1
|
Ge Q, Lu H, Geng X, Chen X, Liu X, Sun H, Guo Z, Sun J, Qi F, Niu X, Wang A, He J, Sun W, Xu L. Serum metabolism alteration behind different etiology, diagnosis, and prognosis of disorders of consciousness. Chin Neurosurg J 2024; 10:12. [PMID: 38594757 PMCID: PMC11003070 DOI: 10.1186/s41016-024-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Patients with disorders of consciousness (DoC) exhibit varied revival outcomes based on different etiologies and diagnoses, the mechanisms of which remain largely unknown. The fluctuating clinical presentations in DoC pose challenges in accurately assessing consciousness levels and prognoses, often leading to misdiagnoses. There is an urgent need for a deeper understanding of the physiological changes in DoC and the development of objective diagnostic and prognostic biomarkers to improve treatment guidance. METHODS To explore biomarkers and understand the biological processes, we conducted a comprehensive untargeted metabolomic analysis on serum samples from 48 patients with DoC. Patients were categorized based on etiology (TBI vs. non-TBI), CRS-R scores, and prognosis. Advanced analytical techniques, including PCA and OPLS-DA models, were employed to identify differential metabolites. RESULTS Our analysis revealed a distinct separation in metabolomic profiles among the different groups. The primary differential metabolites distinguishing patients with varying etiologies were predominantly phospholipids, with a notable decrease in glycerophospholipids observed in the TBI group. Patients with higher CRS-R scores exhibited a pattern of impaired carbohydrate metabolism coupled with enhanced lipid metabolism. Notably, serum concentrations of both LysoPE and PE were reduced in patients with improved outcomes, suggesting their potential as prognostic biomarkers. CONCLUSIONS Our study underscores the critical role of phospholipid metabolism in the brain's metabolic alterations in patients with DoC. It identifies key biomarkers for diagnosis and prognosis, offering insights that could lead to novel therapeutic targets. These findings highlight the value of metabolomic profiling in understanding and potentially treating DoC.
Collapse
Affiliation(s)
- Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hezhen Lu
- China-Japan Union Hospital of Jilin University, Changchun, China
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoli Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiameng Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Feng Qi
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xia Niu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Aiwei Wang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| |
Collapse
|
2
|
Gomes MAGB, Bauduin A, Le Roux C, Fouinneteau R, Berthe W, Berchel M, Couthon H, Jaffrès PA. Synthesis of ether lipids: natural compounds and analogues. Beilstein J Org Chem 2023; 19:1299-1369. [PMID: 37701305 PMCID: PMC10494250 DOI: 10.3762/bjoc.19.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Ether lipids are compounds present in many living organisms including humans that feature an ether bond linkage at the sn-1 position of the glycerol. This class of lipids features singular structural roles and biological functions. Alkyl ether lipids and alkenyl ether lipids (also identified as plasmalogens) correspond to the two sub-classes of naturally occurring ether lipids. In 1979 the discovery of the structure of the platelet-activating factor (PAF) that belongs to the alkyl ether class of lipids increased the interest in these bioactive lipids and further promoted the synthesis of non-natural ether lipids that was initiated in the late 60's with the development of edelfosine (an anticancer drug). More recently, ohmline, a glyco glycero ether lipid that modulates selectively SK3 ion channels and reduces in vivo the occurrence of bone metastases, and other glyco glycero ether also identified as GAEL (glycosylated antitumor ether lipids) that exhibit promising anticancer properties renew the interest in this class of compounds. Indeed, ether lipid represent a new and promising class of compounds featuring the capacity to modulate selectively the activity of some membrane proteins or, for other compounds, feature antiproliferative properties via an original mechanism of action. The increasing interest in studying ether lipids for fundamental and applied researches invited to review the methodologies developed to prepare ether lipids. In this review we focus on the synthetic method used for the preparation of alkyl ether lipids either naturally occurring ether lipids (e.g., PAF) or synthetic derivatives that were developed to study their biological properties. The synthesis of neutral or charged ether lipids are reported with the aim to assemble in this review the most frequently used methodologies to prepare this specific class of compounds.
Collapse
Affiliation(s)
| | - Alicia Bauduin
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Chloé Le Roux
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Romain Fouinneteau
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Wilfried Berthe
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Mathieu Berchel
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Hélène Couthon
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| |
Collapse
|
3
|
Xu X, Wang JJ, Zhao H, Miao K, Cui G, Zhang Y, Yang X, Wang L, Wu J, Wang DW. Variant Angina is Associated with Myocarditis. J Inflamm Res 2022; 15:4939-4949. [PMID: 36060213 PMCID: PMC9439647 DOI: 10.2147/jir.s378152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022] Open
Abstract
Background Vasospastic angina (VSA) is caused by severe diffuse or segmental coronary artery spasms. Patients with variant angina have poor clinical outcomes, although nitrates and calcium blockers help improve patient symptoms because there is no understanding of the etiology and causal treatment. The present study investigated whether VSA is associated with inflammation of the heart. Patients and Methods A total of 109 patients with VSA diagnosed by the presence of recurrent angina pectoris, typical electrocardiography, and coronary angiography were recruited, and 61 normal participants and 61 patients with acute myocardial infarction (AMI) and coronary artery stenosis were recruited as controls. The plasma levels of 24 cytokines were measured using a magnetic Luminex assay, and endothelin-1 and histamine levels tested using enzyme-linked immunosorbent assay and mass-spectrometry, respectively, for all participants. Furthermore, four patients with VSA underwent 18-fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Results The plasma levels of interleukin (IL)-12p70, IL-13, PDL-1, IL-10, IL-6, IL-15, macrophage inflammatory protein (MIP)-1α, and MIP-1β in patients with VSA were significantly higher than those in both normal controls and patients with AMI (p<0.001) but did not differ between normal controls and patients with AMI. 18F-FDG PET/CT showed that the left ventricle, coronary perivascular tissue volume, and coronary perivascular FDG uptake were significantly increased in all four patients. Conclusion Our findings demonstrate that VSA patients have significantly elevated plasma cytokine levels and myocardial and pericoronary inflammation, suggesting that VSA is associated with myocarditis. This study provides novel insights into the etiology and treatment of VSA.
Collapse
Affiliation(s)
- Xin Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
| | - James Jiqi Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
| | - Hu Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
| | - Kun Miao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
| | - Guanglin Cui
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
| | - Yuxuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
| | - Xiaoyun Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
| | - Luyun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
| | - Junfang Wu
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, People’s Republic of China
- Correspondence: Dao Wen Wang; Junfang Wu, Division of Cardiology, Department of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People’s Republic of China, Tel/Fax +86-278366-3280, Email ;
| |
Collapse
|
4
|
Dyshlovoy SA, Fedorov SN, Svetashev VI, Makarieva TN, Kalinovsky AI, Moiseenko OP, Krasokhin VB, Shubina LK, Guzii AG, von Amsberg G, Stonik VA. 1-O-Alkylglycerol Ethers from the Marine Sponge Guitarra abbotti and Their Cytotoxic Activity. Mar Drugs 2022; 20:md20070409. [PMID: 35877702 PMCID: PMC9319591 DOI: 10.3390/md20070409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023] Open
Abstract
The cytotoxicity-bioassay-guided fractionation of the ethanol extract from the marine sponge Guitarra abbotti, whose 1-O-alkyl-sn-glycerol ethers (AGEs) have not been investigated so far, led to the isolation of a complex lipid fraction containing, along with previously known compounds, six new lipids of the AGE type. The composition of the AGE fraction as well as the structures of 6 new and 22 previously known compounds were established using 1H and 13C NMR, GC/MS, and chemical conversion methods. The new AGEs were identified as: 1-O-(Z-docos-15-enyl)-sn-glycerol (1), 1-O-(Z-docos-17-enyl)-sn-glycerol (2), 1-O-(Z-tricos-15-enyl)-sn-glycerol (3), 1-O-(Z-tricos-16-enyl)-sn-glycerol (4), 1-O-(Z-tricos-17-enyl)-sn-glycerol (5), and 1-O-(Z-tetracos-15-enyl)-sn-glycerol (6). The isolated AGEs show weak cytotoxic activity in THP-1, HL-60, HeLa, DLD-1, SNU C4, SK-MEL-28, and MDA-MB-231 human cancer cells. A further cytotoxicity analysis in JB6 P+ Cl41 cells bearing mutated MAP kinase genes revealed that ERK2 and JNK1 play a cytoprotective role in the cellular response to the AGE-induced cytotoxic effects.
