1
|
Kerek Á, Román I, Szabó Á, Kovács D, Kardos G, Kovács L, Jerzsele Á. Antibiotic resistance genes in Escherichia coli - literature review. Crit Rev Microbiol 2025:1-35. [PMID: 40249005 DOI: 10.1080/1040841x.2025.2492156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Antimicrobial resistance threatens humans and animals worldwide and is recognized as one of the leading global public health issues. Escherichia coli (E. coli) has an unquestionable role in carrying and transmitting antibiotic resistance genes (ARGs), which in many cases are encoded on plasmids or phage, thus creating the potential for horizontal gene transfer. In this literature review, the authors summarize the major antibiotic resistance genes occurring in E. coli bacteria, through the major antibiotic classes. The aim was not only listing the resistance genes against the clinically relevant antibiotics, used in the treatment of E. coli infections, but also to cover the entire resistance gene carriage in E. coli, providing a more complete picture. We started with the long-standing antibiotic groups (beta-lactams, aminoglycosides, tetracyclines, sulfonamides and diaminopyrimidines), then moved toward the newer groups (phenicols, peptides, fluoroquinolones, nitrofurans and nitroimidazoles), and in every group we summarized the resistance genes grouped by the mechanism of their action (enzymatic inactivation, antibiotic efflux, reduced permeability, etc.). We observed that the frequency of antibiotic resistance mechanisms changes in the different groups.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - István Román
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Dóra Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Gábor Kardos
- One Health Institute, University of Debrecen, Debrecen, Hungary
- National Public Health Center, Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Nyíregyháza, Hungary
| | - László Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| |
Collapse
|
2
|
Liu R, Long Q, Liu Y, Wang L. Screening of priority antibiotics in Fenhe River Basin based on the environmental exposure, ecological effects, and human health risk. CHEMOSPHERE 2025; 370:143953. [PMID: 39708951 DOI: 10.1016/j.chemosphere.2024.143953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Antibiotics in surface water have attracted increasing attention because of their potential threats to aquatic ecosystems and public health. Therefore, it is crucial to develop a priority antibiotic list and establish a regulatory framework for antibiotic control. Taking the Fenhe River Basin in North China as the study area, a method to rank priority antibiotics based on their environmental exposure, ecological effects, and human health risks was established. Twenty antibiotics were detected, with the highest average concentration (118.30 ng/L) of sulfonamides. Among them, azithromycin had the lowest BioWIN3 value, and its logKow value was >4, which means that it has poor biodegradability, is relatively easily adsorbed in the soil or sediment, and is persistent. Additionally, based on a survey of local species with different nutritional structures, the ecological risk thresholds of antibiotics were calculated. The results showed that quinolones had the lowest risk threshold of average value 287.23 ng/L, with a greater potential for a negative effect on the ecological environment. Based on the threshold, norfloxacin, ofloxacin, and erythromycin were identified as the pollutants of ecological risk, their peak concentrations were approximately 2.4 times, 2 times, and 9 times their risk thresholds, respectively, which mainly distributed in the middle reaches. Regarding human health risks, ciprofloxacin posed the highest health risk, with an average health risk entropy of 2.81. Finally, the calculated results of the priority rating of antibiotics showed that ciprofloxacin, enrofloxacin, erythromycin, and azithromycin were the highest-priority antibiotics and should be prioritized in risk management.
Collapse
Affiliation(s)
- Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Qingfeng Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Linfang Wang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong, 030600, China
| |
Collapse
|
3
|
He Z, Fan G, Xu Z, Wu S, Xie J, Qiang W, Xu KQ. A comprehensive review of antibiotics stress on anammox systems: Mechanisms, applications, and challenges. BIORESOURCE TECHNOLOGY 2025; 418:131950. [PMID: 39647715 DOI: 10.1016/j.biortech.2024.131950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Anaerobic ammonia oxidation (anammox), an energy-efficient technology for treating ammonium-rich wastewater, faces the challenge of antibiotic stress in sewage. This paper systematically evaluated the impact of antibiotics on anammox by considering both inhibitory effects and recovery duration. This review focused on cellular responses, including extracellular polymeric substances (EPS), quorum sensing (QS), and enzymes. Then, the physiological properties of cells and the interactions between nitrogen and carbon metabolism under antibiotic stress were discussed, particularly within the anammoxosome. The microbial community evolution and the development and transfer of antibiotic resistance genes (ARGs) were further analyzed to reveal the resistance mechanisms of anammox. To address the limitations imposed by antibiotics, the development of bio-augmentation and combined processes based on molecular biology techniques, such as bio-electrochemical systems (BES), has been suggested. This review offered new insights into the mechanisms of antibiotic inhibition during the anammox process and aimed to advance their engineering applications.
Collapse
Affiliation(s)
- Zhimin He
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Zongqiong Xu
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Shiyun Wu
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jiankun Xie
- Fujian Academy of Building Research Co., Ltd., 350116, Fujian, China
| | - Wei Qiang
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Kai-Qin Xu
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; College of Environment and Safety Engineering, Fuzhou University, 350116, Fujian, China.
| |
Collapse
|
4
|
Pradhan BL, Lodhi L, Dey KK, Ghosh M. Analyzing atomic scale structural details and nuclear spin dynamics of four macrolide antibiotics: erythromycin, clarithromycin, azithromycin, and roxithromycin. RSC Adv 2024; 14:17733-17770. [PMID: 38832242 PMCID: PMC11145140 DOI: 10.1039/d4ra00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
The current investigation centers on elucidating the intricate molecular architecture and dynamic behavior of four macrolide antibiotics, specifically erythromycin, clarithromycin, azithromycin, and roxithromycin, through the application of sophisticated solid-state nuclear magnetic resonance (SSNMR) methodologies. We have measured the principal components of chemical shift anisotropy (CSA) parameters, and the site-specific spin-lattice relaxation time at carbon nuclei sites. To extract the principal components of CSA parameters, we have employed 13C 2DPASS CP-MAS SSNMR experiments at two different values of magic angle spinning (MAS) frequencies, namely 2 kHz and 600 Hz. Additionally, the spatial correlation between 13C and 1H nuclei has been investigated using 1H-13C frequency switched Lee-Goldburg heteronuclear correlation (FSLGHETCOR) experiment at a MAS frequency of 24 kHz. Our findings demonstrate that the incorporation of diverse functional groups, such as the ketone group and oxime group with the lactone ring, exerts notable influences on the structure and dynamics of the macrolide antibiotic. In particular, we have observed a significant decrease in the spin-lattice relaxation time of carbon nuclei residing on the lactone ring, desosamine, and cladinose in roxithromycin, compared to erythromycin. Overall, our findings provide detailed insight into the relationship between the structure and dynamics of macrolide antibiotics, which is eventually correlated with their biological activity. This knowledge can be utilized to develop new and more effective drugs by providing a rational basis for drug discovery and design.
Collapse
Affiliation(s)
- Bijay Laxmi Pradhan
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University Varanasi-221005 Uttar-Pradesh India
- Department of Physics, Institute of Science, Banaras Hindu University Varanasi-221005 Uttar-Pradesh India
| | - Lekhan Lodhi
- Department of Zoology, Dr Harisingh Gour Central University Sagar-470003 Madhya-Pradesh India
| | - Krishna Kishor Dey
- Department of Physics, Dr Harisingh Gour Central University Sagar-470003 Madhya-Pradesh India
| | - Manasi Ghosh
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University Varanasi-221005 Uttar-Pradesh India
| |
Collapse
|
5
|
Ianiski LB, Maciel AF, Colla ACN, Braga CQ, Sangioni LA, Pal M, Pereira DIB, Santurio JM, Botton SDA. Pythium insidiosum: In vitro oomicidal evaluation of telithromycin and interactions with azithromycin and amorolfine hydrochloride. J Mycol Med 2024; 34:101460. [PMID: 38266397 DOI: 10.1016/j.mycmed.2024.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
This study evaluated the repositioning of the ketolide antibacterial telithromycin (TLT) against the oomycete Pythium insidiosum and verified the combination of TLT and the antimicrobials azithromycin (AZM) and amorolfine hydrochloride (AMR), which have known anti-P. insidiosum activity. Susceptibility tests of P. insidiosum isolates (n = 20) against the drugs were carried out according to CLSI protocol M38-A2, and their combinations were evaluated using the checkerboard microdilution method. The minimum inhibitory concentrations were 0.5-4 µg/mL for TLT, 2-32 µg/mL for AZM, and 16-64 µg/mL for AMR. For the TLT+AZM combination, 52.75 % of interactions were indifferent, 43.44 % were antagonistic, and 9.70 % were synergistic. As for interactions of the TLT+AMR combination, 60.43 % were indifferent, 39.12 % were antagonistic, and 10.44 % synergistic interactions. This study is the first to evaluate the repositioning of the antibacterial TLT against mammalian pathogenic oomycetes, and our results show that its isolated action is superior to its combinations with either AZM or AMR. Therefore, we recommend including TLT in future research to evaluate therapeutic approaches in different clinical forms of human and animal pythiosis.
