESULTS TRPV-1 was expressed mainly in the blood vessels beneath the lining cells in synovial tissues from 31 of the 54 joints with internal derangement and from 8 of the 10 control joints. The extent score of TRPV-1-stained cells with internal derangement was not significantly higher than that of controls. The extent score of TRPV-1 showed no correlation with joint pain. CONCLUSIONS TRPV-1 was detected in the region of the posterior disk attachment of synovial tissues from the TMJ in patients with internal derangement and controls. TRPV-1 may play a role in maintenance of the physiologic condition of the TMJ.
Collapse
Affiliation(s)
- Jun Sato
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Pall ML, Anderson JH. The vanilloid receptor as a putative target of diverse chemicals in multiple chemical sensitivity. ACTA ACUST UNITED AC 2005; 59:363-75. [PMID: 16241041 DOI: 10.3200/aeoh.59.7.363-375] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The vanilloid receptor (TRPV1 or VR1), widely distributed in the central and peripheral nervous system, is activated by a broad range of chemicals similar to those implicated in Multiple Chemical Sensitivity (MCS) Syndrome. The vanilloid receptor is reportedly hyperresponsive in MCS and can increase nitric oxide levels and stimulate N-methyl-D-aspartate (NMDA) receptor activity, both of which are important features in the previously proposed central role of nitric oxide and NMDA receptors in MCS. Vanilloid receptor activity is markedly altered by multiple mechanisms, possibly providing an explanation for the increased activity in MCS and symptom masking by previous chemical exposure. Activation of this receptor by certain mycotoxins may account for some cases of sick building syndrome, a frequent precursor of MCS. Twelve types of evidence implicate the vanilloid receptor as the major target of chemicals, including volatile organic solvents (but not pesticides) in MCS.
Collapse
Affiliation(s)
- Martin L Pall
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234, USA.
| | | |
Collapse
|
24
|
Birder LA. More than just a barrier: urothelium as a drug target for urinary bladder pain. Am J Physiol Renal Physiol 2005; 289:F489-95. [PMID: 16093424 DOI: 10.1152/ajprenal.00467.2004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the urinary bladder urothelium has classically been thought of as a passive barrier to ions/solutes, a number of novel properties have been recently attributed to these cells. Studies have revealed that the urothelium is involved in sensory mechanisms (i.e., ability to express a number of sensor molecules or respond to thermal, mechanical, and chemical stimuli) and can release chemical mediators. Localization of afferent nerves next to the urothelium suggests these cells may be targets for transmitters released from bladder nerves or that chemicals released by urothelial cells may alter afferent excitability. Taken together, these and other findings highlighted in this review suggest a sensory function for the urothelium. Elucidation of mechanisms impacting on urothelial function may provide insights into the pathology of bladder dysfunction.
Collapse
Affiliation(s)
- Lori A Birder
- Univ. of Pittsburgh School of Medicine, Dept. of Medicine, A 1207 Scaife Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
25
|
Cruz CD, Avelino A, McMahon SB, Cruz F. Increased spinal cord phosphorylation of extracellular signal-regulated kinases mediates micturition overactivity in rats with chronic bladder inflammation. Eur J Neurosci 2005; 21:773-81. [PMID: 15733095 DOI: 10.1111/j.1460-9568.2005.03893.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal processing of somatosensory and viscerosensory information is greatly facilitated in some persistent pain states. Growing evidence suggests that the so-called central sensitization depends in part on intracellular activation and signalling via specific MAP kinases. Here we studied the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (phosphoERK), the active form of these kinases, in spinal neurons following innocuous and noxious distension of non-inflamed and cyclophosphamide (CYP)-inflamed rat urinary bladders. Additionally, we investigated the nature of bladder primary afferents responsible for spinal ERK activation. Finally, we used a specific inhibitor of ERK phosphorylation to study the influence of these kinases on the bladder reflex activity of normal and inflamed bladders. Results indicated that, in non-inflamed rats, noxious but not innocuous bladder distension significantly increased spinal phosphoERK immunoreactivity from its normal very low level. However, in CYP-inflamed rats, innocuous and noxious bladder distension significantly increased the number of spinal neurons immunoreactive to phosphoERK. ERK activation was rapid (within minutes) and transient. Desensitization of vanilloid-sensitive afferents by intravesical resiniferatoxin, a capsaicin analogue, did not decrease phosphoERK immunoreactivity in normal or CYP-inflamed rats. ERK inhibition by intrathecal PD 98059 had no effect on bladder reflex contractions of non-inflamed bladders but significantly decreased its frequency in inflamed animals. Our results suggest that spinal ERK intervene in acute and chronic inflammatory pain perception and mediate bladder reflex overactivity accompanying chronic bladder inflammation. In addition, bladder noxious input conveyed in vanilloid-resistant primary afferents is important to spinal ERK phosphorylation in both noninflamed and CYP-inflamed animals.