Collapse
Affiliation(s)
- Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
- Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University, 690091 Vladivostok, Russia
- Correspondence: (S.A.D.); (S.N.F.)
| | - Sergey N. Fedorov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.N.M.); (A.I.K.); (O.P.M.); (L.K.S.); (A.G.G.); (V.A.S.)
- Correspondence: (S.A.D.); (S.N.F.)
| | - Vasily I. Svetashev
- National Scientific Center of Marine Biology, Far-East Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia;
| | - Tatiana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.N.M.); (A.I.K.); (O.P.M.); (L.K.S.); (A.G.G.); (V.A.S.)
| | - Anatoliy I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.N.M.); (A.I.K.); (O.P.M.); (L.K.S.); (A.G.G.); (V.A.S.)
| | - Olga P. Moiseenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.N.M.); (A.I.K.); (O.P.M.); (L.K.S.); (A.G.G.); (V.A.S.)
| | - Vladimir B. Krasokhin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.N.M.); (A.I.K.); (O.P.M.); (L.K.S.); (A.G.G.); (V.A.S.)
| | - Larisa K. Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.N.M.); (A.I.K.); (O.P.M.); (L.K.S.); (A.G.G.); (V.A.S.)
| | - Alla G. Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.N.M.); (A.I.K.); (O.P.M.); (L.K.S.); (A.G.G.); (V.A.S.)
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.N.M.); (A.I.K.); (O.P.M.); (L.K.S.); (A.G.G.); (V.A.S.)
| |
Collapse
|
5
|
Ke J, Li MT, Huo YJ, Cheng YQ, Guo SF, Wu Y, Zhang L, Ma J, Liu AJ, Han Y. The Synergistic Effect of Ginkgo biloba Extract 50 and Aspirin Against Platelet Aggregation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3543-3560. [PMID: 34429584 PMCID: PMC8375244 DOI: 10.2147/dddt.s318515] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023]
Abstract
Purpose We aimed to investigate potential synergistic antiplatelet effects of Ginkgo biloba extract (GBE50) in combination with aspirin using in vitro models. Methods Arachidonic acid (AA), platelet activating factor (PAF), adenosine 5'-diphosphate (ADP) and collagen were used as inducers. The antiplatelet effects of GBE50, aspirin and 1:1 combination of GBE50 and aspirin were detected by microplate method using rabbit platelets. Synergy finder 2.0 was used to analyze the synergistic antiplatelet effect. The compounds in GBE50 were identified by UPLC-Q/TOF-MS analysis and the candidate compounds were screened by TCMSP database. The targets of candidate compounds and aspirin were obtained in TCMSP, CCGs, Swiss target prediction database and drugbank. Targets involving platelet aggregation were obtained from GenCLiP database. Compound-target network was constructed and GO and KEGG enrichment analyses were performed to identify the critical biological processes and signaling pathways. The levels of thromboxane B2 (TXB2), cyclic adenosine monophosphate (cAMP) and PAF receptor (PAFR) were detected by ELISA to determine the effects of GBE50, aspirin and their combination on these pathways. Results GBE50 combined with aspirin inhibited platelet aggregation more effectively. The combination displayed synergistic antiplatelet effects in AA-induced platelet aggregation, and additive antiplatelet effects occurred in PAF, ADP and collagen induced platelet aggregation. Seven compounds were identified as candidate compounds in GBE50. Enrichment analyses revealed that GBE50 could interfere with platelet aggregation via cAMP pathway, AA metabolism and calcium signaling pathway, and aspirin could regulate platelet aggregation through AA metabolism and platelet activation. ELISA experiments showed that GBE50 combined with aspirin could increase cAMP levels in resting platelets, and decreased the levels of TXB2 and PAFR. Conclusion Our study indicated that GBE50 combined with aspirin could enhance the antiplatelet effects. They exerted both synergistic and additive effects in restraining platelet aggregation. The study highlighted the potential application of GBE50 as a supplementary therapy to treat thrombosis-related diseases.
Collapse
Affiliation(s)
- Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ya-Jing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan-Qiong Cheng
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Shu-Fen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, People's Republic of China
| | - Ai-Jun Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Garcia-Lopez R, Pombero A, Estirado A, Geijo-Barrientos E, Martinez S. Interneuron Heterotopia in the Lis1 Mutant Mouse Cortex Underlies a Structural and Functional Schizophrenia-Like Phenotype. Front Cell Dev Biol 2021; 9:693919. [PMID: 34327202 PMCID: PMC8313859 DOI: 10.3389/fcell.2021.693919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
LIS1 is one of the principal genes related to Type I lissencephaly, a severe human brain malformation characterized by an abnormal neuronal migration in the cortex during embryonic development. This is clinically associated with epilepsy and cerebral palsy in severe cases, as well as a predisposition to developing mental disorders, in cases with a mild phenotype. Although genetic variations in the LIS1 gene have been associated with the development of schizophrenia, little is known about the underlying neurobiological mechanisms. We have studied how the Lis1 gene might cause deficits associated with the pathophysiology of schizophrenia using the Lis1/sLis1 murine model, which involves the deletion of the first coding exon of the Lis1 gene. Homozygous mice are not viable, but heterozygous animals present abnormal neuronal morphology, cortical dysplasia, and enhanced cortical excitability. We have observed reduced number of cells expressing GABA-synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) in the hippocampus and the anterior cingulate area, as well as fewer parvalbumin-expressing cells in the anterior cingulate cortex in Lis1/sLis1 mutants compared to control mice. The cFOS protein expression (indicative of neuronal activity) in Lis1/sLis1 mice was higher in the medial prefrontal (mPFC), perirhinal (PERI), entorhinal (ENT), ectorhinal (ECT) cortices, and hippocampus compared to control mice. Our results suggest that deleting the first coding exon of the Lis1 gene might cause cortical anomalies associated with the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
| | - Ana Pombero
- Instituto de Neurociencias, UMH-CSIC, Alicante, Spain
| | | | | | - Salvador Martinez
- Instituto de Neurociencias, UMH-CSIC, Alicante, Spain.,Centro de Investigación Biomédica En Red en Salud Mental-CIBERSAM-ISCIII, Valencia, Spain
| |
Collapse
|
7
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
8
|
Demopoulos C, Antonopoulou S, Theoharides TC. COVID-19, microthromboses, inflammation, and platelet activating factor. Biofactors 2020; 46:927-933. [PMID: 33296106 DOI: 10.1002/biof.1696] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Recent articles report elevated markers of coagulation, endothelial injury, and microthromboses in lungs from deceased COVID-19 patients. However, there has been no discussion of what may induce intravascular coagulation. Platelets are critical in the formation of thrombi and their most potent trigger is platelet activating factor (PAF), first characterized by Demopoulos and colleagues in 1979. PAF is produced by cells involved in host defense and its biological actions bear similarities with COVID-19 disease manifestations. PAF can also stimulate perivascular mast cell activation, leading to inflammation implicated in severe acute respiratory syndrome (SARS). Mast cells are plentiful in the lungs and are a rich source of PAF and of inflammatory cytokines, such as IL-1β and IL-6, which may contribute to COVID-19 and especially SARS. The histamine-1 receptor antagonist rupatadine was developed to have anti-PAF activity, and also inhibits activation of human mast cells in response to PAF. Rupatadine could be repurposed for COVID-19 prophylaxis alone or together with other PAF-inhibitors of natural origin such as the flavonoids quercetin and luteolin, which have antiviral, anti-inflammatory, and anti-PAF actions.