Collapse
Affiliation(s)
- Lara Baccarin Ianiski
- Departamento de Medicina Veterinária Preventiva, Laboratório de Saúde Única, Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF) e de Medicina Veterinária (PPGMV), Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Av. Roraima N° 1000, Prédio 44, sala 5132, CEP, Santa Maria, RS 97105-900, Brazil
| | - Aline Fontanella Maciel
- Departamento de Medicina Veterinária Preventiva, Laboratório de Saúde Única, Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF) e de Medicina Veterinária (PPGMV), Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Av. Roraima N° 1000, Prédio 44, sala 5132, CEP, Santa Maria, RS 97105-900, Brazil
| | - Ana Carolina Nolasco Colla
- Departamento de Medicina Veterinária Preventiva, Laboratório de Saúde Única, Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF) e de Medicina Veterinária (PPGMV), Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Av. Roraima N° 1000, Prédio 44, sala 5132, CEP, Santa Maria, RS 97105-900, Brazil
| | | | - Luis Antônio Sangioni
- Departamento de Medicina Veterinária Preventiva, Laboratório de Saúde Única, Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF) e de Medicina Veterinária (PPGMV), Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Av. Roraima N° 1000, Prédio 44, sala 5132, CEP, Santa Maria, RS 97105-900, Brazil
| | - Mahendra Pal
- Narayan Consultancy on Veterinary Public Health and Microbiology, Bharuch, India
| | | | - Janio Morais Santurio
- Departamento de Medicina Veterinária Preventiva, Laboratório de Saúde Única, Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF) e de Medicina Veterinária (PPGMV), Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Av. Roraima N° 1000, Prédio 44, sala 5132, CEP, Santa Maria, RS 97105-900, Brazil
| | - Sônia de Avila Botton
- Departamento de Medicina Veterinária Preventiva, Laboratório de Saúde Única, Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF) e de Medicina Veterinária (PPGMV), Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Av. Roraima N° 1000, Prédio 44, sala 5132, CEP, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
6
|
Sadia M, Ahmad I, Aziz S, Khan R, Zahoor M, Ullah R, Ali EA. Carbon-Supported Nanocomposite Synthesis, Characterization, and Application as an Efficient Adsorbent for Ciprofloxacin and Amoxicillin. ACS OMEGA 2024; 9:6815-6827. [PMID: 38371783 PMCID: PMC10870352 DOI: 10.1021/acsomega.3c08161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
The existence of antibiotics in the environment has recently raised serious concerns about their possible hazards to human health and the water ecosystem. In the current study, an activated carbon-supported nanocomposite, AC-CoFe2O3, was synthesized by a coprecipitation method, characterized, and then applied to adsorb different drugs from water. The synthesized composites were characterized by using energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller plots, and scanning electron microscopy. The adsorption of both Ciprofloxacin (Cipro) and Amoxicillin (Amoxi) antibiotics on the composite followed the pseudo-second-order kinetic model (R2 = 0.9981 and 0.9974 mg g-1 min-1, respectively). Langmuir isotherm was the best-fit model showing 312.17 and 217.76 mg g-1 adsorption capacities for Ciprofloxacin and Amoxicillin, respectively, at 333 K. The negative Gibbs free energy (ΔG°) specified the spontaneity of the method. The positive change in the enthalpy (ΔH) indicated that the adsorption process was assisted by higher temperatures. The different optimized parameters were pH, contact time, adsorbent weight, concentration, and temperature. The maximum adsorption of Cipro was found to be 98.41% at pH 12, while for Amoxi, it was 89.09% at pH 2 at 333 K. The drugs were then successfully determined from natural water samples at optimized conditions using these nanocomposites.
Collapse
Affiliation(s)
- Maria Sadia
- Department of Chemistry, University of Malakand, Lower Dir, Chakdara 18800, Pakistan
| | - Izaz Ahmad
- Department of Chemistry, University of Malakand, Lower Dir, Chakdara 18800, Pakistan
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Shaukat Aziz
- Department of Chemistry, University of Malakand, Lower Dir, Chakdara 18800, Pakistan
| | - Rizwan Khan
- Department of Electrical Engineering, Kwangwoon University Seoul, Seoul 54047, South Korea
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa 18000, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Sang Y, Wang J, Tang S, Zhang P. A New Macrolide from Penicillium sp. SO02. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Noureldin HAM, Abdel-Aziz AM, Mabrouk MM, Saad AHK, Badr IHA. Green and cost-effective voltammetric assay for spiramycin based on activated glassy carbon electrode and its applications to urine and milk samples. RSC Adv 2023; 13:844-852. [PMID: 36686907 PMCID: PMC9809205 DOI: 10.1039/d2ra06768d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
A simple, cost-effective, and efficient differential pulse voltammetric (DPV) assay for monitoring spiramycin adipate (SPA) in its dosage forms, urine, and milk samples at an activated glassy carbon electrode (GCE) was developed. GCE was electrochemically activated by anodization at a high positive voltage (2.5 V). The activated glassy carbon electrode (AGCE) was surface characterized, optimized, and utilized for the electrochemical assay of SPA. The electrochemical behavior of the AGCEs was investigated using cyclic voltammetry (CV) which shows a remarkable increase in the anodic peak of SPA in comparison with GCE. This behavior reflects a remarkable increase in the electrocatalytic oxidation of SPA at AGCE. The impacts of various parameters such as scan rate, accumulation time, and pH were investigated. The analytical performance of the activated glassy carbon electrodes was studied utilizing DPV. Under optimum conditions, the oxidation peak current exhibited two linear ranges of 80 nm to 0.8 μM and 0.85-300 μM with a lower limit of detection (LOD) of 20 nM. The developed assay exhibited high sensitivity, excellent repeatability, and good selectivity. Additionally, the developed SPA-sensitive modified GCE was successfully applied for SPA assay in its pharmaceutical dosage form and diluted biological fluids as well, with satisfactory recovery results which correlated well with the results obtained using spectrophotometry.
Collapse
Affiliation(s)
- Hind A M Noureldin
- Department of Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo Cairo Egypt
| | - Ali M Abdel-Aziz
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo Egypt
| | - Mokhtar M Mabrouk
- Department of Analytical Chemistry, Faculty of Pharmacy, Tanta University Tanta Egypt
| | - Amira H K Saad
- Department of Analytical Chemistry, Faculty of Pharmacy, Tanta University Tanta Egypt
| | - Ibrahim H A Badr
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo Egypt
- Department of Chemistry, Faculty of Science, Galala University Suez Egypt
| |
Collapse
|
9
|
Immunomodulatory Effects of Macrolides Considering Evidence from Human and Veterinary Medicine. Microorganisms 2022; 10:microorganisms10122438. [PMID: 36557690 PMCID: PMC9784682 DOI: 10.3390/microorganisms10122438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Macrolide antimicrobial agents have been in clinical use for more than 60 years in both human and veterinary medicine. The discovery of the non-antimicrobial properties of macrolides and the effect of immunomodulation of the inflammatory response has benefited patients with chronic airway diseases and impacted morbidity and mortality. This review examines the evidence of antimicrobial and non-antimicrobial properties of macrolides in human and veterinary medicine with a focus toward veterinary macrolides but including important and relevant evidence from the human literature. The complete story for these complex and important molecules is continuing to be written.
Collapse
|
10
|
Maghsodian Z, Sanati AM, Mashifana T, Sillanpää M, Feng S, Nhat T, Ramavandi B. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics (Basel) 2022; 11:antibiotics11111461. [PMID: 36358116 PMCID: PMC9686498 DOI: 10.3390/antibiotics11111461] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Antibiotics, as pollutants of emerging concern, can enter marine environments, rivers, and lakes and endanger ecology and human health. The purpose of this study was to review the studies conducted on the presence of antibiotics in water, sediments, and organisms in aquatic environments (i.e., seas, rivers, and lakes). Most of the reviewed studies were conducted in 2018 (15%) and 2014 (11%). Antibiotics were reported in aqueous media at a concentration of <1 ng/L−100 μg/L. The results showed that the highest number of works were conducted in the Asian continent (seas: 74%, rivers: 78%, lakes: 87%, living organisms: 100%). The highest concentration of antibiotics in water and sea sediments, with a frequency of 49%, was related to fluoroquinolones. According to the results, the highest amounts of antibiotics in water and sediment were reported as 460 ng/L and 406 ng/g, respectively. In rivers, sulfonamides had the highest abundance (30%). Fluoroquinolones (with an abundance of 34%) had the highest concentration in lakes. Moreover, the highest concentration of fluoroquinolones in living organisms was reported at 68,000 ng/g, with a frequency of 39%. According to the obtained results, it can be concluded that sulfonamides and fluoroquinolones are among the most dangerous antibiotics due to their high concentrations in the environment. This review provides timely information regarding the presence of antibiotics in different aquatic environments, which can be helpful for estimating ecological risks, contamination levels, and their management.
Collapse
Affiliation(s)
- Zeinab Maghsodian
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr 7516913817, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr 7516913817, Iran
| | - Tebogo Mashifana
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Zhejiang Rongsheng Environmental Protection Paper Co., Ltd., NO. 588 East Zhennan Road, Pinghu Economic Development Zone, Pinghu 314213, China
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
- Correspondence: (M.S.); (B.R.)
| | - Shengyu Feng
- Zhejiang Rongsheng Environmental Protection Paper Co., Ltd., NO. 588 East Zhennan Road, Pinghu Economic Development Zone, Pinghu 314213, China
| | - Tan Nhat
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
- Correspondence: (M.S.); (B.R.)
| |
Collapse
|
11
|
Ramirez DM, Ramirez D, Arthur G, Zhanel G, Schweizer F. Guanidinylated Polymyxins as Outer Membrane Permeabilizers Capable of Potentiating Rifampicin, Erythromycin, Ceftazidime and Aztreonam against Gram-Negative Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11101277. [PMID: 36289935 PMCID: PMC9598282 DOI: 10.3390/antibiotics11101277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Polymyxins are considered a last-line treatment against infections caused by multidrug-resistant (MDR) Gram-negative bacteria. In addition to their use as a potent antibiotic, polymyxins have also been utilized as outer membrane (OM) permeabilizers, capable of augmenting the activity of a partner antibiotic. Several polymyxin derivatives have been developed accordingly, with the objective of mitigating associated nephrotoxicity. The conversion of polymyxins to guanidinylated derivatives, whereby the L-γ-diaminobutyric acid (Dab) amines are substituted with guanidines, are described herein. The resulting guanidinylated colistin and polymyxin B (PMB) exhibited reduced antibacterial activity but preserved OM permeabilizing properties that allowed potentiation of several antibiotic classes. Rifampicin, erythromycin, ceftazidime and aztreonam were particularly potentiated against clinically relevant MDR Gram-negative bacteria. The potentiating effects of guanidinylated polymyxins with ceftazidime or aztreonam were further enhanced by adding the β-lactamase inhibitor avibactam.