Collapse
Affiliation(s)
- Célia D Cruz
- Institute of Histology and Embryology, Faculty of Medicine of Porto and IBMC, Alameda Hernâni Monteiro, Portugal.
| | | | | | | |
Collapse
|
26
|
Appendino G, Daddario N, Minassi A, Moriello AS, De Petrocellis L, Di Marzo V. The Taming of Capsaicin. Reversal of the Vanilloid Activity of N-Acylvanillamines by Aromatic Iodination. J Med Chem 2005; 48:4663-9. [PMID: 16000002 DOI: 10.1021/jm050139q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic iodination ortho to the phenolic hydroxyl reverts the activity of the ultrapotent vanilloid agonist resiniferatoxin (RTX, 1a), generating the ultrapotent antagonist 5'-iodoRTX (1b). To better understand the role of iodine in this remarkable switch of activity, a systematic investigation on the halogenation of vanillamides, a class of compounds structurally simpler than resiniferonoids, was carried out. The results showed that (a) the antagonistic activity depends on the site of halogenation and is maximal at C-6', (b) iodine is more efficient than chlorine and bromine at reverting the agonistic activity, and (c) iodine-carbon exchange decreases antagonist activity. Iodine-induced reversal of vanilloid activity was also observed in vanillamides more powerful than capsaicin, but a poor correlation was found between agonistic and antagonistic potencies, suggesting that differences exist in the way vanillamides and their 6'-iodo derivatives bind to TRPV1.' '
Collapse
Affiliation(s)
- Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Novara, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Cancer pain is one of the most frequent symptoms in malignant disease, severely impairing the patients' quality of life. The recommendations of the World Health Organization will provide adequate pain relief for the vast majority of cancer patients. However, some patients will suffer from inadequate analgesia or intolerable side effects. Cyclooxygenase-2 (COX-2)-selective non-steroidal anti-inflammatory drugs (NSAIDs), new anticonvulsants, cannabinoids and NMDA receptor antagonists are being developed for these patients. NSAIDs with nitric oxide-releasing moieties are an interesting addition, as this new class of analgesics combines improved analgesic efficacy with higher tolerability. Conotoxins and other drugs such as nicotinic acetylcholinergic receptor agonists will be advantageous only for a few patients in the near future, as side-effect profile and risk of complications, as well as the burden on the patient, often are not worth the additional analgesic benefit.
Collapse
Affiliation(s)
- Lukas Radbruch
- University of Aachen, Department of Palliative Medicine, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | |
Collapse
|
28
|
Abstract
Mammalian transient receptor potential (TRP) channels consist of six related protein sub-families that are involved in a variety of pathophysiological function, and disease development. The TRPV1 channel, a member of the TRPV sub-family, is identified by expression cloning using the "hot" pepper-derived vanilloid compound capsaicin as a ligand. Therefore, TRPV1 is also referred as the vanilloid receptor (VR1) or the capsaicin receptor. VR1 is mainly expressed in a subpopulation of primary afferent neurons that project to cardiovascular and renal tissues. These capsaicin-sensitive primary afferent neurons are not only involved in the perception of somatic and visceral pain, but also have a "sensory-effector" function. Regarding the latter, these neurons release stored neuropeptides through a calcium-dependent mechanism via the binding of capsaicin to VR1. The most studied sensory neuropeptides are calcitonin gene-related peptide (CGRP) and substance P (SP), which are potent vasodilators and natriuretic/diuretic factors. Recent evidence using the model of neonatal degeneration of capsaicin-sensitive sensory nerves revealed novel mechanisms that underlie increased salt sensitivity and several experimental models of hypertension. These mechanisms include insufficient suppression of plasma renin activity and plasma aldosterone levels subsequent to salt loading, enhancement of sympathoexcitatory response in the face of a salt challenge, activation of the endothelin-1 receptor, and impaired natriuretic response to salt loading in capsaicin-pretreated rats. These data indicate that sensory nerves counterbalance the prohypertensive effects of several neurohormonal systems to maintain normal blood pressure when challenged with salt loading. The therapeutic utilities of vanilloid compounds, endogenous agonists, and sensory neuropeptides are also discussed.