Collapse
Affiliation(s)
- Constantinos Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University, Athens, Greece
| | - Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Theoharides TC, Antonopoulou S, Demopoulos CA. Coronavirus 2019, Microthromboses, and Platelet Activating Factor. Clin Ther 2020; 42:1850-1852. [PMID: 32883529 PMCID: PMC7430296 DOI: 10.1016/j.clinthera.2020.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
Recent articles have reported elevated markers of coagulation, endothelial injury, and microthromboses in lungs from deceased patients with coronavirus 2019 (COVID-19). Platelets are critical in the formation of thrombi, and their most potent trigger is platelet activating factor (PAF). PAF is produced by cells involved in host defense, and its biological actions bear similarities with COVID-19 disease manifestations, including pulmonary microthromboses and inflammation, possibly via activation of mast cells. The histamine1 receptor antagonist rupatadine was developed to have anti-PAF activity and inhibits activation of human mast cells in response to PAF. Rupatadine could be repurposed for COVID-19 prophylaxis.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| | - Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Constantinos A Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Mukund K, Mathee K, Subramaniam S. Plasmin Cascade Mediates Thrombotic Events in SARS-CoV-2 Infection via Complement and Platelet-Activating Systems. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:220-227. [PMID: 34786557 PMCID: PMC8527892 DOI: 10.1109/ojemb.2020.3014798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/11/2022] Open
Abstract
Objective: Recently emerged beta-coronavirus SARS-CoV-2, has resulted in the current pandemic designated COVID-19. COVID-19 manifests as severe illness exhibiting systemic inflammatory response syndrome, acute respiratory distress syndrome (ARDS), thrombotic events, and shock, exacerbated further by co-morbidities and age. Recent clinical evidence suggests that the development of ARDS and subsequent pulmonary failure result from a complex interplay between cell types (endothelial, epithelial and immune) within the lung promoting inflammatory infiltration and a pro-coagulative state. How the complex molecular events mediated by SARS-CoV-2 in infected lung epithelial cells lead to thrombosis and pulmonary failure, is yet to be fully understood. Methods: We address these questions here, using publicly available transcriptomic data in the context of lung epithelia affected by SARS-CoV-2 and other respiratory infections, in vitro. We then extend our results to the understanding of in vivo lung, using a publicly available COVID-19 lung transcriptomic study. Results and Conclusions: Our analysis indicates that there exists a complex interplay between the fibrinolytic system particularly plasmin, and the complement and platelet-activating systems upon SARS-CoV-2 infection, with a potential for therapeutic intervention.
Collapse
Affiliation(s)
- Kavitha Mukund
- 1 Department of BioengineeringUniversity of California San Diego La Jolla CA 92093 USA
| | - Kalai Mathee
- 2 Department of Human and Molecular GeneticsHerbert Wertheim College of Medicine Miami FL 33199 USA
- 3 Biomolecular Sciences InstituteFlorida International University Miami FL 33199 USA
| | - Shankar Subramaniam
- 1 Department of BioengineeringUniversity of California San Diego La Jolla CA 92093 USA
- 4 Department of Cellular and Molecular MedicineUniversity of California San Diego La Jolla CA 92093 USA
- 5 Department of Computer Science and EngineeringUniversity of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
11
|
Liang L, Li Y, Tian X, Zhou J, Zhong L. Comprehensive lipidomic, metabolomic and proteomic profiling reveals the role of immune system in vitiligo. Clin Exp Dermatol 2019; 44:e216-e223. [PMID: 30859585 DOI: 10.1111/ced.13961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Vitiligo is a common depigmentation disorder resulting from destruction of melanocytes, and has both genetic and environmental influences. Although genomic analyses have been performed to investigate the pathogenesis of vitiligo, the lipidomics, metabolomics and proteomics of serum have not been reported, and the role of small molecules and serum proteins in vitiligo remains unknown. AIM To study the metabolite and protein profiles in patients with vitiligo and healthy controls (HCs). METHODS Plasma samples from 60 participants (29 patients with vitiligo and 31 HCs) were analysed. Untargeted lipidomics, metabolomics and isobaric tags for relative and absolute quantification-based proteomics were performed using high performance liquid chromatography-tandem mass spectrometry. In addition, to validate differentially expressed metabolites in patients with vitiligo, plasma enzyme-linked immunosorbent assay was performed. RESULTS We identified differential expression of several metabolites and proteins involved in the immune system. Among these metabolites and proteins, lysophosphatidylcholine, platelet-activating factor, sn-glycerol-3-phosphocholine, succinic acid, CXCL4 and CXCL7 were significantly elevated in the plasma of patients with vitiligo, while aspartate was downregulated. CONCLUSION Our study has characterized several serum metabolites and proteins that could be potential candidate biomarkers in vitiligo, and provides a comprehensive insight into the role of immune system and aspartate metabolism in vitiligo.
Collapse
Affiliation(s)
- L Liang
- Department of Biophysics and, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Y Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - X Tian
- Jilin People's Hospital, Jilin, China
| | - J Zhou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University, Beijing, 100191, China
| | - L Zhong
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Selvamurugan V, Aidhen IS. A novel and convenient approach to 5-aryltetrahydro-2-furanols. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823400103166319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- V. Selvamurugan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Indrapal Singh Aidhen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Tsoupras A, Lordan R, Zabetakis I. Inflammation, not Cholesterol, Is a Cause of Chronic Disease. Nutrients 2018; 10:E604. [PMID: 29757226 PMCID: PMC5986484 DOI: 10.3390/nu10050604] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Since the Seven Countries Study, dietary cholesterol and the levels of serum cholesterol in relation to the development of chronic diseases have been somewhat demonised. However, the principles of the Mediterranean diet and relevant data linked to the examples of people living in the five blue zones demonstrate that the key to longevity and the prevention of chronic disease development is not the reduction of dietary or serum cholesterol but the control of systemic inflammation. In this review, we present all the relevant data that supports the view that it is inflammation induced by several factors, such as platelet-activating factor (PAF), that leads to the onset of cardiovascular diseases (CVD) rather than serum cholesterol. The key to reducing the incidence of CVD is to control the activities of PAF and other inflammatory mediators via diet, exercise, and healthy lifestyle choices. The relevant studies and data supporting these views are discussed in this review.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
14
|
|
15
|
Abstract
Numerous trials have been conducted evaluating the efficacy of ginkgo biloba in memory disorders. The active constituents of ginkgo biloba are antioxidants that scavenge free radicals, which have been implicated in the pathogenesis of memory disorders. These studies suggest that ginkgo biloba in doses up to 120 mg/day when taken for 2 years may halt the progression of the disease for at least six months. The biggest concern of using ginkgo biloba is associated with its effects on platelet activating factor, which may result in bleeding disorders. Additional studies are needed to evaluate ginkgo biloba in combination with other medications.
Collapse
Affiliation(s)
- Angela J. Massey
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 105 Honor House, Tallahassee, FL 32307
| |
Collapse
|
16
|
Protection Efficacy of the Extract of Ginkgo biloba against the Learning and Memory Damage of Rats under Repeated High Sustained +Gz Exposure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6320586. [PMID: 27069491 PMCID: PMC4812286 DOI: 10.1155/2016/6320586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 01/29/2023]
Abstract
Repeated high sustained positive Gz (+Gz) exposures are known for the harmful pathophysiological impact on the brain of rats, which is reflected as the interruption of normal performance of learning and memory. Interestingly, extract of Ginkgo biloba (EGb) has been reported to have neuroprotective effects and cognition-enhancing effects. In this study, we are interested in evaluating the protective effects of EGb toward the learning and memory abilities. Morris Water Maze Test (MWM) was used to evaluate the cognitive function, and the physiological status of the key components in central cholinergic system was also investigated. Our animal behavioral tests indicated that EGb can release the learning and memory impairment caused by repeated high sustained +Gz. Administration of EGb to rats can diminish some of the harmful physiological effects caused by repeated +Gz exposures. Moreover, EGb administration can increase the biological activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) but reduce the production of malondialdehyde (MDA). Taken together, our study showed that EGb can ameliorate the impairment of learning and memory abilities of rats induced by repeated high sustained +Gz exposure; the underlying mechanisms appeared to be related to the signal regulation on the cholinergic system and antioxidant enzymes system.
Collapse
|
17
|
Potential Therapeutic Strategies for Severe Anaphylaxis Targeting Platelet-Activating Factor and PAF Acetylhydrolase. CURRENT TREATMENT OPTIONS IN ALLERGY 2014. [DOI: 10.1007/s40521-014-0020-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Escamez T, Bahamonde O, Tabares-Seisdedos R, Vieta E, Martinez S, Echevarria D. Developmental dynamics of PAFAH1B subunits during mouse brain development. J Comp Neurol 2013; 520:3877-94. [PMID: 22522921 DOI: 10.1002/cne.23128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Platelet-activating factor (PAF) mediates an array of biological processes in the mammalian central nervous system as a bioactive lipid messenger in synaptic function and dysfunction (plasticity, memory, and neurodegeneration). The intracellular enzyme that deacetylates the PAF (PAFAH1B) is composed of a tetramer of two catalytic subunits, ALPHA1 (PAFAH1B3) and ALPHA2 (PAFAH1B2), and a regulatory dimer of LIS1 (PAFAH1B1). We have investigated the mouse PAFAH1B subunit genes during brain development in normal mice and in mice with a hypomorphic allele for Lis1 (Lis1/sLis1; Cahana et al. [2001] Proc Natl Acad Sci U S A 98:6429-6434). We have analyzed quantitatively (by means of real-time polymerase chain reaction) and qualitatively (by in situ hybridization techniques) the amounts and expression patterns of their transcription in developing and postnatal brain, focusing mainly on differences in two laminated encephalic regions, the forebrain (telencephalon) and hindbrain (cerebellum) separately. The results revealed significant differences in cDNA content between these two brain subdivisions but, more importantly, between the LIS1 complex subunits. In addition, we found significant spatial differences in gene expression patterns. Comparison of results obtained with Lis1/sLis1 analysis also revealed significant temporal and spatial differences in Alpha1 and Lis1 expression levels. Thus, small changes in the amount of the Lis1 gene may differentially regulate expression of Alpha1 and Alpha2, depending on the brain region, which suggests different roles for each LIS1 complex subunit during neural differentiation and neural migration.