Collapse
Affiliation(s)
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence:
| |
Collapse
|
12
|
Synthesis and biological evaluation of antibacterial activity of novel clarithromycin derivatives incorporating 1,2,3-triazole moieties at the 4''- and 11-OH positions. Bioorg Chem 2022; 127:106020. [PMID: 35841669 DOI: 10.1016/j.bioorg.2022.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Bacterial infection is still one of the diseases that threaten human health, and bacterial drug resistance is widespread worldwide. As a result, their eradication now largely relies on antibacterial drug discovery. Here, we reveal a novel approach to the development of 14-membered macrolide antibiotics by describing the design, synthesis, and evaluation of novel clarithromycin derivatives incorporating 1,2,3-triazole moieties at the 4''- and 11-OH positions. Using chemical synthesis, 35 clarithromycin derivatives were prepared, and their antibacterial properties were profiled. We found that compounds 8e-8h, 8l-8o, 8v, and 19d were as potent as azithromycin against Enterococcus faecalis ATCC29212. Furthermore, compounds 8c, 8d, 8n, and 8o showed slightly improved antibacterial activity (2-fold) against Acinetobacter baumannii ATCC19606 when compared with azithromycin and clarithromycin. In addition, compounds 8e, 8f, 8h, 8l, and 8v exhibited excellent antibacterial activity against Staphylococcus aureus ATCC43300, Staphylococcus aureus PR, and Streptococcus pneumoniae ER-2. These compounds were generally 64- to 128-fold more active than azithromycin, and 32- to 128-fold more active than clarithromycin. The results of molecular docking indicated that compound 8f may bind to the nucleotide residue A752 through hydrogen-bonding, hydrophobic, electrostatic, or π-π stacking interactions. The predicted ClogP data suggested that higher values of ClogP (>6.65) enhanced the antibacterial activity of compounds such as 8e, 8f, 8h, 8l, and 8v. The determination of the minimum bactericidal concentration showed that most of the tested compounds were bacteriostatic agents. From this study of bactericidal kinetics, we can conclude that compound 8f had a concentration- and time-dependent effect on the proliferation of Staphylococcus aureus ATCC43300. Finally, the results of the cytotoxicity assay showed that compound 8f exhibited no toxicity at the effective antibacterial concentration.
Collapse
|
13
|
Thiraporn A, Saikachain N, Khumjiang R, Muanprasat C, Tadpetch K. Total Synthesis and Biological Evaluation of Mutolide and Analogues. Chem Asian J 2022; 17:e202200329. [PMID: 35727893 DOI: 10.1002/asia.202200329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Indexed: 11/07/2022]
Abstract
The convergent total syntheses of three 14-membered macrolide natural products, mutolide, nigrosporolide and (4S,7S,13S)-4,7-dihydroxy-13-tetradeca-2,5,8-trienolide have been achieved. The key synthetic features include Shiina macrolactonization to assemble the 14-membered macrocyclic core, Wittig or Still-Gennari olefination and selective reduction of propargylic alcohol to construct the E- or Z-olefins. Cross metathesis was also highlighted as an efficient tool to forge the formation of E-olefin. The three synthetic macrolides were evaluated for their cytotoxic activity against three human cancer cell lines as well as for inhibitory effect on CFTR-mediated chloride secretion in human intestinal epithelial (T84) cells. Mutolide displayed significant cytotoxic activity against HCT116 colon cancer cells with an IC50 of ∼12 μM as well as a potent CTFR inhibitory effect with an IC50 value of ∼1 μM.
Collapse
Affiliation(s)
- Aticha Thiraporn
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nongluk Saikachain
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Pli, Samut Prakan, 10540, Thailand
| | - Rungtiwa Khumjiang
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Pli, Samut Prakan, 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Pli, Samut Prakan, 10540, Thailand
| | - Kwanruthai Tadpetch
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
14
|
Sakamoto R, Odagi M, Izumiseki A, Konuki K, Nagasawa K. Stereodivergent Synthesis of 1,3-Dienes via Protodeboronation of Homoallenylboronic Esters. J Org Chem 2022; 87:8084-8098. [PMID: 35671244 DOI: 10.1021/acs.joc.2c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinylboronic esters and allylboronic esters are well known to afford olefins by protodeboronation, and therefore homoallenylboronic esters should be similarly available as precursors for 1,3-dienes, but this strategy has not been well explored due to the limited availability of homoallenylboronic esters. Here, we describe a versatile synthesis of homoallenylboronic esters via lithiation-borylation and subsequent 1,2-rearrangement. The resulting homoallenylboronic esters were successfully converted into Z- and E-1,3-dienes by protodeboronation using Bu4NF and B(C6F5)3/PhOH, respectively.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsuto Izumiseki
- Research & Development Division, MicroBiopharm Japan Co., Ltd. 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Kaname Konuki
- Research & Development Division, MicroBiopharm Japan Co., Ltd. 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
15
|
Prathapan P. A determination of pan-pathogen antimicrobials? MEDICINE IN DRUG DISCOVERY 2022; 14:100120. [PMID: 35098103 PMCID: PMC8785259 DOI: 10.1016/j.medidd.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/01/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
While antimicrobial drug development has historically mitigated infectious diseases that are known, COVID-19 revealed a dearth of 'in-advance' therapeutics suitable for infections by pathogens that have not yet emerged. Such drugs must exhibit a property that is antithetical to the classical paradigm of antimicrobial development: the ability to treat infections by any pathogen. Characterisation of such 'pan-pathogen' antimicrobials requires consolidation of drug repositioning studies, a new and growing field of drug discovery. In this review, a previously-established system for evaluating repositioning studies is used to highlight 4 therapeutics which exhibit pan-pathogen properties, namely azithromycin, ivermectin, niclosamide, and nitazoxanide. Recognition of the pan-pathogen nature of these antimicrobials is the cornerstone of a novel paradigm of antimicrobial development that is not only anticipatory of pandemics and bioterrorist attacks, but cognisant of conserved anti-infective mechanisms within the host-pathogen interactome which are only now beginning to emerge. Ultimately, the discovery of pan-pathogen antimicrobials is concomitantly the discovery of a new class of antivirals, and begets significant implications for pandemic preparedness research in a world after COVID-19.
Collapse
Affiliation(s)
- Praveen Prathapan
- New Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
16
|
Majhi S. Synthesis of bioactive natural products and their analogs at room temperature – an update. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Sustainability is a concept that is employed to distinguish methods and procedures that can ensure the long-term productivity of the environment as it includes environmental, social, and economic dimensions. New generations can live on this planet with less hazardous substances and minimum requirement of energy for chemical transformations as green chemistry is related to creativity and the development of innovative research. Among the 12 principles of this clean chemistry, the sixth principle is devoted to the “design of energy efficiency” which discloses that less or the minimum amount of energy is required to conduct a specific reaction with optimum productivity. The most successful way to save energy is to construct strategies/methodologies that are capable enough to carry out the chemical transformations at ambient temperature and standard pressure. Hence, the present review wishes to cover the synthesis of bioactive natural products and their derivatives at room temperature. Bioactive secondary metabolites play a crucial role in the drug discovery together with drug development process; chiefly anticancer along with antibiotic molecules is noticeably enriched with molecules of natural origin. Natural sources, structures, and biological activities of natural products are highlighted in this review and it is also aimed to offer an overview of the design and synthesis of bioactive natural products and their analogs at room temperature for the first time efficiently.
Collapse
Affiliation(s)
- Sasadhar Majhi
- Department of Chemistry (UG & PG) , Triveni Devi Bhalotia College, Kazi Nazrul University , Raniganj , West Bengal 713347 , India
| |
Collapse
|
17
|
Abstract
OBJECTIVE This review aimed to explore and summarise available cases of delirium suspected to be associated with the use of macrolide antibiotics reported in the literature and the United States Food and Drug Administration's Adverse Event Reporting System (FAERS) database. METHODS Electronic searches of the literature were conducted in four online databases: PubMed/MEDLINE, Scopus, Web of Science and Serbian Citation Index (SCIndeks). A search of FAERS database was also conducted to supplement the findings of the literature search. Descriptive statistics, narrative summation and tabulation of the extracted data were made. RESULTS Cases of delirium which satisfied inclusion criteria were found for clarithromycin, azithromycin, erythromycin and telithromycin. Delirium was described in patients of various age groups, including children. Drug-drug interactions may have contributed to its occurrence in some of the cases. Average time to onset of delirium was 2.5 days for azithromycin and 3.3 days for clarithromycin. CONCLUSIONS Considering that these drugs may be a possible cause of delirium, clinicians should be aware that timely recognition of this possible side effect can lead to earlier discontinuation of the culprit drug, reduce time spent in a delirious state and improve patients' outcomes.KEY POINTSCases of delirium which satisfied inclusion criteria were found for clarithromycin, azithromycin, erythromycin and telithromycin.Cases of delirium were described in patients of various age groups, including children.Drug-drug interactions may have contributed to the occurrence of delirium in some of the cases.Time to onset of delirium ranged from 2 to 3.5 days (mean: 2.5 days) for azithromycin and from 1 to 7 days (mean: 3.3 days) for clarithromycin.Cessation of the macrolide antibiotic seems to be the best management strategy, although some of the patients may, in addition, require antipsychotics.
