1
|
Yuan H, Tian Y, Jiang R, Wang Y, Nie M, Li X, He Y, Liu X, Zhao R, Zhang J. Susceptibility to Hepatotoxic Drug-Induced Liver Injury Increased After Traumatic Brain Injury in Mice. J Neurotrauma 2024; 41:1425-1437. [PMID: 37265124 DOI: 10.1089/neu.2022.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The early stages of brain injury can induce acute liver injury, which can be recovered in the short term. Continued medication treatment during hospitalization for brain injury alleviates the prognosis and contributes to a high incidence of drug-induced liver injury (DILI). We hypothesize that there is an interaction between changes in the hepatic environment after brain injury and liver injury produced by intensive drug administration, leading to an upregulation of the organism's sensitivity to DILI. In this study, mice models of TBI were established by controlled cortical impact (CCI) and models of DILI were constructed by acetaminophen (APAP). All mice were divided into four groups: Sham, TBI, APAP, and TBI+APAP, and related liver injury indicators in liver and serum were detected by Western blot, Quantitative real-time PCR (qRT-PCR), and immunohistochemical staining. The results suggested that liver injury induced in the early stages of brain injury recovered in 3 days, but this state could still significantly aggravate DILI, represented by higher liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]), oxidative stress (increase in malondialdehyde [MDA] concentration and deregulation of glutathione [GSH] and superoxide dismutase [SOD] activities), inflammatory response (activation of the HMGB1/TLR4/NF-κB signaling pathway, and increased messenger RNA [mRNA] and protein levels of pro-inflammatory cytokines including tumor necrosis factor alpha [TNF-α], interleukin [IL]-6, and IL-1β), and apoptosis (TUNEL assay, upregulation of Bax protein and deregulation of Bcl-2 protein). In summary, our results suggested that TBI is a potential susceptibility factor for DILI and exacerbates DILI.
Collapse
Affiliation(s)
- Hengjie Yuan
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanzhi Wang
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaochun Li
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yifan He
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ruiting Zhao
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jingyue Zhang
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Berman E, Noyman I, Medvedovsky M, Ekstein D, Eyal S. Not your usual drug-drug interactions: Monoclonal antibody-based therapeutics may interact with antiseizure medications. Epilepsia 2021; 63:271-289. [PMID: 34967010 DOI: 10.1111/epi.17147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) have emerged as the fastest growing drug class. As such, mAbs are increasingly being co-prescribed with other drugs, including antiseizure medications (ASMs). Although mAbs do not share direct targets or mechanisms of disposition with small-molecule drugs (SMDs), combining therapeutics of both types can increase the risk of adverse effects and treatment failure. The primary goal of this literature review was identifying mAb-ASM combinations requiring the attention of professionals who are treating patients with epilepsy. Systematic PubMed and Embase searches (1980-2021) were performed for terms relating to mAbs, ASMs, drug interactions, and their combinations. Additional information was obtained from documents from the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Evidence was critically appraised - key issues calling for clinicians' consideration and important knowledge gaps were identified, and practice recommendations were developed by a group of pharmacists and epileptologists. The majority of interactions were attributed to the indirect effects of cytokine-modulating antibodies on drug metabolism. Conversely, strong inhibitors or inducers of drug-metabolizing enzymes or drug transporters could potentially interact with the cytotoxic payload of antibody-drug conjugates, and ASMs could alter mAb biodistribution. In addition, mAbs could potentiate adverse ASM effects. Unfortunately, few studies involved ASMs, requiring the formulation of class-based recommendations. Based on the current literature, most mAb-ASM interactions do not warrant special precautions. However, specific combinations should preferably be avoided, whereas others require monitoring and potentially adjustment of the ASM doses. Reduced drug efficacy or adverse effects could manifest days to weeks after mAb treatment onset or discontinuation, complicating the implication of drug interactions in potentially deleterious outcomes. Prescribers who treat patients with epilepsy should be familiar with mAb pharmacology to better anticipate potential mAb-ASM interactions and avoid toxicity, loss of seizure control, or impaired efficacy of mAb treatment.
Collapse
Affiliation(s)
- Erez Berman
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iris Noyman
- Pediatric Neurology Unit, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Medicine, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mordekhay Medvedovsky
- Department of Neurology, Agnes Ginges Center of Human Neurogenetics, Hadassah Medical Organization, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Ekstein
- Department of Neurology, Agnes Ginges Center of Human Neurogenetics, Hadassah Medical Organization, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Eyal
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol Ther 2020; 215:107627. [PMID: 32659304 PMCID: PMC7351663 DOI: 10.1016/j.pharmthera.2020.107627] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Inflammation is an evolutionary process that allows survival against acute infection or injury. Inflammation is also a pathophysiological condition shared by numerous chronic diseases. In addition, inflammation modulates important drug-metabolizing enzymes and transporters (DMETs), thus contributing to intra- and interindividual variability of drug exposure. A better knowledge of the impact of inflammation on drug metabolism and its related clinical consequences would help to personalize drug treatment. Here, we summarize the kinetics of inflammatory mediators and the underlying transcriptional and post-transcriptional mechanisms by which they contribute to the inhibition of important DMETs. We also present an updated overview of the effect of inflammation on the pharmacokinetic parameters of most of the drugs that are DMET substrates, for which therapeutic drug monitoring is recommended. Furthermore, we provide opinions on how to integrate the inflammatory status into pharmacogenetics, therapeutic drug monitoring, and population pharmacokinetic strategies to improve the personalization of drug treatment for each patient.