Collapse
Affiliation(s)
- Donna H Wang
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48825, USA.
| |
Collapse
|
29
|
Lee J, Kim SY, Park S, Lim JO, Kim JM, Kang M, Lee J, Kang SU, Choi HK, Jin MK, Welter JD, Szabo T, Tran R, Pearce LV, Toth A, Blumberg PM. Structure-activity relationships of simplified resiniferatoxin analogues with potent VR1 agonism elucidates an active conformation of RTX for VR1 binding. Bioorg Med Chem 2004; 12:1055-69. [PMID: 14980619 DOI: 10.1016/j.bmc.2003.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
We previously described a series of N-(3-acyloxy-2-benzylpropyl) homovanillate and N'-(4-hydroxy-3-methoxybenzyl) thiourea derivatives that were potent VR1 agonists with high-affinities and excellent analgesic profiles. The design of these simplified RTX analogues was based on our RTX-derived pharmacophore model which incorporates the 4-hydroxy-3-methoxyphenyl (A-region), C(20)-ester (B-region), orthophenyl (C1-region) and C(3)-keto (C2-region) groups of RTX. For the purpose of optimizing the spatial arrangement of the four principal pharmacophores on the lead agonists (1-4), we have modified the distances in the parent C-region, 3-acyloxy-2-benzylpropyl groups, by lengthening or shortening one carbon to vary the distances between the pharmacophores. We find that two of the amides, 4 and 19, possess EC(50) values <1 nM for induction of calcium influx in the VR1-CHO cells. As observed previously, the structure-activity relations for inhibition of RTX binding to VR1 and for induction of calcium uptake were distinct, presumably reflecting both intrinsic and methodological factors. In order to find the active conformation of VR1 ligands, the energy-minimized conformations of seven selected agonists were determined and the positions of their four pharmacophores were matched with those of five low energy RTX conformations. The rms values for the overlaps in the pharmacophores were calculated and correlated with the measured binding affinities (K(i)) and calcium influx (EC(50)) values. The binding affinities of the agonists correlated best with the RMS values derived from RTX conformation E (r(2)=0.92), predicting a model of the active conformation of RTX and related vanilloids for binding to VR1. Poorer correlation was obtained between any of the conformations and the EC(50) values for calcium influx.
Collapse
Affiliation(s)
- Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This review summarizes the receptor-mediated vascular activities of calcitonin gene-related peptide (CGRP) and the structurally related peptide adrenomedullin (AM). CGRP is a 37-amino acid neuropeptide, primarily released from sensory nerves, whilst AM is produced by stimulated vascular cells, and amylin is secreted from the pancreas. They share vasodilator activity, albeit to varying extents depending on species and tissue. In particular, CGRP has potent activity in the cerebral circulation, which is possibly relevant to the pathology of migraine, whilst vascular sources of AM contribute to dysfunction in cardiovascular disease. Both peptides exhibit potent activity in microvascular beds. All three peptides can act on a family of CGRP receptors that consist of calcitonin receptor-like receptor (CL) linked to one of three receptor activity-modifying proteins (RAMPs) that are essential for functional activity. The association of CL with RAMP1 produces a CGRP receptor, with RAMP2 an AM receptor and with RAMP3 a CGRP/AM receptor. Evidence for the selective activity of the first nonpeptide CGRP antagonist BIBN4096BS for the CGRP receptor is presented. The cardiovascular activity of these peptides in a range of species and in human clinical conditions is detailed, and potential therapeutic applications based on use of antagonists and gene targeting of agonists are discussed.
Collapse
Affiliation(s)
- Susan D Brain
- Centre for Cardiovascular Biology and Medicine, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
31
|
Abstract
Persistent non-malignant pain is common, often neglected and under-treated among older persons. Some older adults do not complain because they consider chronic pain to be a characteristic of normal aging. Physicians have concerns regarding adverse effects of pharmacological treatment. The model of the World Health Organization for treatment of cancer pain is generally accepted and also recommended for persistent non-cancer pain. Furthermore, non-pharmacological treatment should complement drug treatment whenever possible. An initial assessment and possible treatment of underlying causes of pain are pertinent. Modern pharmacological pain management is based on non-opioid and opioid analgesics. NSAIDs are among the most widely prescribed class of drugs in the world. The new cyclo-oxygenase-2 inhibitors such as celecoxib and rofecoxib offer an alternative for the treatment of mild-to-moderate pain in patients with a history of gastric ulcers or bleeding. Paracetamol (acetaminophen) is being used widely for the management of mild pain across all age groups as it has moderate adverse effects at therapeutic dosages. For moderate pain, a combination of non-opioid analgesics and opioid analgesics with moderate pain relief properties (e.g. oxycodone, codeine, tramadol and tilidine/naloxone) is recommended. For severe pain, a combination of non-opioid analgesics and opioid analgesics with strong pain relief properties (e.g. morphine, codeine) is recommended. The least toxic means of achieving systemic pain relief should be used. For continuous pain, sustained-release analgesic preparations are recommended. Drugs should be given on a fixed time schedule, and possible adverse effects and interactions should be carefully monitored. Adjuvant drugs, such as antidepressants or anticonvulsants, can be very effective especially in the treatment of certain types of pain, such as in diabetic neuropathy. Effective pain management should result in decreased pain, increased function and improvement in mood and sleep.