Collapse
Affiliation(s)
- Teresa Escamez
- Unidad Mixta de Investigación UVEG-UMH-CIBERSAM, Centro de Investigación Biomédica en Red en el Area de Salud Mental, 03550 San Juan de Alicante, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Tsoupras AB, Papakyriakou A, Demopoulos CA, Philippopoulos AI. Synthesis, biochemical evaluation and molecular modeling studies of novel rhodium complexes with nanomolar activity against Platelet Activating Factor. J Inorg Biochem 2012; 120:63-73. [PMID: 23318288 DOI: 10.1016/j.jinorgbio.2012.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/18/2022]
Abstract
Two square planar Rh(I) organometallic complexes namely [Rh(L(1))(cod)]Cl (cod = cycloocta-1,5-diene, L(1)=2,2'-pyridylquinoxaline (1-Cl), [Rh(L1)(cod)](NO3) (1-NO(3)) and a series of novel octahedral rhodium(III) complexes of the general formulae mer-[Rh(L(1))Cl(3)(MeOH)] (2) and cis-[Rh(L(2))(2)Cl(2)]Cl (L(2)=4 carboxy 2 (2' pyridyl)quinoline (3), L(3)=2,2' bipyridine 4,4' dicarboxylic acid (4) were synthesized and characterized spectroscopically. All the synthesized compounds including the previously prepared cis-[Rh(L(1))(2)Cl(2)]Cl complex (5) were biologically evaluated as potential inhibitors of the Platelet Activation Factor (PAF) and thrombin induced aggregation. In particular compounds 1-Cl and 1-NO(3) were found to be strong inhibitors of PAF with IC(50) values in the range of 16 nM and 15 nM rendering them good candidates for further investigation. Their potency is comparable to that of the widely used PAF receptor antagonists WEB2170, BN52021, and Rupatadine (IC(50) of 20, 30 and 260 nM respectively). Molecular docking calculations suggest that 1-Cl, 1-NO3 and 2 can be accommodated within the ligand-binding site of PAF receptor and block the activity of PAF. On the other hand, the octahedral rhodium(III) complexes 3-5 that cannot fit the ligand-binding domain, could potentially exhibit their activity at the extracellular domain of the receptor.
Collapse
Affiliation(s)
- Alexandros B Tsoupras
- Laboratory of Biochemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | | | | | | |
Collapse
|
20
|
Effect of BN 50730, a Specific PAF Antagonist, on PAF-Induced Platelet Aggregation and Skin Responses in Healthy Human Volunteers. Clin Drug Investig 2012. [DOI: 10.1007/bf03257432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Effects of triazolodiazepine on the production of interleukin-6 from murine spleen cells and rabbit synovial cells in vitro. Mediators Inflamm 2012; 4:130-2. [PMID: 18475629 PMCID: PMC2365624 DOI: 10.1155/s0962935195000226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that regulates the immune response, acute phase anaphylactic reaction, and haematopoiesis. Lipopolysaccharide (6–24 μg/ml) significantly induced IL-6 release from murine spleen cells. In cultured rabbit synovial cells interleukin-1 (IL-1, 1–10 U/ml) induced IL-6 production in a concentration-dependent manner. Triazolodiazepine (Tri) is a hetrazepine platelet-activating factor antagonist. In this study we found that Tri (0.1–10 μmol/l) exerted strong inhibitory effects on LPS stimulated IL-6 production in murine spleen cells. Kinetic studies showed that the inhibition of IL-6 release was time-independent. In rabbit synovial cells Tri also reduced IL-6 release induced by IL-1 and tumour necrosis factor. Inhibition of cytokine production by Tri may partially explain its wide and strong anti-inflammatory effects.
Collapse
|
22
|
Cytokine production by human colonic intraepithelial lymphocytes in controls and ulcerative colitis. Mediators Inflamm 2012; 3:219-22. [PMID: 18472946 PMCID: PMC2367034 DOI: 10.1155/s0962935194000311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Using an ELISA technique, concentrations of γ-interferon and
interleukin-2 were assayed in the supernatants of colonic
intraepithelial lymphocytes cultured with or without
phytohaemagglutinin (PHA). IntraepitheHal lymphocytes produced low
concentrations of γ-interferon and interleukin-2 when
stimulated with PHA, but significantly more than when unstimulated
(p < 0.05). There was no difference in production of these
cytokines by IEL from control or inflammatory bowel disease.
Collapse
|
23
|
Saadawi S, Jalil J, Jasamai M, Jantan I. Inhibitory effects of acetylmelodorinol, chrysin and polycarpol from Mitrella kentii on prostaglandin E₂ and Thromboxane B₂ production and platelet activating factor receptor binding. Molecules 2012; 17:4824-35. [PMID: 22538486 PMCID: PMC6268117 DOI: 10.3390/molecules17054824] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 12/01/2022] Open
Abstract
Acetylmelodorinol, chrysin and polycarpol, together with benzoic acid, benzoquinone and stigmasterol were isolated from the leaves of Mitrella kentii (Bl.) Miq. The compounds were evaluated for their ability to inhibit prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) production in human whole blood using a radioimmunoassay technique. Their inhibitory effect on platelet activating factor (PAF) receptor binding to rabbit platelet was determined using 3H-PAF as a ligand. Among the compounds tested, chrysin showed a strong dose-dependent inhibitory activity on PGE2 production (IC50 value of 25.5 µM), which might be due to direct inhibition of cyclooxygenase-2 (COX-2) enzymatic activity. Polycarpol, acetylmelodorinol and stigmasterol exhibited significant and concentration-dependent inhibitory effects on TXB2 production with IC50 values of 15.6, 19.1 and 19.4 µM, respectively, suggesting that they strongly inhibited COX-1 activity. Polycarpol and acetylmelodorinol showed strong dose-dependent inhibitory effects on PAF receptor binding with IC50 values of 24.3 and 24.5 µM, respectively.
Collapse
Affiliation(s)
| | - Juriyati Jalil
- Author to whom correspondence should be addressed; ; Tel.: +603-9289-7533; Fax: +603-2698-3271
| | | | | |
Collapse
|
24
|
Magnusson CD, Haraldsson GG. Ether lipids. Chem Phys Lipids 2011; 164:315-40. [PMID: 21635876 DOI: 10.1016/j.chemphyslip.2011.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/11/2011] [Accepted: 04/28/2011] [Indexed: 11/25/2022]
Abstract
The naturally occurring 1-O-alkyl-sn-glycerols and their methoxylated congeners, 1-O-(2'-methoxyalkyl)-sn-glycerols, are biologically active compounds, ubiquitously found in nature as diacyl glyceryl ether lipids and phosphoether lipids. The chief objective of this article is to provide a comprehensive and up to date review on such ether lipids. The occurrence and distribution of these compounds in nature are extensively reviewed, their chemical structure and molecular variety, their biosynthesis and chemical synthesis and, finally, their various biological effects are described and discussed. An unprecedented biosynthesis of the 2'-methoxylated alkylglycerols is proposed. The first synthesis of enantiopure (Z)-(2'R)-1-O-(2'-methoxyhexadec-4'-enyl)-sn-glycerol, the most prevalent 2'-methoxylated type alkylglycerol present in cartilaginous fish, is described. It was accomplished by a highly convergent five step process.