Collapse
Affiliation(s)
- Ana V Pejčić
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
18
|
Daher SS, Lee M, Jin X, Teijaro CN, Barnett PR, Freundlich JS, Andrade RB. Alternative approaches utilizing click chemistry to develop next-generation analogs of solithromycin. Eur J Med Chem 2022; 233:114213. [PMID: 35240514 PMCID: PMC9009214 DOI: 10.1016/j.ejmech.2022.114213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
The marked rise in bacterial drug resistance has created an urgent need for novel antibacterials belonging to new drug classes and ideally possessing new mechanisms of action. The superior biological activity of solithromycin against streptococci and other bacteria causative of community-acquired pneumonia pathogens, compared to telithromycin and other macrolides encouraged us to extensively explore this class of antibiotics. We, thus, present the design and synthesis of a novel series of solithromycin analogs. Three main strategies were pursued in structure-activity relationship studies covering the N-11 side chain and the desosamine motif, which are both chief elements for establishing strong interactions with the bacterial ribosome as the molecular target. Minimal inhibitory concentration assays were determined to assess the in vitro potency of the various analogs in relation to solithromycin. Two analogs exhibited improved activity compared to solithromycin against resistant strains, which can be assessed in further pre-clinical studies.
Collapse
Affiliation(s)
- Samer S Daher
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA.
| | - Miseon Lee
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Xiao Jin
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | | | - Pamela R Barnett
- Department of Pharmacology, Physiology, Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA; Department of Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
19
|
Biocontrol potential and antifungal mechanism of a novel Streptomyces sichuanensis against Fusarium oxysporum f. sp. cubense tropical race 4 in vitro and in vivo. Appl Microbiol Biotechnol 2022; 106:1633-1649. [PMID: 35141868 DOI: 10.1007/s00253-022-11788-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/01/2023]
Abstract
Most commercial banana cultivars are highly susceptible to Fusarium wilt caused by soilborne fungus Fusarium oxysporum f. sp. cubense (Foc), especially tropical race 4 (TR4). Biological control using antagonistic microorganism has been considered as an alternative method to fungicide. Our previous study showed that Streptomyces sp. SCA3-4 T had a broad-spectrum antifungal activity from the rhizosphere soil of Opuntia stricta in a dry hot valley. Here, the sequenced genome of strain SCA3-4 T contained 6614 predicted genes with 72.38% of G + C content. A polymorphic tree was constructed using the multilocus sequence analysis (MLSA) of five house-keeping gene alleles (atpD, gyrB, recA, rpoB, and trpB). Strain SCA3-4 T formed a distinct clade with Streptomyces mobaraensis NBRC 13819 T with 71% of bootstrap. Average nucleotide identity (ANI) values between genomes of strain SCA3-4 T and S. mobaraensis NBRC 13819 T was 85.83% below 95-96% of the novel species threshold, and named after Streptomyces sichuanensis sp. nov. The type strain is SCA3-4 T (= GDMCC 4.214 T = JCM 34964 T). Genomic analysis revealed that strain SCA3-4 T contained 36 known biosynthetic gene clusters of secondary metabolites. Antifungal activity of strain SCA3-4 T was closely associated with the production of siderophore and its extracts induced the apoptosis of Foc TR4 cells. A total of 12 potential antifungal metabolites including terpenoids, esters, acid, macrolides etc. were obtained by the gas chromatography-mass spectrometry (GC-MS). Greenhouse experiment indicated that strain SCA3-4 T could significantly inhibit infection of Foc TR4 in the roots and corms of banana seedlings and reduce disease index. Therefore, strain SCA3-4 T is an important microbial resource for exploring novel natural compounds and developing biopesticides to manage Foc TR4. KEY POINTS: • Strain SCA3-4 T was identified as a novel species of Streptomyces. • Siderophore participates in the antifungal regulation. • Secondary metabolites of strain SCA3-4 T improves the plant resistance to Foc TR4.
Collapse
|
20
|
Ashraf S, Ashraf S, Ashraf M, Imran MA, Choudhary ZA, Hafsa HT, Awais AB, Kalsoom L, Farooq I, Habib Z, Ashraf S, Iqbal QUA, Ghufran M, Sherazi SSH, Akram MK, Akmal R, Rafique S, Nawaz K, Safdar Z, Siddique UN, Hassan M, Arshad S, Virk AR, Ashraf M, Saboor QA, Humayun A, Izhar M. Knowledge, attitude, and practice of clinicians about antimicrobial stewardship and resistance among hospitals of Pakistan: a multicenter cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8382-8392. [PMID: 34490566 PMCID: PMC8421064 DOI: 10.1007/s11356-021-16178-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Considering that antimicrobial resistance (AMR) is a global challenge, there is a dire need to assess the knowledge, attitude, and practice (KAP) of clinicians in AMR endemic countries. The current multicenter, cross-sectional study aimed at highlighting gaps in antimicrobial (AM) stewardship and AMR among practicing doctors working in public tertiary care teaching hospitals of Lahore, Pakistan. A KAP survey, based on a self-administered questionnaire containing 45 questions, was distributed among 336 clinicians in 6 randomly selected hospitals. Overall, 92% of the clinicians considered AMR as a worldwide problem but only 66% disagreed that cold and flu symptoms require antibiotics. Moreover, around 68% of the doctors felt confident about their practice in AM but still, 96% felt the need to get more knowledge about AM drugs. The need for refresher courses on rational antibiotic use was expressed by 84% of the participants. The main contributing factors considered for AMR by the doctors included excessive AM usage in the medical profession (87.1%) and multiple antibiotics per prescription (76.4%). Pharmacologically, AM spectrum was accurately chosen by 1.4% for Ampicillin, 0.003% for Erythromycin and 0% for Levofloxacin. Clinically, more than 50% of the clinicians used miscellaneous AM for empirical therapy of respiratory tract infection and cholecystitis. The data was analyzed using Statistical Package for Social Sciences (SPSS) version 25. It is concluded that the knowledge of clinicians is relatively poor for AM spectrum and drugs of choice for certain infections. However, the clinicians are aware of their shortcomings and desire for improvement.
Collapse
Affiliation(s)
- Sohaib Ashraf
- Department of Cardiology, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan.
| | - Shoaib Ashraf
- Department of Pathobiology, Riphah International University, Lahore, Pakistan.
| | - Moneeb Ashraf
- Department of Pharmacology, King Edward Medical University, Mayo Hospital, Lahore, Pakistan.
| | - Muhammad Ahmad Imran
- Department of Microbiology, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan.
| | - Zawar Ahmad Choudhary
- Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Hadiqa Tul Hafsa
- Department of Microbiology, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Abeer Bin Awais
- Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Larab Kalsoom
- Department of Internal Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Iqra Farooq
- Department of Pediatrics Surgery, Children Hospital and Institute of Child Health, Lahore, Pakistan
| | - Zaighum Habib
- Department of Orthopedics, Tehsil Head Quarter, Ferozwala, Shaikhupura, Pakistan
| | - Sidra Ashraf
- Department of Biochemistry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qurrat Ul Ain Iqbal
- Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Muhammad Ghufran
- Medico Cirujano, ESACHS (Empresa de Servico Externo de la Asociacion Chilena de Seguridad), Punta Arenas, Chile
| | - Syed Sami Hussain Sherazi
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Kiwan Akram
- Department of Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Rutaba Akmal
- Department of Community Medicine, Sahara Medical College, Narowal, Pakistan
| | - Sundas Rafique
- Department of Internal Medicine, Mayo Hospital, Lahore, Pakistan
| | - Khawar Nawaz
- Department of Pediatrics, Sunny Downstate/Kings Country Medical Center, New York, NY, USA
| | - Zartasha Safdar
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Uzma Nasim Siddique
- Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Muhammad Hassan
- Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Shahroze Arshad
- Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Abdul Rehman Virk
- Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Muhammad Ashraf
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qazi Abdul Saboor
- Department of Cardiology, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Ayesha Humayun
- Department of Community Medicine, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Mateen Izhar
- Department of Microbiology, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| |
Collapse
|
21
|
Maatouk M, Ibrahim A, Rolain JM, Merhej V, Bittar F. Small and Equipped: the Rich Repertoire of Antibiotic Resistance Genes in Candidate Phyla Radiation Genomes. mSystems 2021; 6:e0089821. [PMID: 34874773 PMCID: PMC8651080 DOI: 10.1128/msystems.00898-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
Microbes belonging to Candidate Phyla Radiation (CPR) have joined the tree of life as a new branch, thanks to the intensive application of metagenomics and sequencing technologies. CPR have been eventually identified by 16S rRNA analysis, and they represent more than 26% of microbial diversity. Despite their ultrasmall size, reduced genome, and metabolic pathways which mainly depend on exosymbiotic or exoparasitic relationships with the bacterial host, CPR microbes were found to be abundant in almost all environments. They can be considered survivors in highly competitive circumstances within microbial communities. However, their defense mechanisms and phenotypic characteristic remain poorly explored. Here, we conducted a thorough in silico analysis on 4,062 CPR genomes to search for antibiotic resistance (AR)-like enzymes using BLASTp and functional domain predictions against an exhaustive consensus AR database and conserved domain database (CDD), respectively. Our findings showed that a rich reservoir of divergent AR-like genes (n = 30,545 hits, mean = 7.5 hits/genome [0 to 41]) were distributed across the 13 CPR superphyla. These AR-like genes encode 89 different enzymes that are associated with 14 different chemical classes of antimicrobials. Most hits found (93.6%) were linked to glycopeptide, beta-lactam, macrolide-lincosamide-streptogramin (MLS), tetracycline, and aminoglycoside resistance. Moreover, two AR profiles were discerned for the Microgenomates group and "Candidatus Parcubacteria," which were distinct between them and differed from all other CPR superphyla. CPR cells seem to be active players during microbial competitive interactions; they are well equipped for microbial combat in different habitats, which ensures their natural survival and continued existence. IMPORTANCE To our knowledge, this study is one of the few studies that characterize the defense systems in the CPR group and describes the first repertoire of antibiotic resistance (AR) genes. The use of a BLAST approach with lenient criteria followed by a careful examination of the functional domains has yielded a variety of enzymes that mainly give three different mechanisms of action of resistance. Our genome analysis showed the existence of a rich reservoir of CPR resistome, which is associated with different antibiotic families. Moreover, this analysis revealed the hidden face of the reduced-genome CPR, particularly their weaponry with AR genes. These data suggest that CPR are competitive players in the microbial war, and they can be distinguished by specific AR profiles.