Collapse
|
32
|
Affiliation(s)
- Dong Eon Moon
- Department of Anesthesiology and Pain medicine, College of Medicine, The Catholic University of Korea, Korea
| |
Collapse
|
33
|
Sancho R, de la Vega L, Appendino G, Di Marzo V, Macho A, Muñoz E. The CB1/VR1 agonist arvanil induces apoptosis through an FADD/caspase-8-dependent pathway. Br J Pharmacol 2003; 140:1035-44. [PMID: 14530215 PMCID: PMC1574119 DOI: 10.1038/sj.bjp.0705532] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. Arvanil (N-arachidonoylvanillamine), a nonpungent capsaicin-anandamide hybrid molecule, has been shown to exert biological activities through VR1/CB1-dependent and -independent pathways. We have found that arvanil induces dose-dependent apoptosis in the lymphoid Jurkat T-cell line, but not in peripheral blood T lymphocytes. Apoptosis was assessed by DNA fragmentation through cell cycle and TUNEL analyses. 2. Arvanil-induced apoptosis was initiated independently of any specific phase of the cell cycle, and it was inhibited by specific caspase-8 and -3 inhibitors and by the activation of protein kinase C. In addition, kinetic analysis by Western blots and fluorimetry showed that arvanil rapidly activates caspase-8, -7 and -3, and induces PARP cleavage. 3. The arvanil-mediated apoptotic response was greatly inhibited in the Jurkat-FADDDN cell line, which constitutively expresses a negative dominant form of the adapter molecule Fas-associated death domain (FADD). This cell line does not undergo apoptosis in response to Fas (CD95) stimulation. 4. Using a cytofluorimetric approach, we have found that arvanil induced the production of reactive oxygen species (ROS) in both Jurkat-FADD+ and Jurkat-FADDDN cell lines. However, ROS accumulation only plays a residual role in arvanil-induced apoptosis. 5. These results demonstrate that arvanil-induced apoptosis is essentially mediated through a mechanism that is typical of type II cells, and implicates the death-inducing signalling complex and the activation of caspase-8. This arvanil-apoptotic activity is TRPV1 and CB-independent, and can be of importance for the development of potential anti-inflammatory and antitumoral drugs.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Apoptosis/drug effects
- Apoptosis/genetics
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Carrier Proteins/metabolism
- Caspase 8
- Caspase Inhibitors
- Caspases/metabolism
- Cells, Cultured
- Cysteine Proteinase Inhibitors/pharmacology
- DNA Fragmentation/drug effects
- Dose-Response Relationship, Drug
- Fas Ligand Protein
- Fas-Associated Death Domain Protein
- Humans
- In Situ Nick-End Labeling
- Jurkat Cells
- Membrane Glycoproteins/genetics
- Models, Biological
- Reactive Oxygen Species/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Drug/agonists
- Receptors, Drug/physiology
- Signal Transduction
- T-Lymphocytes/drug effects
- Time Factors
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Rocío Sancho
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Facultad de Medicina, Avda. de Menendez Pidal s/n, Córdoba 14004, Spain
| | - Laureano de la Vega
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Facultad de Medicina, Avda. de Menendez Pidal s/n, Córdoba 14004, Spain
| | - Giovanni Appendino
- DiSCAFF, Università del Piemonte Orientale, Viale Ferrucci 33, Novara 28100, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Antonio Macho
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Facultad de Medicina, Avda. de Menendez Pidal s/n, Córdoba 14004, Spain
| | - Eduardo Muñoz
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Facultad de Medicina, Avda. de Menendez Pidal s/n, Córdoba 14004, Spain
- Author for correspondence:
| |
Collapse
|
34
|