Collapse
|
25
|
|
26
|
Structurally diverse metal coordination compounds, bearing imidodiphosphinate and diphosphinoamine ligands, as potential inhibitors of the platelet activating factor. Bioinorg Chem Appl 2010. [PMID: 20689709 PMCID: PMC2905917 DOI: 10.1155/2010/731202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 05/03/2010] [Indexed: 11/18/2022] Open
Abstract
Metal complexes bearing dichalcogenated imidodiphosphinate [R2P(E)NP(E)R2′]− ligands (E = O, S, Se, Te), which act as (E,E) chelates, exhibit a remarkable variety of three-dimensional structures. A series of such complexes, namely, square-planar [Cu{(OPPh2)(OPPh2)N-O, O}2], tetrahedral [Zn{(EPPh2)(EPPh2)N-E,E}2], E = O, S, and octahedral [Ga{(OPPh2)(OPPh2)N-O,O}3], were tested as potential inhibitors of either the platelet activating factor (PAF)- or thrombin-induced aggregation in both washed rabbit platelets and rabbit platelet rich plasma. For comparison, square-planar [Ni{(Ph2P)2N-S-CHMePh-P, P}X2], X = Cl, Br, the corresponding metal salts of all complexes and the (OPPh2)(OPPh2)NH ligand were also investigated. Ga(O,O)3 showed the highest anti-PAF activity but did not inhibit the thrombin-related pathway, whereas Zn(S,S)2, with also a significant PAF inhibitory effect, exhibited the highest thrombin-related inhibition. Zn(O,O)2 and Cu(O,O)2 inhibited moderately both PAF and thrombin, being more effective towards PAF. This work shows that the PAF-inhibitory action depends on the structure of the complexes studied, with the bulkier Ga(O,O)3 being the most efficient and selective inhibitor.
Collapse
|
27
|
Livnat I, Finkelshtein D, Ghosh I, Arai H, Reiner O. PAF-AH Catalytic Subunits Modulate the Wnt Pathway in Developing GABAergic Neurons. Front Cell Neurosci 2010; 4. [PMID: 20725507 PMCID: PMC2901149 DOI: 10.3389/fncel.2010.00019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 05/10/2010] [Indexed: 11/14/2022] Open
Abstract
Platelet-activating factor acetylhydrolase 1B (PAF-AH) inactivates the potent phospholipid platelet-activating factor (PAF) and is composed of two catalytic subunits (α1 and α2) and a dimeric regulatory subunit, LIS1. The function of the catalytic subunits in brain development remains unknown. Here we examined their effects on proliferation in the ganglionic eminences and tangential migration. In α1 and α2 catalytic subunits knockout mice we noticed an increase in the size of the ganglionic eminences resulting from increased proliferation of GABAergic neurons. Our results indicate that the catalytic subunits act as negative regulators of the Wnt signaling pathway. Overexpression of each of the PAF-AH catalytic subunits reduced the amount of nuclear beta-catenin and provoked a shift of this protein from the nucleus to the cytoplasm. In the double mutant mice, Wnt signaling increased in the ganglionic eminences and in the dorsal part of the cerebral cortex. In situ hybridization revealed increased and expanded expression of a downstream target of the Wnt pathway (Cyclin D1), and of upstream Wnt components (Tcf4, Tcf3 and Wnt7B). Furthermore, the interneurons in the cerebral cortex were more numerous and in a more advanced position. Transplantation assays revealed a non-cell autonomous component to this phenotype, which may be explained in part by increased and expanded expression of Sdf1 and Netrin-1. Our findings strongly suggest that PAF-AH catalytic subunits modulate the Wnt pathway in restricted areas of the developing cerebral cortex. We hypothesize that modulation of the Wnt pathway is the evolutionary conserved activity of the PAF-AH catalytic subunits.
Collapse
Affiliation(s)
- Idit Livnat
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | |
Collapse
|
28
|
Kantar A, Giorgi PL, Gratton E, Fiorini R. Probing the Interaction of PAF with Human Platelet Membrane Using the Fluorescent Probe Laurdan. Platelets 2009; 5:145-8. [DOI: 10.3109/09537109409005527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
|
30
|
Coy Barrera ED, Cuca Suárez LE. Three New 7.3',8.5'-Connected Bicyclo[3.2.1]octanoids and Other Neolignans from Leaves of Nectandra amazonum NEES. (Lauraceae). Chem Pharm Bull (Tokyo) 2009; 57:639-42. [DOI: 10.1248/cpb.57.639] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ericsson David Coy Barrera
- Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Química, Laboratorio de Investigación en Productos Naturales Vegetales
| | - Luis Enrique Cuca Suárez
- Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Química, Laboratorio de Investigación en Productos Naturales Vegetales
| |
Collapse
|
31
|
The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol 2008; 1:117-38. [PMID: 19434244 PMCID: PMC2671742 DOI: 10.3342/ceo.2008.1.3.117] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Accepted: 09/20/2008] [Indexed: 12/13/2022] Open
Abstract
This review deals with the characteristics of various inflammatory mediators identified in the middle ear during otitis media and in cholesteatoma. The role of each inflammatory mediator in the pathogenesis of otitis media and cholesteatoma has been discussed. Further, the relation of each inflammatory mediator to the pathophysiology of the middle and inner ear along with its mechanisms of pathological change has been described. The mechanisms of hearing loss including sensorineural hearing loss (SNHL) as a sequela of otitis media are also discussed. The passage of inflammatory mediators through the round window membrane into the scala tympani is indicated. In an experimental animal model, an application of cytokines and lipopolysaccharide (LPS), a bacterial toxin, on the round window membrane induced sensorineural hearing loss as identified through auditory brainstem response threshold shifts. An increase in permeability of the blood-labyrinth barrier (BLB) was observed following application of these inflammatory mediators and LPS. The leakage of the blood components into the lateral wall of the cochlea through an increase in BLB permeability appears to be related to the sensorineural hearing loss by hindering K+ recycling through the lateral wall disrupting the ion homeostasis of the endolymph. Further studies on the roles of various inflammatory mediators and bacterial toxins in inducing the sensorineumral hearing loss in otitis media should be pursued.
Collapse
|
32
|
Reiner O, Sapoznik S, Sapir T. Lissencephaly 1 linking to multiple diseases: mental retardation, neurodegeneration, schizophrenia, male sterility, and more. Neuromolecular Med 2008; 8:547-65. [PMID: 17028375 DOI: 10.1385/nmm:8:4:547] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 01/27/2006] [Accepted: 01/29/2006] [Indexed: 12/11/2022]
Abstract
Lissencephaly 1 (LIS1) was the first gene implicated in the pathogenesis of type-1 lissencephaly. More than a decade of research by multiple laboratories has revealed that LIS1 is a key node protein, which participates in several pathways, including association with the molecular motor cytoplasmic dynein, the reelin signaling pathway, and the platelet-activating factor pathway. Mutations in LIS1-interacting proteins, either in human, or in mouse models has suggested that LIS1 might play a role in the pathogenesis of numerous diseases such as male sterility, schizophrenia, neuronal degeneration, and viral infections.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | |
Collapse
|
33
|
Antonopoulou S, Karantonis HC. SEPARATION OF POLAR LIPIDS FROM SOYBEAN OIL AND COTTON SEED OIL BY ONE-STEP HPLC SYSTEM. BIOLOGICAL ACTIVITY OF ISOLATED LIPIDS. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120003034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Smaragdi Antonopoulou
- a Department of Science of Nutrition-Dietetics , Harokopio University of Athens , Athens, Greece
| | - Haralabos C. Karantonis
- b Faculty of Chemistry , National and Kapodistrian University of Athens , Athens, Panepistimioupolis 15771, Greece
| |
Collapse
|
34
|
Lovera J, Bagert B, Smoot K, Morris CD, Frank R, Bogardus K, Wild K, Oken B, Whitham R, Bourdette D. Ginkgo biloba for the improvement of cognitive performance in multiple sclerosis. Mult Scler 2007; 13:376-85. [PMID: 17439907 DOI: 10.1177/1352458506071213] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives To determine if Ginkgo biloba (GB) improves the cognitive performance of subjects with multiple sclerosis (MS). Methods Randomized, double-blind, placebo-controlled trial of GB, 120 mg twice a day or placebo for 12 weeks. The primary outcomes were: the long delay free recall from the California Verbal Learning Test-II; the Paced Auditory Serial Addition Test; the Controlled Oral Word Association Test; the Symbol Digit Modalities Test; Useful Field of View Test; and the color-word interference condition from the Stroop Color and Word Test. Results On completion, the GB group (n=20) was 4.5 seconds (95% confidence interval (CI) (7.6, 0.9), P=0.015) faster than the placebo group (n=18) on the color-word interference condition of the Stroop test. Subjects who were more impaired at baseline experienced more improvement with GB (treatment*baseline interaction, F=8.10, P=0.008). We found no differences on the other neuropsychological tests. Subjects on GB reported fewer cognitive difficulties in the Retrospective Memory Scale of the Perceived Deficits Questionnaire than subjects on placebo (1.5 points, 95% CI (2.6, 0.3), P=0.016). No serious drug related side-effects occurred and GB did not alter platelet function assays. Conclusion Overall, GB did not show a statistically significant improvement in cognitive function. A treatment effect trend, limited to the Stroop test, suggests that GB may have an effect on cognitive domains assessed by this test, such as susceptibility to interference and mental flexibility. Multiple Sclerosis 2007; 13: 376-385. http://msj.sagepub.com
Collapse
Affiliation(s)
- J Lovera
- Department of Veterans Affairs Medical Center, Portland, OR, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chu WF, Sun HL, Dong DL, Qiao GF, Yang BF. Increasing Intracellular Calcium of Guinea Pig Ventricular Myocytes Induced by Platelet Activating Factor through IP3 Pathway. Basic Clin Pharmacol Toxicol 2006; 98:104-9. [PMID: 16433899 DOI: 10.1111/j.1742-7843.2006.pto_313.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We used Fluo-3/AM to examine the effect of platelet-activating factor on the intracellular Ca2+([Ca2+]i) levels in isolated myocytes of guinea pig ventricle. Myocytes were isolated with Langendorff perfusion technique and were challenged with platelet-activating factor. Addition of platelet-activating factor (1 pM to 10 nM) significantly increased the [Ca2+]i in the presence and absence of extracellular Ca2+. The notion that increases in intracellular Ca2+ induced by platelet-activating factor is the result of stimulation of intracellular Ca2+ pool rather than increasing Ca2+ influx was further supported by the whole cell patch-clamp experiments in which the platelet-activating factor did not alter the activity of L-type of Ca2+ channels (I(Ca-L)). Treatment of myocytes with ryanodine failed to abolish the stimulatory effect of platelet-activating factor on [Ca2+]i. In contrast, inhibition of IP3-sensitive Ca2+ release pool with 2-aminoethoxydiphenyl borate (2-APB) blocked the effect of platelet-activating factor. We conclude that the platelet-activating factor-induced increase in intracellular Ca2+ is mediated by stimulation of IP3 receptor but not by stimulation of I(Ca-L) and ryanodine-sensitive receptor.