Collapse
Affiliation(s)
- Mohamad Maatouk
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Ahmad Ibrahim
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Vicky Merhej
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Fadi Bittar
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
22
|
Kim S, Kim JJ, Jeong JH, Kim Y, Park J, Jeong DI, Kim HJ, Hwang C, Ahn SH, Ko HJ, Cho HJ. Fast dissolving nanofiber mat for the local antimicrobial application of roxithromycin in oral cavity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112537. [PMID: 34857312 DOI: 10.1016/j.msec.2021.112537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Fast disintegrating and dissolving nanofiber (NF) mat was devised to deliver roxithromycin for the treatment of the respiratory tract infection. NF membrane was made by an electrospinning process with poly(vinyl alcohol) (PVA), hydroxypropyl-β-cyclodextrin (HP-β-CD), and d-α-tocopheryl polyethylene glycol succinate (TPGS) for local application of roxithromycin. Roxithromycin has a poor water solubility thus HP-β-CD is introduced for enhancing drug solubility by forming an inclusion complex in this study. The addition of TPGS provided multiple roles such as accelerating wetting, disintegration, and dissolution speed and overcoming bacterial resistance. Roxithromycin was successfully entrapped in NF structure and drug amorphization occurred during the electrospinning process. PVA/HP-β-CD/TPGS/roxithromycin (PHTR) NF exhibited faster wetting, disintegration, and dissolution speed rather than the other NF mats. PHTR NF displayed higher antibacterial potentials in Gram-negative bacteria (E. coli) and Gram-positive bacteria (S. aureus) compared to other NF mat formulations. The administration of PHTR NF to oral cavity in pneumococcal disease mouse model provided the most efficient therapeutic potentials in lung tissue. Designed multiple phase-based NF mat may be one of powerful local drug delivery systems for the therapy of respiratory tract infection.
Collapse
Affiliation(s)
- Sungyun Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jung-Jin Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Sama Pharm Co. Ltd., Wonju, Gangwon 26365, Republic of Korea
| | - Jae-Hyeon Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yonghoon Kim
- Sama Pharm Co. Ltd., Wonju, Gangwon 26365, Republic of Korea
| | - JiHye Park
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun Jin Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - ChaeRim Hwang
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sung-Hoon Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
23
|
Yang T, Zheng T, Wang Y, Zhang Y, He D, Zeng H, Wei Y, Chen X, Wan J, Cao X. Effective extraction of tylosin and spiramycin from fermentation broth using thermo-responsive ethylene oxide/propylene oxide aqueous two-phase systems. J Sep Sci 2021; 45:570-581. [PMID: 34818453 DOI: 10.1002/jssc.202100580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022]
Abstract
Recyclable aqueous two-phase systems with thermo-responsive phase-forming materials have been employed to separate macromolecules; however, these systems have achieved very limited separation efficiency for small molecules, such as antibiotics. In this study, aqueous two-phase systems composed of the ethylene oxide/propylene oxide copolymer and water were developed to extract alkaline antibiotics from the fermentation broth. In the aqueous two-phase systems with an ethylene oxide ratio of 20 and propylene oxide ratio of 80, the partition coefficients of tylosin and spiramycin reached 16.87 and 20.39, respectively, while the extraction recoveries were 70.67 and 86.70%, respectively. Coupled with mechanism analysis, we demonstrated the feasibility of extracting alkaline antibiotics using this aqueous two-phase system, especially for 16-membered macrolide antibiotics. The molecular dynamic simulation was employed to visualize the process of dual-phase formation and the partition behavior of antibiotics in an aqueous two-phase system. The dynamic simulation revealed the binding energy between the antibiotic and ethylene oxide/propylene oxide copolymers, which provides a simple indicator for screening suitable antibiotics in aqueous two-phase systems. Our recyclable aqueous two-phase systems provide a robust approach for the extraction of 16-membered macrolide antibiotics with ease of operation and high recovery rates, which is appropriate for large-scale extraction in the fermentation industry.
Collapse
Affiliation(s)
- Ting Yang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ting Zheng
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yan Wang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yan Zhang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Dong He
- Henan Topfond Pharmaceutical Company Limited, Zhumadian, P. R. China
| | - Hainan Zeng
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yanli Wei
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
24
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
25
|
Daher SS, Lee M, Jin X, Teijaro CN, Wheeler SE, Jacobson MA, Buttaro B, Andrade RB. Synthesis, Biological Evaluation, and Computational Analysis of Biaryl Side-Chain Analogs of Solithromycin. ChemMedChem 2021; 16:3368-3373. [PMID: 34355515 DOI: 10.1002/cmdc.202100435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Indexed: 12/26/2022]
Abstract
There is an urgent need for new antibiotics to mitigate the existential threat posed by antibiotic resistance. Within the ketolide class, solithromycin has emerged as one of the most promising candidates for further development. Crystallographic studies of bacterial ribosomes and ribosomal subunits complexed with solithromycin have shed light on the nature of molecular interactions (π-stacking and H-bonding) between from the biaryl side-chain of the drug and key residues in the 50S ribosomal subunit. We have designed and synthesized a library of solithromycin analogs to study their structure-activity relationships (SAR) in tandem with new computational studies. The biological activity of each analog was evaluated in terms of ribosomal affinity (Kd determined by fluorescence polarization), as well as minimum inhibitory concentration assays (MICs). Density functional theory (DFT) studies of a simple binding site model identify key H-bonding interactions that modulate the potency of solithromycin analogs.
Collapse
Affiliation(s)
- Samer S Daher
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Miseon Lee
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Xiao Jin
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Christiana N Teijaro
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Steven E Wheeler
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 N. Broad Street, Philadelphia, PA 19140, USA
| | - Bettina Buttaro
- Department of Microbiology and Immunology, School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
26
|
Bai B, Bi F, Qin Y, Teng Y, Ma S. Design, synthesis and antibacterial evaluation of novel C-11, C-9 or C-2'-substituted 3-O-descladinosyl-3-ketoclarithromycin derivatives. Bioorg Med Chem Lett 2021; 43:128110. [PMID: 33991629 DOI: 10.1016/j.bmcl.2021.128110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
A novel series of 3-O-descladinosyl-3-keto-clarithromycin derivatives, including 11-O-carbamoyl-3-O-descladinosyl-3-keto-clarithromycin derivatives and 2',9(S)-diaryl-3-O-descladinosyl-3-keto-clarithromycin derivatives, were designed, synthesized and evaluated for their in vitro antibacterial activity. Among them, some derivatives were found to have activity against resistant bacteria strains. In particular, compound 9b showed not only the most significantly improved activity (16 µg/mL) against S. aureus ATCC43300 and S. aureus ATCC31007, which was >16-fold more active than that of CAM and AZM, but also the best activity against S. pneumoniae B1 and S. pyogenes R1, with MIC values of 32 and 32 µg/mL. In addition, compounds 9a, 9c, 9d and 9g exhibited the most effective activity against S. pneumoniae AB11 with MIC values of 32 or 64 µg/mL as well. Unfortunately, 2',9(S)-diaryl-3-O-descladinosyl-3-keto-clarithromycin derivatives failed to exhibit better antibacterial activity than references. It can be seen that the combined modification of the C-3 and C-11 positions of clarithromycin is beneficial to improve activity against resistant bacteria, while the single modification of the C-2'' position is very detrimental to antibacterial activity.
Collapse
Affiliation(s)
- Bingfang Bai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Fangchao Bi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yinhui Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yuetai Teng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| |
Collapse
|
27
|
Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ. Macrolides: From Toxins to Therapeutics. Toxins (Basel) 2021; 13:347. [PMID: 34065929 PMCID: PMC8150546 DOI: 10.3390/toxins13050347] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions. Here, we review each functional class of macrolides for their common structures, mechanisms of action, pharmacology, and human cellular targets.
Collapse
Affiliation(s)
| | | | | | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.D.L.); (K.E.K.); (H.M.)
| |
Collapse
|
28
|
Majhi S. Applications of Yamaguchi Method to Esterification and Macrolactonization in Total Synthesis of Bioactive Natural Products. ChemistrySelect 2021. [DOI: 10.1002/slct.202100206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sasadhar Majhi
- Department of Chemistry (UG & PG) Triveni Devi Bhalotia College Raniganj Kazi Nazrul University West Bengal 713347 India
| |
Collapse
|
29
|
Thomas M, Lawrence A, Kroon S, Vodstrcil LA, Phillips S, Hocking JS, Timms P, Huston WM. Chlamydial clinical isolates show subtle differences in persistence phenotypes and growth in vitro. Access Microbiol 2021; 3:000204. [PMID: 34151159 PMCID: PMC8209716 DOI: 10.1099/acmi.0.000204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/24/2021] [Indexed: 11/24/2022] Open
Abstract
Urogenital Chlamydia trachomatis infection is the most common sexually transmitted bacterial infection throughout the world. While progress has been made to better understand how type strains develop and respond to environmental stress in vitro, very few studies have examined how clinical isolates behave under similar conditions. Here, we examined the development and persistence phenotypes of several clinical isolates, to determine how similar they are to each other, and the type strain C. trachomatis D/UW-3/Cx. The type strain was shown to produce infectious progeny at a higher magnitude than each of the clinical isolates, in each of the six tested cell lines. All chlamydial strains produced the highest number of infectious progeny at 44 h post-infection in the McCoy B murine fibroblast cell line, yet showed higher levels of infectivity in the MCF-7 human epithelial cell line. The clinical isolates were shown to be more susceptible than the type strain to the effects of penicillin and iron deprivation persistence models in the MCF-7 cell line. While subtle differences between clinical isolates were observed throughout the experiments conducted, no significant differences were identified. This study reinforces the importance of examining clinical isolates when trying to relate in vitro data to clinical outcomes, as well as the importance of considering the adaptations many type strains have to being cultured in vitro.