Wang Y, Toth A, Tran R, Szabo T, Welter JD, Blumberg PM, Lee J, Kang SU, Lim JO, Lee J. High-affinity partial agonists of the vanilloid receptor. Mol Pharmacol 2003; 64:325-33. [PMID: 12869637 DOI: 10.1124/mol.64.2.325] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vanilloid receptor VR1 is a polymodal nociceptor sensitive to capsaicin, protons, and heat. Because VR1 represents an attractive therapeutic target for conditions ranging from long-term pain to bladder hyperreflexia, we and other groups have sought to develop novel ligands with enhanced potencies and novel pharmacological properties. Here, we characterize two compounds, N-[2-(3,4-dimethylbenzyl)-3-(pivaloyloxy)propyl]-N'-[4-(methylsulfonylamino)benzyl]thiourea (JYL827) and N-(4-tert-butylbenzyl)-N'-[3-methoxy-4-(methylsulfonylamino)benzyl]thiourea (JYL1511), that function as partial agonists for rat VR1 heterologously expressed in Chinese hamster ovary cells. Both compounds showed substantially enhanced potency, inhibiting [3H] resiniferatoxin binding with Ki values of 29.3 +/- 7.6 and 50.4 +/- 16.5 nM, respectively, compared with 1810 +/- 270 nM for capsaicin. The compounds showed different extents of partial agonism, 6.8 +/- 0.7% and 17.4 +/- 0.6%, respectively, and the expected corresponding degrees of partial antagonism (93.9 +/- 0.9 and 84.1 +/- 3.2%, respectively). Their IC50 values for antagonism of 45Ca2+ uptake in response to capsaicin were 67.3 +/- 24.9 nM and 3.4 +/- 0.5 nM, respectively. Protons, temperature, and protein kinase C all function as coactivators/modulators of rVR1. All enhanced the extent of partial agonism of JYL827 and JYL1511. Thus, at pH 5.5, for example, the extents of partial agonism increased to 54.9 +/- 2.5% and to 90.7 +/- 1.7%, respectively, relative to the response elicited by 300 nM capsaicin. The extents of partial antagonism decreased correspondingly. Compounds such as JYL827 and JYL1511 now permit exploration of the potential utility of partial agonists of rVR1 in animal models. Our results emphasize, moreover, the strong dependence of such partial agonists on other modulators of rVR1 and predict that their biological behavior will depend strongly on biological context.
Collapse
Affiliation(s)
- Yun Wang
- National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Macho A, Sancho R, Minassi A, Appendino G, Lawen A, Muñoz E. Involvement of reactive oxygen species in capsaicinoid-induced apoptosis in transformed cells. Free Radic Res 2003; 37:611-9. [PMID: 12868488 DOI: 10.1080/1071576031000083215] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Some varieties of sweet pepper accumulate non-pungent isosters of capsaicin, a type of compounds exemplified by capsiate. The only structural difference between capsaicin and capsiate is the link between the vanillyl and the acyl moieties, via an amide bond in the former and via an ester bond in the latter. By flow cytometry analyses we have determined that nor-dihydrocapsiate, a simplified analogue of capsiate, is a pro-oxidant compound that induces apoptosis in the Jurkat tumor cell line. The nuclear DNA fragmentation induced by nor-dihydrocapsiate is preceded by an increase in the production of reactive oxygen species and by a subsequent disruption of mitochondria transmembrane potential. Capsiate-induced apoptosis is initiated at the S phase of the cell cycle and is mediated by a caspase-3-dependent pathway. The accumulation of intracellular reactive oxygen species in capsiate-treated cells is greatly prevented by the presence of ferricyanide, suggesting that capsiates target a cellular redox system distinct from the one involved in the mitochondrial electron-chain transport. Methylation of the phenolic hydroxyl of nor-dihydrocapsiate completely abrogated the ability to induce reactive oxygen species and apoptosis, highlighting the relevance of the presence of a free phenolic hydroxyl for the pro-oxidant properties of capsaicinoids.