Collapse
Affiliation(s)
- Wen-Feng Chu
- Department of Pharmacology, Harbin Medical University, and Bio-pharmaceutical Key Laboratory of Heilongjiang Province-Incubator of State Key Laboratory, Harbin, 150086, PR China
| | | | | | | | | |
Collapse
|
36
|
Abstract
This review is focused on the effects of histamine and platelet-activating factor (PAF) in allergic rhinitis and the plausible implications for therapy. Rhinitis is defined as a heterogeneous disorder resulting from an IgE-mediated reaction associated with nasal inflammation of variable intensity. Two phases of response are triggered by an IgE/allergen cross-linking event: the first is the release of preformed mediators such as histamine or interleukins from mast cells and basophils; the second begins when cells start producing lipid-derived mediators. One of these mediators is PAF. Apart from leukotrienes, PAF is perhaps the most potent inflammatory mediator in allergic rhinitis for inducing vascular leakage, a response that may contribute to the appearance of rhinorrhea and nasal congestion.
Collapse
Affiliation(s)
- V Alfaro
- Department of Physiology, University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
37
|
Sarchielli P, Alberti A, Coppola F, Baldi A, Gallai B, Floridi A, Floridi A, Capocchi G, Gallai V. Platelet-activating factor (PAF) in internal jugular venous blood of migraine without aura patients assessed during migraine attacks. Cephalalgia 2004; 24:623-30. [PMID: 15265050 DOI: 10.1111/j.1468-2982.2003.00717.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the study was to verify the production of PAF and the activity of PAF acetyl-hydrolase (PAF-AH), the enzyme involved in the catabolism of this phospholipid mediator, in migraine attacks. Their levels were determined during migraine crises in serial samples of internal jugular venous blood taken from five migraine patients without aura, who were admitted to the hospital during the crises. Internal jugular venous blood samples were taken immediately after catheter insertion at 1, 2, and 4 h after attack onset, and within 2 h from its cessation. PAF was purified by high-performance liquid chromatography (HPLC) and determined by radioimmunoassay method. The enzymatic activity of PAF-AH was measured by reverse-phase HPLC, based on the derivatization with 7-diethylaminocoumarin-3-carbonylazide. In the internal jugular venous blood of migraine patients without aura (MO), an increase was observed in PAF levels, which was already evident at the time of catheter insertion (885.6 +/- 82.8) and at the first hour (868.4 +/- 65.24) (ANOVA: P < 0.0001). PAF levels remained elevated through the second (746.8 +/- 82.95), fourth (700.6 +/- 34.93) and sixth hours (644.4 +/- 42.85), and then decreased at the end of the attack, reaching levels significantly lower than those measured at the time of catheter insertion (565.5 +/- 38.34). The activity of PAF-AH showed an opposite trend with higher values at the first hour and significantly lower values at the second and fourth hours from the beginning of the migraine attack (ANOVA: P < 0.02). The increased production of PAF may account for persistent platelet activation during migraine crises, even in the presence of an increased production of nitric oxide (NO) end-products which, on the other hand, should instead intervene in counteracting and limiting platelet activation. Potential sources of PAF production are the endothelial cells from cerebral vessels, stimulated by trigeminal neuropeptides, platelets themselves, and mast cells, as suggested by the neurogenic inflammation model.
Collapse
Affiliation(s)
- P Sarchielli
- Department of Neuroscience, Institute of Clinical and Applied Biochemistry, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang X, Yuan CL, Zhang HZ, Huang RX. Age-related increase of plasma platelet-activating factor concentrations in Chinese. Clin Chim Acta 2004; 337:157-62. [PMID: 14568193 DOI: 10.1016/j.cccn.2003.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelet-activating factor (PAF) is a potent bioactive phospholipid, which may be one of the determinants of atherogenesis. The purpose of this study was to investigate the relationship between the concentrations of plasma platelet-activating factor and age in a common Chinese population. METHODS Two-hundred seventy-nine Han nation subjects (male: n=162; female: n=117) who had visited two hospitals for overall health survey, as an annual medical check-up or for other reasons by clinical examinations were recruited and divided into six age groups (21-30, 31-40, 41-50, 51-60, 61-70, 71-80 years). PAF was extracted from their plasma and purified by thin-layer chromatography (TLC). The PAF concentrations were detected by radioimmunoassay. RESULTS The PAF concentrations (pg/ml) in plasma showed significantly age-related increase (r=0.3348, P<0.01, n=279). In the 21-30-year group, the PAF concentration was 338+/-96 pg/ml. Except for the 31-40-year group, the PAF concentrations in other four groups were all higher than that of the 21-30-year group (P<0.05, P<0.01, P<0.001 and P<0.001, respectively). CONCLUSIONS Considering PAF is one of the key factors relevant to progression of atherogenesis, and the high concentrations of plasma PAF may therefore serve as a marker for the risk of atherosclerosis. Adjustment of the concentrations of plasma PAF correlated with aging may be helpful to reducing the prevalence rate of multi-senile arteriosclerosis occlusive diseases.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Neurology, Clinical Medicine College, Yangzhou University, Yangzhou, Jiangsu Province 225001, PR China.
| | | | | | | |
Collapse
|
39
|
Abstract
The onset of clinical assisted reproduction, a quarter of a century ago, required the isolation of motile spermatozoa. As the indication of assisted reproduction shifted from mere gynaecological indications to andrological indications during the years, this urged andrological research to understand the physiology of male germ cell better and develop more sophisticated techniques to separate functional spermatozoa from those that are immotile, have poor morphology or are not capable to fertilize oocytes. Initially, starting from simple washing of spermatozoa, separation techniques, based on different principles like migration, filtration or density gradient centrifugation evolved. The most simple and cheapest is the conventional swim-up procedure. A more sophisticated and most gentle migration method is migration-sedimentation. However, its yield is relatively small and the technique is therefore normally only limited to ejaculates with a high number of motile spermatozoa. Recently, however, the method was also successfully used to isolate spermatozoa for intracytoplasmic sperm injection (ICSI). Sperm separation methods that yield a higher number of motile spermatozoa are glass wool filtration or density gradient centrifugation with different media. Since Percoll as a density medium was removed from the market in 1996 for clinical use in the human because of its risk of contamination with endotoxins, other media like IxaPrep, Nycodenz, SilSelect, PureSperm or Isolate were developed in order to replace Percoll. Today, an array of different methods is available and the selection depends on the quality of the ejaculates, which also includes production of reactive oxygen species (ROS) by spermatozoa and leukocytes. Ejaculates with ROS production should not be separated by means of conventional swim-up, as this can severely damage the spermatozoa. In order to protect the male germ cells from the influence of ROS and to stimulate their motility to increase the yield, a number of substances can be added to the ejaculate or the separation medium. Caffeine, pentoxifylline and 2-deoxyadenosine are substances that were used to stimulate motility. Recent approaches to stimulate spermatozoa include bicarbonate, metal chelators or platelet-activating factor (PAF). While the use of PAF already resulted in pregnancies in intrauterine insemination, the suitability of the other substances for the clinical use still needs to be tested. Finally, the isolation of functional spermatozoa from highly viscous ejaculates is a special challenge and can be performed enzymatically to liquefy the ejaculate. The older method, by which the ejaculate is forcefully aspirated through a narrow-gauge needle, should be abandoned as it can severely damage spermatozoa, thus resulting in immotile sperm.