Collapse
Affiliation(s)
- Mark Thomas
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Amba Lawrence
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Samuel Kroon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Lenka A Vodstrcil
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Samuel Phillips
- Murdoch Childrens Research Institute, Parkville 3052, Victoria, Australia
| | - Jane S Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Wilhelmina M Huston
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
30
|
Lefamulin: A Novel Oral and Intravenous Pleuromutilin for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs 2020; 81:233-256. [PMID: 33247830 DOI: 10.1007/s40265-020-01443-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lefamulin is a novel oral and intravenous (IV) pleuromutilin developed as a twice-daily treatment for community-acquired bacterial pneumonia (CABP). It is a semi-synthetic pleuromutilin with a chemical structure that contains a tricyclic core of five-, six-, and eight-membered rings and a 2-(4-amino-2-hydroxycyclohexyl)sulfanylacetate side chain extending from C14 of the tricyclic core. Lefamulin inhibits bacterial protein synthesis by binding to the 50S bacterial ribosomal subunit in the peptidyl transferase center (PTC). The pleuromutilin tricyclic core binds to a pocket close to the A site, while the C14 side chain extends to the P site causing a tightening of the rotational movement in the binding pocket referred to as an induced-fit mechanism. Lefamulin displays broad-spectrum antibacterial activity against Gram-positive and Gram-negative aerobic and anaerobic bacteria as well as against atypical bacteria that commonly cause CABP. Pleuromutilin antibiotics exhibit low rates of resistance development and lack cross-resistance to other antimicrobial classes due to their unique mechanism of action. However, pleuromutilin activity is affected by mutations in 23S rRNA, 50S ribosomal subunit proteins rplC and rplD, ATP-binding cassette (ABC)-F transporter proteins such as vga(A), and the methyltransferase cfr. The pharmacokinetic properties of lefamulin include: volume of distribution (Vd) ranging from 82.9 to 202.8 L, total clearance (CLT) of 19.5 to 21.4 L/h, and terminal elimination half-life (t1/2) of 6.9-13.2 h; protein binding of lefamulin is high and non-linear. The oral bioavailability of lefamulin has been estimated as 24% in fasted subjects and 19% in fed subjects. A single oral dose of lefamulin 600 mg administered in fasted patients achieved a maximum plasma concentration (Cmax) of 1.2-1.5 mg/L with a time of maximum concentration (Tmax) ranging from 0.8 to 1.8 h, and an area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of 8.5-8.8 mg h/L. The pharmacodynamic parameter predictive of lefamulin efficacy is the free plasma area under the concentration-time curve divided by the minimum inhibitory concentration (fAUC24h/MIC). Lefamulin efficacy has been demonstrated using various animal models including neutropenic murine thigh infection, pneumonia, lung infection, and bacteremia. Lefamulin clinical safety and efficacy was investigated through a Phase II clinical trial of acute bacterial skin and skin structure infection (ABSSSI), as well as two Phase III clinical trials of CABP. The Phase III trials, LEAP 1 and LEAP 2 established non-inferiority of lefamulin to moxifloxacin in both oral and IV formulations in the treatment of CABP. The United States Food and Drug Administration (FDA), European Medicines Agency (EMA), and Health Canada have each approved lefamulin for the treatment of CABP. A Phase II clinical trial has been completed for the treatment of ABSSSI, while the pediatric program is in Phase I. The most common adverse effects of lefamulin include mild-to-moderate gastrointestinal-related events such as nausea and diarrhea. Lefamulin represents a safe and effective option for treating CABP in cases of antimicrobial resistance to first-line therapies, clinical failure, or intolerance/adverse effects to currently used agents. Clinical experience and ongoing clinical investigation will allow clinicians and antimicrobial stewardship programs to optimally use lefamulin in the treatment of CABP.
Collapse
|
31
|
Chen Q, Lu W, Zhou D, Zheng G, Liu H, Qian C, Zhou W, Lu J, Ni L, Bao Q, Li A, Xu T, Xu H. Characterization of Two Macrolide Resistance-Related Genes in Multidrug-Resistant Pseudomonas aeruginosa Isolates. Pol J Microbiol 2020; 69:349-356. [PMID: 33574864 PMCID: PMC7810118 DOI: 10.33073/pjm-2020-038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/31/2020] [Accepted: 08/15/2020] [Indexed: 11/05/2022] Open
Abstract
In analyzing the drug resistance phenotype and mechanism of resistance to macrolide antibiotics of clinical Pseudomonas aeruginosa isolates, the agar dilution method was used to determine the minimum inhibitory concentrations (MICs), and PCR (polymerase chain reaction) was applied to screen for macrolide antibiotics resistance genes. The macrolide antibiotics resistance genes were cloned, and their functions were identified. Of the 13 antibiotics tested, P. aeruginosa strains showed high resistance rates (ranging from 69.5-82.1%), and MIC levels (MIC90 > 256 μg/ml) to macrolide antibiotics. Of the 131 known macrolide resistance genes, only two genes, mphE and msrE, were identified in 262 clinical P. aeruginosa isolates. Four strains (1.53%, 4/262) carried both the msrE and mphE genes, and an additional three strains (1.15%, 3/262) harbored the mphE gene alone. The cloned msrE and mphE genes conferred higher resistance levels to three second-generation macrolides compared to two first-generation ones. Analysis of MsrE and MphE protein polymorphisms revealed that they are highly conserved, with only 1-3 amino acids differences between the proteins of the same type. It can be concluded that even though the strains showed high resistance levels to macrolides, known macrolide resistance genes are seldom present in clinical P. aeruginosa strains, demonstrating that a mechanism other than this warranted by the mphE and msrE genes may play a more critical role in the bacteria's resistance to macrolides.
Collapse
Affiliation(s)
- Qing Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Lu
- School of Laboratory Medicine and Life Science, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Danying Zhou
- School of Laboratory Medicine and Life Science, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Guotong Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongmao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- School of Laboratory Medicine and Life Science, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Wangxiao Zhou
- School of Laboratory Medicine and Life Science, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- School of Laboratory Medicine and Life Science, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Liyan Ni
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- School of Laboratory Medicine and Life Science, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Aifang Li
- The Fifth Affiliated Hospital, Wenzhou Medical University, Lishui, Zhejiang, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Haili Xu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Heravi MM, Zadsirjan V, Daraie M, Ghanbarian M. Applications of Wittig Reaction in the Total Synthesis of Natural Macrolides. ChemistrySelect 2020. [DOI: 10.1002/slct.202002192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| | - Mansoureh Daraie
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| | - Manizheh Ghanbarian
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| |
Collapse
|
33
|
Pejčić AV. Stevens-Johnson syndrome and toxic epidermal necrolysis associated with the use of macrolide antibiotics: a review of published cases. Int J Dermatol 2020; 60:12-24. [PMID: 32808293 DOI: 10.1111/ijd.15144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022]
Abstract
Macrolides are one of the most commonly prescribed antibiotics. In several studies, their use was associated with the occurrence of Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). This review aimed to explore and summarize available cases of SJS/TEN suspected to be associated with the use of macrolide antibiotics reported in the literature. Electronic searches were conducted in PubMed/MEDLINE, Web of Science, Scopus, and Serbian Citation Index (SCIndeks). Twenty-five publications describing a total of 27 patients were included. Cases of SJS/TEN which satisfied inclusion criteria were found for azithromycin (n = 11), clarithromycin (n = 7), erythromycin (n = 5), roxithromycin (n = 2), and telithromycin (n = 2). The age of the patients ranged from 2 to 77 years (median: 29 years). There were 14 female (51.9%) and 13 male (48.1%) patients. SJS was diagnosed in 16 patients (59.3%), TEN in 10 patients (37.0%), and SJS/TEN overlap in one patient (3.7%). Time to onset of the first symptoms ranged from 1 to 14 days (median: 3 days). All patients received some form of supportive and symptomatic care. Systemic corticosteroids were reported to be administered in 12 patients (44.4%) and intravenous immunoglobulin in five patients (18.5%). Three patients (11.1%) died. Considering that SJS/TEN is a severe and potentially life-threatening reaction, physicians should be aware that they could be adverse effects of macrolide antibiotics and keep in mind that prompt recognition of SJS/TEN and discontinuation of the culprit drug in combination with supportive care is essential.