Collapse
Affiliation(s)
- Antonio Macho
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Medicina, Universidad de Córdoba, Avda. de Menéndez Pidal s/n, 14004, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Igawa Y, Satoh T, Mizusawa H, Seki S, Kato H, Ishizuka O, Nishizawa O. The role of capsaicin-sensitive afferents in autonomic dysreflexia in patients with spinal cord injury. BJU Int 2003; 91:637-41. [PMID: 12699475 DOI: 10.1046/j.1464-410x.2003.04171.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To determine whether capsaicin-sensitive nerves in the bladder form the afferent limb involved in autonomic dysreflexia (AD) in patients with spinal cord injury (SCI). PATIENTS AND METHODS Seven men with SCI (five cervical cord, two thoracic cord) with AD and detrusor hyper-reflexia (DH) were enrolled. Under general anaesthesia, capsaicin solution (100 mL of 2 mmol/L in 10% ethanol) was instilled in the bladder and retained for 30 min. The patients were assessed by medium-fill cystometry (CMG) just before and 50 min after the capsaicin treatment. Intra-arterial blood pressure (BP) and heart rate were monitored continuously throughout the procedure; 10% ethanol was instilled before capsaicin treatment in four patients as a control. Serum catecholamines were measured during bladder filling and capsaicin treatment, and the blood ethanol concentration also measured after instillation in all patients. The CMG with concomitant monitoring of BP and heart rate was repeated 1 week, 1, 3, 6, 12 and 24 months after instillation. In two patients the instillations were repeated 5 and 12 months after the first because of recurrence of DH. Urodynamic variables assessed were maximum cystometric capacity (MCC), maximum amplitude of uninhibited detrusor contraction (UICmax), the bladder capacity at 40 cmH2O detrusor pressure (Cdp40) and a systolic BP of> 140 mmHg or diastolic BP of> 90 mmHg (C(HT)). RESULTS There was an increase in BP and a decrease in heart rate in all patients during bladder filling before capsaicin treatment. Instillation of capsaicin produced a significant increase in both systolic and diastolic BP and a significant decrease in heart rate. The maximum cardiovascular effects were at 5-10 min after instillation and gradually returned to baseline within 40 min. The vehicle had negligible effects on either BP or heart rate. After capsaicin treatment, the responses of BP and heart rate to bladder distension were significantly reduced. Both serum catecholamine values and the blood ethanol concentration remained within normal limits. The mean (range) follow-up after the first treatment was 15 (6-30) months. One month after treatment all seven patients became continent and their episodes of AD became negligible and well tolerable between catheterizations (for 3-4 h); the effects lasted for >or= 3 months in all. MCC was significantly increased at 4 weeks and 3 months, and UICmax significantly decreased at 4 weeks after treatment. Both mean Cdp40 and C(HT) increased 1 week, 1 and 3 months after treatment. Two patients received a second instillation, and have been continent with no symptomatic AD for 6 and 24 months. The remaining five patients have been continent with no symptomatic AD for 6-12 months. CONCLUSION These results indicate that intravesical capsaicin, but not the vehicle, acutely triggers AD in patients with SCI, suggesting involvement of bladder capsaicin- sensitive afferents in AD in these patients. The results also suggest that intravesical capsaicin may be a promising therapy for both AD and DH in such patients. Further long-term follow-up studies are needed to evaluate the duration of its effect.
Collapse
Affiliation(s)
- Y Igawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Reilly CA, Taylor JL, Lanza DL, Carr BA, Crouch DJ, Yost GS. Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors. Toxicol Sci 2003; 73:170-81. [PMID: 12721390 PMCID: PMC2423488 DOI: 10.1093/toxsci/kfg044] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammation and damage to nasal, tracheal, bronchiolar, and alveolar cells in a dose-related manner. In vitro cytotoxicity assays demonstrated that cultured human lung cells (BEAS-2B and A549) were more susceptible to necrotic cell death than liver (HepG2) cells. Transcription of the human vanilloid receptor type-1, VR1 or TRPV1, was demonstrated by RT-PCR in all of these cells, and the relative transcript levels were correlated to cellular susceptibility. TRPV1 receptor activation was presumably responsible for cellular cytotoxicity, but prototypical functional antagonists of this receptor were cytotoxic themselves, and did not ameliorate capsaicinoid-induced damage. Conversely, the TRPV1 antagonist capsazepine, as well as calcium chelation by EGTA ablated cytokine (IL-6) production after capsaicin exposure. To address these seemingly contradictory results, recombinant human TRPV1 was cloned and overexpressed in BEAS-2B cells. These cells exhibited dramatically increased cellular susceptibility to capsaicinoids, measured using IL-6 production and cytotoxicity, and an apoptotic mechanism of cell death. Surprisingly, the cytotoxic effects of capsaicin in TRPV1 overexpressing cells were also not inhibited by TRPV1 antagonists or by treatments that modified extracellular calcium. Thus, capsaicin interacted with TRPV1 expressed by BEAS-2B and other airway epithelial cells to cause the calcium-dependent production of cytokines and, conversely, calcium-independent cell death. These results have demonstrated that capsaicinoids contained in pepper spray products produce airway inflammation and cause respiratory epithelial cell death. The mechanisms of these cellular responses to capsaicinoids appear to proceed via distinct cellular pathways, but both pathways are initiated by TRPV1.