Collapse
Affiliation(s)
- Ralf R Henkel
- Department of Dermatology and Andrology, Justus Liebig University, Giessen, Gaffkystr. 14, Germany
| | - Wolf-Bernhard Schill
- Department of Dermatology and Andrology, Justus Liebig University, Giessen, Gaffkystr. 14, Germany
| |
Collapse
|
40
|
Antonopoulou S, Oikonomou A, Karantonis HC, Fragopoulou E, Pantazidou A. Isolation and structural elucidation of biologically active phospholipids from Scytonema julianum (cyanobacteria). Biochem J 2002; 367:287-93. [PMID: 12038967 PMCID: PMC1222851 DOI: 10.1042/bj20020146] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 05/27/2002] [Accepted: 05/31/2002] [Indexed: 11/17/2022]
Abstract
The role of platelet-activating factor (PAF) as a mediator appeared in rather primitive organisms like protozoans and was maintained in more evolved organisms. No reports exist for the presence of PAF or PAF analogues - or even compounds that exhibit PAF-like activity - in cyanobacteria, even though they belong to a a group of organisms at a low evolutionary level where the content of alkylacyl forms of ether lipids is expected to be high. In addition, cyanobacteria serve as a rich source of novel bioactive metabolites. In the present study the total lipids of a strain of Scytonema julianum, a filamentous cyanobacterium isolated from a Greek cave, were separated into neutral lipids and phospholipids, the latter being further fractionated by HPLC. Each phospholipid fraction was tested in vitro for its ability to inhibit PAF-, arachidonic acid- and ADP-induced washed-rabbit-platelet aggregation and/or to cause platelet aggregation. Two types of phospholipids causing platelet aggregation were detected and shown to be an acetylsphingomyelin and an acylacetylglycerol phosphoacetylated glycolipid. The existence of the sphingomyelin analogues is very important, since ceramides, cerebrosides and related lipids are intracellular second messengers. The identification of the phosphoglycoglycerolipid demonstrates a new type of lipid in cyanobacteria, namely one that exhibits a biological activity very similar to that of PAF. Its presence reinforces the concept that PAF is a member of a large family of lipid mediators, apparently having different physiological roles in prokaryotic and eukaryotic organisms. In addition, Scytonema julianum contains a phosphatidylcholine (C(16:0)/(18:2)), even though bacteria in general seldom contain choline-containing phosphoacylglycerols.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Department of Science of Dietetics-Nutrition, Harokopio University, 70 El. Venizelou Street, 17671 Athens, Greece.
| | | | | | | | | |
Collapse
|
41
|
Kalkanci A, Kuştimur S, Timlioğlu O, Uluoğlu C. The role of tumour necrosis factor-alpha (TNF-alpha) and platelet-activating factor (PAF) interaction on murine candidosis. Mycoses 2002; 45:79-83. [PMID: 12000505 DOI: 10.1046/j.1439-0507.2002.00726.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tumour necrosis factor-alpha (TNF-alpha) is related to some other factors in addition to being the essential cytokine of the sepsis which results from Candida infections. In our study, we investigated serum TNF-alpha levels, measured by enzyme-linked immunosorbent assay (ELISA), and platelet-activating factor (PAF)-like activity, measured by high-pressure liquid chromatography (HPLC) of the mice infected with Candida species. The PAF antagonist, ginkgolide BN 52021 was used to evaluate the possible interaction between TNF-alpha and PAF. The average TNF-alpha levels were found to be 396, 489, 699 and 803 pg ml(-1) on the 4th, 5th, 6th and 19th days of Candida albicans infection, respectively (P<0.05). There was no statistically significant difference between the serum TNF-alpha levels of the groups infected with other Candida species, such as C. kefyr, C. krusei and C. tropicalis (P>0.05). Serum TNF-alpha levels were found to be more significantly different in mice with C. albicans infection that were injected with PAF antagonists on the 6th day (23 pg ml(-1)). It was therefore thought that PAF antagonists have an inhibitory effect on TNF-alpha production. No significant difference was found between PAF levels in the three groups: healthy control mice, C. albicans-infected mice and C. albicans-infected mice given PAF antagonists (466 milli-absorbance unit (mAU), 475 mAU and 329 mAU, respectively). It was noticed that the positive interaction between PAF and TNF-alpha was not important after the first 4 days of the infection had passed.
Collapse
Affiliation(s)
- A Kalkanci
- Department of Microbiology, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
42
|
Reid MS, Ho LB, Hsu K, Fox L, Tolliver BK, Adams JU, Franco A, Berger SP. Evidence for the involvement of cyclooxygenase activity in the development of cocaine sensitization. Pharmacol Biochem Behav 2002; 71:37-54. [PMID: 11812506 DOI: 10.1016/s0091-3057(01)00614-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phospholipase A2 (PLA(2)) activation generates the release of arachidonic acid (AA) and platelet-activating factor (PAF), two compounds which may be involved in neuroplasticity. In previous studies, we found that PLA(2) activation is involved in the development of stimulant sensitization. In the present study, we have examined the roles of AA and PAF in the development of stimulant sensitization using agonists and antagonists selective for PAF receptors or the induction of various AA cascade-mediated eicosanoids. Sprague-Dawley rats were treated for 5 days with cocaine (30 mg/kg) or D-amphetamine (1 mg/kg) preceded 15 min earlier by various antagonists, and then tested following a 10-day withdrawal period for cocaine (15 mg/kg) or D-amphetamine (0.5 mg/kg)-induced locomotion. Consistent with our earlier work, pretreatment with the PLA(2) inhibitor quinacrine (25 mg/kg) blocked the development of cocaine and amphetamine sensitization. The lipoxygenase (LOX) inhibitors nordihydroguaiaretic acid (NDGA) (5-10 mg/kg) and MK-886 (1 mg/kg) had no effect on cocaine sensitization. The PAF receptor antagonist WEB 2086 (5-10 mg/kg) reduced the development of cocaine sensitization. The cyclooxygenase (COX) inhibitors indomethacin (1-2 mg/kg), piroxicam (0.5-1 mg/kg), 6-methoxy-2-napthylacetic acid (6-MNA; 0.5-1 mg/kg), and NS-398 (0.5-1 mg/kg) blocked the development of cocaine sensitization. The COX inhibitors indomethacin (2 mg/kg) and 6-MNA (1 mg/kg) also reduced the development of amphetamine sensitization. Rats were administered bilateral intraventral tegmental area (VTA) injections of D-amphetamine (5 microg/side) or saline coadministered with indomethacin (0.5 microg/side) or vehicle three times over 5 days and were then tested after a 10-day withdrawal for D-amphetamine (0.5 mg/kg ip)-induced locomotion. Intra-VTA amphetamine induced a robust form of amphetamine sensitization, which was blocked by coadministration of indomethacin. Unilateral intra-VTA injections of PAF (1 microg) did not significantly alter cocaine (15 mg/kg ip)-induced locomotion when tested after a 3-day withdrawal. These findings suggest that COX, and possibly PAF, activity is involved in the development of stimulant sensitization. Neuroanatomical studies demonstrate that this may occur at the level of the VTA.