Collapse
Affiliation(s)
- Ana V Pejčić
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
34
|
Janas A, Pecyna P, Gajecka M, Bartl F, Przybylski P. Synthesis and Antibacterial Activity of New
N
‐Alkylammonium and Carbonate‐Triazole Derivatives within Desosamine of 14‐ and 15‐Membered Lactone Macrolides. ChemMedChem 2020; 15:1529-1551. [DOI: 10.1002/cmdc.202000273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Anna Janas
- Faculty of ChemistryAdam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Paulina Pecyna
- Chair and Department of Genetics and Pharmaceutical MicrobiologyPoznań University of Medical Sciences (PUMS) Święcickiego 4 60-781 Poznań Poland
| | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical MicrobiologyPoznań University of Medical Sciences (PUMS) Święcickiego 4 60-781 Poznań Poland
- Institute of Human GeneticsPolish Academy of Sciences Strzeszynska 32 60-479 Poznań Poland
| | - Franz Bartl
- Lebenswissenschaftliche Fakultät, Institut für Biologie Biophysikalische ChemieHumboldt-Universität zu Berlin Invalidenstrasse 42 10099 Berlin Germany
| | - Piotr Przybylski
- Faculty of ChemistryAdam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
35
|
Togami K. [Intrapulmonary Pharmacokinetics and Drug Distribution Characteristics for the Treatment of Respiratory Diseases]. YAKUGAKU ZASSHI 2020; 140:345-354. [PMID: 32115551 DOI: 10.1248/yakushi.19-00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to clarify the intrapulmonary pharmacokinetics and distribution characteristics of drugs in order to develop better therapies for respiratory diseases, including respiratory infections and pulmonary fibrosis. The distribution characteristics of three macrolide antimicrobial agents-clarithromycin, azithromycin, and telithromycin-in plasma, lung epithelial lining fluid (ELF), and alveolar macrophages (AMs), were examined for the optimization of antimicrobial therapy. The time course of the uptake of these agents in ELF and AMs, following oral administration to rats, resulted in markedly higher concentrations than that in plasma. The high concentration of the agents in AMs was due to their sustained distribution to ELF via multidrug resistance protein 1 and to high uptake by AMs themselves via active transport mechanisms and trapping and/or binding in acidic organelles. The intrapulmonary pharmacokinetics of aerosolized model compounds administered to animals with bleomycin-induced pulmonary fibrosis via aerosol formulations of model compounds (MicroSprayer) were then evaluated. The concentrations of these compounds in the plasma of pulmonary fibrotic rats were markedly higher than in that of control rats. The expression of epithelial tight junctions decreased in pulmonary fibrotic lesions. The accumulation of extracellular matrix inhibited the intrapulmonary distribution of aerosolized model compounds, indicating that aerosolized drugs are easily absorbed after leakage through damaged alveolar epithelia, but cannot become widely distributed in the lungs because of interruption by the extracellular matrix. This review provides useful findings for the development of therapies for respiratory infections and pulmonary fibrosis.
Collapse
Affiliation(s)
- Kohei Togami
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| |
Collapse
|
36
|
Biodegradation of antibiotics: The new resistance determinants – part II. N Biotechnol 2020; 54:13-27. [DOI: 10.1016/j.nbt.2019.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/17/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
|
37
|
Janas A, Przybylski P. 14- and 15-membered lactone macrolides and their analogues and hybrids: structure, molecular mechanism of action and biological activity. Eur J Med Chem 2019; 182:111662. [DOI: 10.1016/j.ejmech.2019.111662] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 11/15/2022]
|
38
|
Liu Y, Yang Q, Chen X, Song Y, Wu Q, Yang Y, He L. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips. Talanta 2019; 204:238-247. [DOI: 10.1016/j.talanta.2019.05.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022]
|
39
|
Nguyen HL, An PH, Thai NQ, Linh HQ, Li MS. Erythromycin, Cethromycin and Solithromycin display similar binding affinities to the E. coli's ribosome: A molecular simulation study. J Mol Graph Model 2019; 91:80-90. [PMID: 31200217 DOI: 10.1016/j.jmgm.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/09/2019] [Accepted: 06/02/2019] [Indexed: 01/06/2023]
Abstract
Macrolide antibiotics bind to the exit tunnel of the ribosome and inhibit protein synthesis blocking its translocation. Thus, antibiotics including the known macrolide Erythromycin (ERY) are active against bacteria. However, at present, some bacteria show resistance to drugs, which requires the development of new powerful antibacterial agents. One possible way is to use the ERY structure, but change its side chains, while the size of the lactone ring can remain unchanged or change. In this work we consider Cethromycin (CET) and Solithromycin (SOL), which are ketolides with quinolylallyl group at C6 and aminophenyl at C11, respectively (both of them have the same lactone ring as ERY). Experiments have shown that these ketolides have improved efficacy against pathogens, but their binding affinity to the E. coli's ribosome is almost identical. To clarify this issue, we have studied in detail the binding mechanisms of ERY, CET and SOL using the docking and molecular dynamic simulations. In agreement with the experiments, we showed that these compounds have similar binding affinities. Desosamine and lactone ring groups play a critical role in the binding of ERY to the ribosome. In CET and SOL, the contribution of keto and alkylaryl groups is balanced by cyclic carbamate. We have demonstrated that increased fluctuations in the ribosomal residues at the binding site led to an increase in the entropic term in the free binding energy of ERY compared to SOL and CET. The alkyl-aryl arm of both ketolides strongly interacts with A752 and U2609. In addition, the presence of macrolides in the exit tunnel can alter the conformation of U2585, which is located in the peptidyl transferase center, through non-bonded interaction. Therefore, the side chain of ketolides affects not only the binding site but also other residues possibly leading to a strong effect on the protein synthesis process. We predict that to combat bacterial mutations, it is necessary either to design a bulk and charged group as a cladinose, or to use several groups with different signs of charges. This prediction can be used for the development of new efficient antibiotics.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh, Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Biomedical Engineering Department, University of Technology - VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam
| | - Pham Hong An
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh, Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Department of Theoretical Physics, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
| | - Nguyen Quoc Thai
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh, Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Biomedical Engineering Department, University of Technology - VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam; Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Viet Nam
| | - Huynh Quang Linh
- Biomedical Engineering Department, University of Technology - VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam
| | - Mai Suan Li
- Institute of Physics, Polish Acad Sci, Al. Lotnikow 32/46, 02-668, Warsaw, Poland.
| |
Collapse
|
40
|
Synthesis and antibacterial activity of novel 3-O-arylalkylcarbamoyl-3-O-descladinosyl-9-O-(2-chlorobenzyl)oxime clarithromycin derivatives. Bioorg Med Chem Lett 2018; 28:3324-3328. [DOI: 10.1016/j.bmcl.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 11/23/2022]
|
41
|
Pea F. Pharmacokinetics and drug metabolism of antibiotics in the elderly. Expert Opin Drug Metab Toxicol 2018; 14:1087-1100. [DOI: 10.1080/17425255.2018.1528226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Federico Pea
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, Udine, Italy
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
42
|
Kim MC, Machado H, Jang KH, Trzoss L, Jensen PR, Fenical W. Integration of Genomic Data with NMR Analysis Enables Assignment of the Full Stereostructure of Neaumycin B, a Potent Inhibitor of Glioblastoma from a Marine-Derived Micromonospora. J Am Chem Soc 2018; 140:10775-10784. [PMID: 30085661 DOI: 10.1021/jacs.8b04848] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The microbial metabolites known as the macrolides are some of the most successful natural products used to treat infectious and immune diseases. Describing the structures of these complex metabolites, however, is often extremely difficult due to the presence of multiple stereogenic centers inherent in this class of polyketide-derived metabolites. With the availability of genome sequence data and a better understanding of the molecular genetics of natural product biosynthesis, it is now possible to use bioinformatic approaches in tandem with spectroscopic tools to assign the full stereostructures of these complex metabolites. In our quest to discover and develop new agents for the treatment of cancer, we observed the production of a highly cytotoxic macrolide, neaumycin B, by a marine-derived actinomycete bacterium of the genus Micromonospora. Neaumycin B is a complex polycyclic macrolide possessing 19 asymmetric centers, usually requiring selective degradation, crystallization, derivatization, X-ray diffraction analysis, synthesis, or other time-consuming approaches to assign the complete stereostructure. As an alternative approach, we sequenced the genome of the producing strain and identified the neaumycin gene cluster ( neu). By integrating the known stereospecificities of biosynthetic enzymes with comprehensive NMR analysis, the full stereostructure of neaumycin B was confidently assigned. This approach exemplifies how mining gene cluster information while integrating NMR-based structure data can achieve rapid, efficient, and accurate stereostructural assignments for complex macrolides.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - Henrique Machado
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - Kyoung Hwa Jang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - Lynnie Trzoss
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California, San Diego , La Jolla , California 92093-0204 , United States.,Center for Microbiome Innovation , University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California, San Diego , La Jolla , California 92093-0204 , United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093-0204 , United States.,Moores Comprehensive Cancer Center , University of California, San Diego , La Jolla , California 92093-0204 , United States
| |
Collapse
|
43
|
Golkar T, Zieliński M, Berghuis AM. Look and Outlook on Enzyme-Mediated Macrolide Resistance. Front Microbiol 2018; 9:1942. [PMID: 30177927 PMCID: PMC6109786 DOI: 10.3389/fmicb.2018.01942] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/31/2018] [Indexed: 01/14/2023] Open
Abstract
Since their discovery in the early 1950s, macrolide antibiotics have been used in both agriculture and medicine. Specifically, macrolides such as erythromycin and azithromycin have found use as substitutes for β-lactam antibiotics in patients with penicillin allergies. Given the extensive use of this class of antibiotics it is no surprise that resistance has spread among pathogenic bacteria. In these bacteria different mechanisms of resistance have been observed. Frequently observed are alterations in the target of macrolides, i.e., the ribosome, as well as upregulation of efflux pumps. However, drug modification is also increasingly observed. Two classes of enzymes have been implicated in macrolide detoxification: macrolide phosphotransferases and macrolide esterases. In this review, we present a comprehensive overview on what is known about macrolide resistance with an emphasis on the macrolide phosphotransferase and esterase enzymes. Furthermore, we explore how this information can assist in addressing resistance to macrolide antibiotics.