Collapse
Affiliation(s)
- Christopher A Reilly
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kido MA, Muroya H, Yamaza T, Terada Y, Tanaka T. Vanilloid receptor expression in the rat tongue and palate. J Dent Res 2003; 82:393-7. [PMID: 12709508 DOI: 10.1177/154405910308200513] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Capsaicin, the pungent substance in hot peppers, evokes a sensation of burning pain by stimulating the vanilloid receptor 1 (VR1) on primary afferent neurons. Immunohistochemistry revealed that the taste papillae in the tongue and palate are richly innervated by VR1-immunoreactive nerve fibers. Furthermore, VR1 protein expression was seen in the epithelium facing the oral cavity, although taste cells seemed to be devoid of VR1. The most conspicuous VR1 expression was observed in the epithelial cells of the palatal rugae, although there were no VR1-immunoreactive nerves there. The finding that VR1 is expressed not only in primary afferents but also in oral epithelial cells suggests that it is of great importance in the perception of capsaicin, heat, and acid in the mouth. Since VR1 is known to play a key role in nociception and inflammatory pain, it may be a new target for the treatment of oral pain.
Collapse
Affiliation(s)
- M A Kido
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
39
|
Holzer P. Sensory neurone responses to mucosal noxae in the upper gut: relevance to mucosal integrity and gastrointestinal pain. Neurogastroenterol Motil 2002; 14:459-75. [PMID: 12358674 DOI: 10.1046/j.1365-2982.2002.00353.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The digestive tract is supplied by extrinsic and intrinsic sensory neurones that, together with endocrine and immune cells, form a surveillance network that is essential to gut function. This article focuses on the responses of extrinsic afferent neurones to chemical insults of the gastrointestinal mucosa and their pathophysiological relevance to mucosal integrity and abdominal pain. Within the gastroduodenal region, spinal afferents subserve an emergency function because, in case of alarm by influxing acid, they stimulate mechanisms of mucosal protection via an efferent-like release of transmitters. Other sensory neurones signal chemical noxae to the brain, a task that is not confined to spinal afferents because vagal afferents communicate gastric acid and peripheral immune challenges to the brainstem and in this way elicit autonomic, endocrine, affective and behavioural reactions. Emerging evidence indicates that hypersensitivity of extrinsic afferent pathways to mechanical and chemical stimuli makes an important contribution to the abdominal hyperalgesia seen in functional dyspepsia and irritable bowel syndrome. Sensitization may be brought about by inflammatory processes that lead to up-regulation and functional alterations of receptors and ion channels on sensory neurones. Such sensory neurone-specific molecules, which include vanilloid (capsaicin) receptors, may represent important targets for novel drugs to treat abdominal pain.
Collapse
Affiliation(s)
- P Holzer
- Department of Experimental and Clinical Pharmacology, University of Graz, Graz, Austria.