Collapse
Affiliation(s)
- Françoise Stanke-Labesque
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France.
| | - Elodie Gautier-Veyret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France
| | - Stephanie Chhun
- Faculty of Medicine, Paris University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France; AP-HP, Paris Centre, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Romain Guilhaumou
- Clinical Pharmacology and Pharmacovigilance Unit, AP-HM, Marseille, France; Aix Marseille Univ, INSERM, INS Inst Neurosci Syst, Marseille, France
| |
Collapse
|
4
|
Anderson GD, Peterson TC, Vonder Haar C, Farin FM, Bammler TK, MacDonald JW, Kantor ED, Hoane MR. Effect of Traumatic Brain Injury, Erythropoietin, and Anakinra on Hepatic Metabolizing Enzymes and Transporters in an Experimental Rat Model. AAPS JOURNAL 2015; 17:1255-67. [PMID: 26068867 DOI: 10.1208/s12248-015-9792-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/26/2015] [Indexed: 12/18/2022]
Abstract
In contrast to considerable data demonstrating a decrease in cytochrome P450 (CYP) activity in inflammation and infection, clinically, traumatic brain injury (TBI) results in an increase in CYP and UDP glucuronosyltransferase (UGT) activity. The objective of this study was to determine the effects of TBI alone and with treatment with erythropoietin (EPO) or anakinra on the gene expression of hepatic inflammatory proteins, drug-metabolizing enzymes, and transporters in a cortical contusion impact (CCI) injury model. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Plasma cytokine and liver protein concentrations of CYP2D4, CYP3A1, EPHX1, and UGT2B7 were determined. There was no effect of TBI, TBI + EPO, or TBI + anakinra on gene expression of the inflammatory factors shown to be associated with decreased expression of hepatic metabolic enzymes in models of infection and inflammation. IL-6 plasma concentrations were increased in TBI animals and decreased with EPO and anakinra treatment. There was no significant effect of TBI and/or anakinra on gene expression of enzymes or transporters known to be involved in drug disposition. TBI + EPO treatment decreased the gene expression of Cyp2d4 at 72 h with a corresponding decrease in CYP2D4 protein at 72 h and 7 days. CYP3A1 protein was decreased at 24 h. In conclusion, EPO treatment may result in a significant decrease in the metabolism of Cyp-metabolized drugs. In contrast to clinical TBI, there was not a significant effect of experimental TBI on CYP or UGT metabolic enzymes.
Collapse
Affiliation(s)
- Gail D Anderson
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195, USA,
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kim SW, Hooker JM, Otto N, Win K, Muench L, Shea C, Carter P, King P, Reid AE, Volkow ND, Fowler JS. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl Med Biol 2013; 40:912-8. [PMID: 23906667 DOI: 10.1016/j.nucmedbio.2013.06.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/09/2013] [Accepted: 06/16/2013] [Indexed: 12/16/2022]
Abstract
The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profiles. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using (11)CO2 and the appropriate Grignard reagents. [(11)C]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity were the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low (<0.006%ID/cc, BA>VPA>PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [(11)C]BA showed relatively high uptake in spleen and pancreas whereas [(11)C]PBA showed high uptake in liver and heart. Notably, [(11)C]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of relevance in understanding their therapeutic and side effect profile including their teratogenic effects.
Collapse
Affiliation(s)
- Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Upton, NY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Bentué-Ferrer D, Tribut O, Verdier MC. [Therapeutic drug monitoring of valproate]. Therapie 2010; 65:233-40. [PMID: 20699076 DOI: 10.2515/therapie/2010029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/11/2010] [Indexed: 11/20/2022]
Abstract
Valproic acid is an anticonvulsant drug available in France since 1967. It is a broad spectrum molecule indicated in various forms of epilepsy of the adult and the child, but it is also prescribed in the treatment of different other pathologies of nervous system. The divalproate sodium is indicated in the treatment of bipolar disorders. The valproic acid is marketed under various pharmaceutical forms, with different corresponding tmax values. But, whatever the administered preparation, the circulating active molecule is the ion valproate. Elimination half-life is from 11 to 20 h. Metabolization of valproate is important and represents its main route of elimination. Valpromide is comparable to a prodrug which metabolizes in valproate. The inter and intraindividual variability of the plasma concentrations are important. Several studies show a concentration-effect relationship, but two interventional trials ended in the lack of interest of the Therapeutic Drug Monitoring (TDM), although it is of current practice. However, numerous drug interactions may modify the plasma concentrations of valproate. The therapeutic range is from 50 to 100 mg/L (346-693 micromol/L). The level of proof of the interest of the TDM for this molecule was estimated in: recommended.
Collapse
|