Collapse
Affiliation(s)
- Tolou Golkar
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Michał Zieliński
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Paul D, Saha S, Goswami RK. Total Synthesis of Pestalotioprolide E and Structural Revision of Pestalotioprolide F. Org Lett 2018; 20:4606-4609. [DOI: 10.1021/acs.orglett.8b01894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Debobrata Paul
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Sanu Saha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajib Kumar Goswami
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
45
|
Antimicrobial Resistant Streptococcus pneumoniae: Prevalence, Mechanisms, and Clinical Implications. Am J Ther 2018; 24:e361-e369. [PMID: 28430673 DOI: 10.1097/mjt.0000000000000551] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is a major cause of pneumonia, meningitis, sepsis, bacteremia, and otitis media. S. pneumoniae has developed increased resistance to multiple classes of antibiotics. STUDY DESIGN Systematic literature review of prevalence, mechanisms, and clinical implications in S. pneumoniae resistance. AREAS OF UNCERTAINTY Since S. pneumoniae resistance to penicillin was first reported with subsequent development of resistance to other classes of drugs, selection of appropriate antibiotic treatment is challenging. DATA SOURCES We searched PubMed (English language) for citations to antibiotic resistance in S. pneumoniae published before March 1, 2016. RESULTS We present a review of S. pneumoniae resistance to beta-lactams, macrolides, lincosamides, fluoroquinolones, tetracyclines, and trimethoprim-sulfamethoxazole (TMP-SMX). There has been a steady decline in susceptibility of S. pneumoniae to commonly used beta-lactams. Phenotypic expression of penicillin resistance occurs as a result of a genetic structural modification in penicillin-binding proteins. Between 20% and 40% of S. pneumoniae isolates are resistant to macrolides. Macrolide resistance mechanisms include ribosomal target site alteration, alteration in antibiotic transport, and modification of the antibiotic. Approximately 22% of S. pneumoniae isolates are resistant to clindamycin. Similar to macrolide resistance, clindamycin involves a target site alteration. The prevalence of fluoroquinolone resistance is low, although increasing. S. pneumoniae resistance to fluoroquinolones occurs by accumulated mutations within the bacterial genome, increased efflux, or acquisition of plasmid-encoded genes. S. pneumoniae resistance has also increased for the tetracyclines. The primary mechanism is mediated by 2 genes that confer ribosomal protection. The prevalence of TMP-SMX resistance is around 35%. As with fluoroquinolones, resistance to TMP-SMX is secondary to mutations in the bacterial genome. CONCLUSIONS Effective treatment of resistant S. pneumoniae is a growing concern. New classes of drugs, newer formulations of older drugs, combination antibiotic therapy, nonantibiotic modalities, better oversight of antibiotic usage, and enhanced preventive measures hold promise.
Collapse
|
46
|
Watteyn A, Devreese M, Plessers E, Wyns H, Garmyn A, Reddy VRAP, Pasmans F, Martel A, Haesebrouck F, De Backer P, Croubels S. Efficacy of gamithromycin against Ornithobacterium rhinotracheale in turkey poults pre-infected with avian metapneumovirus. Avian Pathol 2018; 45:545-51. [PMID: 27171615 DOI: 10.1080/03079457.2016.1183764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ornithobacterium rhinotracheale is an avian respiratory pathogen that affects turkeys. The objective of this study was to evaluate the clinical efficacy of gamithromycin (GAM) against O. rhinotracheale in turkeys. The birds were inoculated oculonasally with 10(8) colony-forming units (cfu) of O. rhinotracheale, preceded by infection with avian metapneumovirus. In addition to a negative (CONTR-) and a positive control group (CONTR+) there were two treated groups administered GAM (6 mg/kg) either subcutaneously (GAM SC) or orally (GAM PO) by administration as a single bolus at one-day post-bacterial infection (p.b.i.). From the start of the avian metapneumovirus infection until the end of the experiment, the turkeys were examined clinically and scored daily. In addition, tracheal swabs were collected at several days p.b.i. Necropsy was performed at 4, 8 and 12 days p.b.i. to evaluate the presence of gross lesions, and to collect trachea and lung tissue samples and air sac swabs for O. rhinotracheale quantification. The clinical score of the GAM SC group showed slightly lower values and birds recovered earlier than those in the GAM PO and CONTR+ groups. O. rhinotracheale cfus were significantly reduced in tracheal swabs of the SC group between 2 and 4 days p.b.i. At necropsy, CONTR+ showed higher O. rhinotracheale cfu in lung tissues compared to the treated groups. Moreover, at 8 days p.b.i. only the lung samples of CONTR+ were positive. In conclusion, the efficacy of GAM against O. rhinotracheale was demonstrated, especially in the lung tissue. However, the PO bolus administration of the commercially available product was not as efficacious as the SC bolus.
Collapse
Affiliation(s)
- Anneleen Watteyn
- a Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Mathias Devreese
- a Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Elke Plessers
- a Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Heidi Wyns
- a Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - An Garmyn
- b Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Vishwanatha R A P Reddy
- c Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Frank Pasmans
- b Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - An Martel
- b Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Freddy Haesebrouck
- b Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Patrick De Backer
- a Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Siska Croubels
- a Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| |
Collapse
|
47
|
Wang CM, Zhao FL, Zhang L, Chai XY, Meng QG. Synthesis and Antibacterial Evaluation of a Series of 11,12-Cyclic Carbonate Azithromycin-3-O-descladinosyl-3-O-carbamoyl Glycosyl Derivatives. Molecules 2017; 22:molecules22122146. [PMID: 29207567 PMCID: PMC6149787 DOI: 10.3390/molecules22122146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022] Open
Abstract
A novel series of 11,12-cyclic carbonate azithromycin-3-O-descladinosyl-3-O-carbamoyl glycosyl derivatives were designed, synthesized, and evaluated for their antibacterial activities in vitro. Most of these compounds had significant antibacterial activity against seven kinds of susceptible strains. In particular, compound G1 exhibited the most potent activity against methicillin-resistant Streptococcus pneumoniae 943 (MIC: 1 μg/mL), Staphylococcus pneumoniae 746 (MIC: 2 μg/mL), Streptococcus pyogenes 447 (MIC: 8 μg/mL), and Escherichia coli 236 (MIC: 32 μg/mL), which were two-, four-, four-, four-, and eight-fold stronger activity than azithromycin, respectively. Additionally, compound G2 exhibited improved activity against methicillin-resistant Staphylococcus aureus MRSA-1 (MIC: 8 μg/mL), Streptococcus pneumoniae 943 (MIC: 2 μg/mL), Staphylococcus pneumoniae 746 (MIC: 2 μg/mL), and Escherichia coli 236 (MIC: 32 μg/mL), which were two-, two-, four-, and eight-fold better activity than azithromycin, respectively. As for methicillin-resistant Staphylococcus aureus MRSA-1, compound G6 presented the most excellent activity (MIC: 4 μg/mL), showing four-fold higher activity than azithromycin (MIC: 16 μg/mL) and erythromycin (MIC: 16 μg/mL). However, compared with other compounds, compounds G7 and G8 with the disaccharide side chain were observed the lower activity against seven strains.
Collapse
Affiliation(s)
- Chao-Ming Wang
- School of Pharmacy, Key Laboratory ofMolecular Pharmacology and Drug Evaluation,Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Feng-Lan Zhao
- School of Pharmacy, Key Laboratory ofMolecular Pharmacology and Drug Evaluation,Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Lei Zhang
- School of Pharmacy, Key Laboratory ofMolecular Pharmacology and Drug Evaluation,Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai 264005, China.
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Xiao-Yun Chai
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Qing-Guo Meng
- School of Pharmacy, Key Laboratory ofMolecular Pharmacology and Drug Evaluation,Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
48
|
Kocsis B, Szabo D. New treatment options for lower respiratory tract infections. Expert Opin Pharmacother 2017; 18:1345-1355. [DOI: 10.1080/14656566.2017.1363179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University , Budapest, Hungary
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University , Budapest, Hungary
| |
Collapse
|
49
|
Paul D, Das S, Goswami RK. Total Synthesis of Pestalotioprolide G and Putative Structure of Pestalotioprolide H. J Org Chem 2017; 82:7437-7445. [DOI: 10.1021/acs.joc.7b01115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debobrata Paul
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Sayantan Das
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajib Kumar Goswami
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
50
|
Wang Y, Cong C, Chai WC, Dong R, Jia L, Song D, Zhou Z, Ma S. Synthesis and antibacterial activity of novel 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs. Bioorg Med Chem Lett 2017; 27:3872-3877. [PMID: 28655423 DOI: 10.1016/j.bmcl.2017.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/16/2017] [Accepted: 06/18/2017] [Indexed: 11/30/2022]
Abstract
Three novel structural series of 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs were designed, synthesized and evaluated for their in vitro antibacterial activity. All the target compounds exhibited excellent activity against erythromycin-susceptible Streptococcus pyogenes, and significantly improved activity against three phenotypes of erythromycin-resistant Streptococcus pneumoniae compared with clarithromycin and azithromycin. Among the three series of azithromycin analogs, the novel series of 11,4″-disubstituted azithromycin analogs 9a-k exhibited the most effective and balanced activity against susceptible and resistant bacteria. Among them, compound 9j showed the most potent activity against Staphylococcus aureus ATCC25923 (0.008µg/mL) and Streptococcus pyogenes R2 (1µg/mL). Besides, all the 11,4″-disubstituted azithromycin analogs 9a-k except 9f shared the identical activity with the MIC value <0.002µg/mL against Streptococcus pyogenes S2. Furthermore, compounds 9g, 9h, 9j and 9k displayed significantly improved activity compared with the references against all the three phenotypes of resistant S. pneumoniae. Particularly, compound 9k was the most effective (0.06, 0.03 and 0.125µg/mL) against all the erythromycin-resistant S. pneumoniae expressing the erm gene, the mef gene and the erm and mef genes, exhibiting 2133, 133 and 2048-fold more potent activity than azithromycin, respectively.
Collapse
Affiliation(s)
- Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Chao Cong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Wern Chern Chai
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| | - Ruiqian Dong
- Maternity and Child Care Centre of Jinan, Jinan 250001, China
| | - Li Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ziteng Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China.
| |
Collapse
|