Collapse
Affiliation(s)
- Malcolm S Reid
- Department of Psychiatry, New York University School of Medicine, Psychiatry Research 116A, New York Veterans Affairs Medical Center, 423 East 23rd Street, New York, NY 10010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Qian C, Hwang SB, Libertine-Garahan L, Eckman JB, Cai X, Scannell RT, Yeh CG. Anti-inflammatory activities of LDP-392, a dual PAF receptor antagonist and 5-lipoxygenase inhibitor. Pharmacol Res 2001; 44:213-20. [PMID: 11529688 DOI: 10.1006/phrs.2001.0808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leukotrienes (LTs) and platelet-activating factor (PAF) are important mediators of inflammation and allergy. LDP-392, a novel dual PAF receptor antagonist and 5-lipoxygenase (5-LO) inhibitor, has been identified. LDP-392 is 17.9-fold more potent than zileuton (5-LO inhibitor) in the RBL cytosolic 5-LO assay, and equally potent as MK 287 (PAF receptor antagonist) in the human platelet PAF receptor binding assay. The in vivo dual activities of LDP-392 were confirmed by measuring the inhibition of ex vivo LTB(4)production in rats and PAF-induced hemoconcentration in mice. Intravenous administration of LDP-392 demonstrated greater inhibition than zileuton, BN 50739 or MK 287 on arachidonic acid-induced ear edema and protected mice from LPS-induced lethality. Topical administration of LDP-392, in a dose-dependent manner, inhibited TPA-induced ear edema in mice and UVB-induced erythema in guinea-pigs. These data suggest that LDP-392, as a dual PAF receptor antagonist and 5-LO inhibitor, may be of greater clinical effectiveness.
Collapse
Affiliation(s)
- C Qian
- Millennium Pharmaceutical Inc., Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
BACKGROUND In recent years herbal medicines and supplements have become increasingly popular. With their increased popularity, more publications are warning about the potential harmful effects of some of these products. OBJECTIVE To present scientific evidence of the benefits and surgical risks of herbal products. METHODS A Medline search and review of the literature was performed. RESULTS Many herbal medicines are relevant in dermatologic surgery since Ginkgo biloba, garlic, ginger, ginseng, feverfew, and vitamin E may increase the risk of bleeding, and ephedra may potentiate the side effects of epinephrine. CONCLUSION Dermatologists should be aware of these herbal products and their uses. Many of these products prescribed by alternative medicine physicians or purchased over the counter should be discontinued prior to dermatologic surgery to minimize the risk of surgical complications.
Collapse
Affiliation(s)
- L K Chang
- Department of Dermatology, University of Iowa College of Medicine, Iowa City, Iowa 52242-1090, USA
| | | |
Collapse
|
46
|
O'Brien E, McInnes GT, Stanton A, Thom S, Caulfield M, Atkins N, Nichol FM. Ambulatory blood pressure monitoring and 24-h blood pressure control as predictors of outcome in treated hypertensive patients. J Hum Hypertens 2001; 15 Suppl 1:S47-51. [PMID: 11685910 DOI: 10.1038/sj.jhh.1001076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- E O'Brien
- Blood Pressure Unit, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | |
Collapse
|
47
|
The Impact of Herbal Medicines on Dermatologic Surgery. Dermatol Surg 2001. [DOI: 10.1097/00042728-200108000-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Wittwer T, Grote M, Oppelt P, Franke U, Schaefers HJ, Wahlers T. Impact of PAF antagonist BN 52021 (Ginkolide B) on post-ischemic graft function in clinical lung transplantation. J Heart Lung Transplant 2001; 20:358-63. [PMID: 11257563 DOI: 10.1016/s1053-2498(00)00226-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Platelet activating factor (PAF) is associated with ischemia/reperfusion injury (I/R) after lung transplantation. Following promising experimental results, this prospective trial investigated the potential effect of PAF antagonist BN 52021 (ginkolide B) on clinical Euro-Collins (EC)-based lung preservation. METHODS We analyzed 8 double-lung transplant patients in each of 3 groups. In the low-dose group (LDG), donor lungs were perfused with EC containing 2 mg/kg BN 52021, whereas we used 10 mg/kg in the high-dose group (HDG) and placebo in the control group (CG). Before reperfusing the first lung, we administered intravenously 120 mg BN 52021 (LDG), 600 mg BN 52021 (HDG), or placebo (CG). Hemodynamics in terms of pulmonary arterial pressure, pulmonary vascular resistance and serial determinations of the alveolo-arterial oxygen difference (AaDO(2)) were recorded. We measured blood levels of PAF pre-operatively and post-operatively, after 10 minutes and after 3, 8, 24, 48, and 144 hours. RESULTS Within 32 hours, we noted a tendency toward better AaDO(2) in the LDG and the HDG compared with the CG (p > 0.05). We observed a significant improvement of AaDO(2) after 3 hours (HDG, p = 0.033) and 8 hours (LDG, p = 0.024), with poorest values in the CG. The PAF concentrations were lowest in the HDG, with significant deterioration 10 minutes after reperfusion. In contrast, placebo led to higher PAF levels. We measured significantly lower PAF concentrations (HDG vs CG) at 10 minutes and at 6 days post-operatively. CONCLUSIONS Use of high-dose PAF antagonist BN 52021 can easily be combined with clinical preservation methods and may help optimize pulmonary function with reduced PAF levels, in the early post-ischemic period.
Collapse
Affiliation(s)
- T Wittwer
- Department of Cardiothoracic and Vascular Surgery, Friedrich-Schiller University, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Nathan P. Can the cognitive enhancing effects of ginkgo biloba be explained by its pharmacology? Med Hypotheses 2000; 55:491-3. [PMID: 11090296 DOI: 10.1054/mehy.2000.1099] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pre-clinical and clinical studies have shown that the extract of the leaves of Ginkgo biloba has modest therapeutic potential as a cognitive enhancing drug. The pharmacology of Ginkgo biloba is complex due to its multiple active constituents. While Ginkgo biloba's cognitive enhancing effects have been attributed to its platelet-activating factor antagonistic effects and its free-radical scavenger activity, recent evidence suggests it may have direct effects on the cholinergic system which might explain both its acute and chronic cognitive enhancing effects. Ginkgo biloba's direct cholinergic actions include reduction of scopolamine-induced amnesia, modulation of pre-synaptic choline uptake and acetylcholine release, upregulation of post-synaptic muscarnic receptors and indirect effects on cholinergic function by modulation of the serotonergic system. The overall pharmacodynamic effect of Ginkgo biloba is likely due to a combination of platelet activating factor antagonistic effects, free radical scavenging activity and modulation of cholinergic function.
Collapse
Affiliation(s)
- P Nathan
- Brain Sciences Institute, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
50
|
Tiano L, Kantar A, Falcioni G, Littarru GP, Cherubini V, Fiorini R. Oxidative response and membrane modification of diabetic platelets challenged with PAF. Prostaglandins Other Lipid Mediat 2000; 62:351-66. [PMID: 11060899 DOI: 10.1016/s0090-6980(00)00082-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alterations in the functional activities of platelets (PLT) in type I diabetes have been widely observed. These changes play a key role in the development of cardiovascular complications in diabetes. Various functional activities of PLT are the result of the interaction of numerous stimuli with PLT plasma membrane. This study was designed to evaluate the oxidative response and membrane modifications of diabetic PLT stimulated by platelet activating factor (PAF). The oxidative response was assessed by employing luminol- and lucigenin-amplified chemiluminescence. Luminol-amplified chemiluminescence is sensitive to the release of hydrogen peroxide whereas lucigenin-amplified chemiluminescence is sensitive to the production of superoxide anion. Membrane fluidity and polarity were studied using fluorescence spectroscopy. Membrane fluidity was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) and membrane polarity was studied by measuring the steady-state fluorescence emission and excitation spectra of 2-dimethylamino[6-lauroyl]-naphthalene (Laurdan). The diabetic group consisted of 20 type I diabetic children with good metabolic control. Our results show a significant decrease in the luminol- and lucigenin-amplified chemiluminescence of PAF stimulated PLT in the diabetic group with respect to controls. These data indicate a decrement in the release of reactive oxygen species by diabetic PLT. We observed a significant increase in steady-state fluorescence anisotropy of diabetic PLT membrane that reflects a decrease in membrane fluidity. Laurdan showed a blue shift of the fluorescence emission and excitation spectra in diabetic PLT with respect to the control group, indicating a decrease in membrane polarity. The addition of PAF to PLT induced a red shift of Laurdan spectra in both groups, indicating an increase in membrane polarity. Our study [table: see text] demonstrates an altered oxidative response to PAF stimulation of diabetic PLT, probably due to altered generation or handling of reactive oxygen species, and alterations in the physico-chemical properties of the plasma membrane which could influence various functional activities of PLT.
Collapse
Affiliation(s)
- L Tiano
- Department of M.C.A. Biology, University of Camerino, Italy.
| | | | | | | | | | | |
Collapse
|