| |
Collapse
|
40
|
Abstract
The cloned vanilloid (capsaicin) receptor subtype 1 (VR1) integrates multiple noxious stimuli on peripheral terminals of primary sensory neurons. The initial excitation of these neurons is followed by a lasting refractory state, traditionally termed desensitization, that has clear therapeutic potential. Capsaicin is used to relieve neuropathic pain, uremic pruritus, and bladder overactivity. The ultrapotent vanilloid resiniferatoxin, now in phase 2 clinical trials, has improved tolerability. A less recognized human exposure to high capsaicin concentrations may occur by pepper sprays used in law enforcement. Evidence is mounting that VR1 expression is not restricted to sensory neurons. From the olfactory bulb to the cerebellum, VR1-expressing neurons are present in a number of brain nuclei, where they might be activated by anandamide. VR1 presence also was demonstrated in nonneuronal tissues. These discoveries place VR1 in a much broader perspective than pain perception and enhance the potential for unforeseen side effects, especially following prolonged vanilloid therapy. The expression of VR1 is plastic and down-regulated during vanilloid therapy, which might have a pivotal role in desensitization. Good evidence suggests altered VR1 expression in various disease states. This recognition not only may provide novel insights into pathogenesis but also may prove useful in diagnosis.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
41
|
Abstract
Pain is the leading symptom of most diseases. Humans have always tried to overcome pain using physical and chemical means, and it is believed that opioids and salicylates present in natural products have been used since prehistoric times. The development of the sciences, in particular chemistry and medicine, in the 19th century led to the discovery of the active ingredients of poppy and willow bark (morphine and salicylic acid). Shortly after, synthetic chemistry provided substitutes produced from coal tar (ie, acetaminophen, aspirin, phenazone, and pethidine). These represent the two main types of analgesics commonly used to treat mild and serious pain: the opioids (pethidine) and the antipyretic analgesics, which may be further divided into the aspirin-derived (acidic) nonsteroidal anti-inflammatory drugs (eg, ibuprofen) and the phenazone and acetaminophen-like (nonacidic) antipyretic analgesics (which have little anti-inflammatory activity). Chemical modifications and broad-spectrum screening provided medicine with thousands of pharmacologic analogs that broadened the therapeutic spectrum but did not supplant the original compounds developed in the 19th and early 20th century. Recently, molecular biology and genomics have led to the development of new target-selective chemical entities for use in pain relief. These include selective cyclooxygenase (COX)-2 inhibitors, substance P, blockers or agonists of cannabinoid and vanilloid receptors, inhibitors of tetradotoxin-resistant Na channels, and many more. Most of these selective compounds did not succeed in everyday pain treatment. Some look promising, including the COX-2 selective inhibitors, but doubts remain about the superiority of these new compounds in everyday use. This is particularly the case with the generation of selective COX-2 inhibitors currently in clinical use.
Collapse
Affiliation(s)
- Kay Brune
- University of Erlangen, Department of Pharmacology and Toxicology, Erlangen, Germany.
| |
Collapse
|
42
|
Hilgemann DW, Feng S, Nasuhoglu C. The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters. Sci Signal 2001. [DOI: 10.1126/scisignal.1112001re19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Hilgemann DW, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channels and transporters. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re19. [PMID: 11734659 DOI: 10.1126/stke.2001.111.re19] [Citation(s) in RCA: 375] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP(2)), the precursor of several signaling molecules in eukayotic cells, is itself also used by cells to signal to membrane-associated proteins. PIP(2) anchors numerous signaling molecules and cytoskeleton at the cell membrane, and the metabolism of PIP(2) is closely connected to membrane trafficking. Recently, ion transporters and channels have been discovered to be regulated by PIP(2). Systems reported to be activated by PIP(2) include (i) plasmalemmal calcium pumps (PMCA), (ii) cardiac sodium-calcium exchangers (NCX1), (iii) sodium-proton exchangers (NHE1-4), (iv) a sodium-magnesium exchanger of unknown identity, (v) all inward rectifier potassium channels (KATP, IRK, GIRK, and ROMK channels), (vi) epithelial sodium channels (ENaC), and (vii) ryanodine-sensitive calcium release channels (RyR). Systems reported to be inhibited by PIP(2) include (i) cyclic nucleotide-gated channels of the rod (CNG), (ii) transient receptor potential-like (TRPL) Drosophila phototransduction channels, (iii) capsaicin-activated transient receptor potential (TRP) channels (VR1), and (iv) IP(3)-gated calcium release channels (IP3R). Systems that appear to be completely insensitive to PIP(2) include (i) voltage-gated sodium channels, (ii) most voltage-gated potassium channels, (iii) sodium-potassium pumps, (iv) several neurotransmitter transporters, and (v) cystic fibrosis transmembrane receptor (CFTR)-type chloride channels. Presumably, local changes of the concentration of PIP(2) in the plasma membrane represent cell signals to those mechanisms sensitive to PIP(2) changes. Unfortunately, our understanding of how local PIP(2) concentrations are regulated remains very limited. One important complexity is the probable existence of phospholipid microdomains, or lipid rafts. Such domains may serve to localize PIP(2) and thereby PIP(2) signaling, as well as to organize PIP(2) binding partners into signaling complexes. A related biological role of PIP(2) may be to control the activity of ion transporters and channels during biosynthesis or vesicle trafficking. Low PIP(2) concentrations in the secretory pathway would inactivate all of the systems that are stimulated by PIP(2). How, in detail, is PIP(2) used by cells to control ion channel and transporter activities? Further progress requires an improved understanding of lipid kinases and phosphatases, how they are regulated, where they are localized in cells, and with which ion channels and transporters they might localize.
Collapse
Affiliation(s)
- D W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| | | | | |
Collapse
|