1
|
Hasnan N, Hamzaid NA, Magenthran V, Davis GM. Exercise Responses During Outdoor Versus Virtual Reality Indoor Arm+FES-Leg Cycling in Individuals with Spinal Cord Injury. Games Health J 2024. [PMID: 38709784 DOI: 10.1089/g4h.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Background: Virtual reality (VR)-enhanced indoor hybrid cycling in people with spinal cord injury (SCI) can be comparable to outdoor hybrid cycling. Method: Eight individuals with chronic thoracic-lesion SCI performed voluntary arm and electrically assisted leg cycling on a hybrid recumbent tricycle. Exercises were conducted outdoors and indoors incorporating VR technology in which the outdoor environment was simulated on a large flat screen monitor. Electrical stimulation was applied bilaterally to the leg muscle groups. Oxygen uptake (VO2), heart rate, energy expenditures, and Ratings of Perceived Exertion were measured over a 30-minute outdoor test course that was also VR-simulated indoors. Immediately after each exercise, participants completed questionnaires to document their perceptual-psychological responses. Results: Mean 30-minute VO2 was higher for indoor VR exercise (average VO2-indoor VR-exercise: 1316 ± mL/min vs. outdoor cycling: 1255 ± 53 mL/min; highest VO2-indoor VR-exercise: 1615 ± 67 mL/min vs. outdoor cycling: 1725 ± 67 mL/min). Arm and leg activity counts were significantly higher during indoor VR-assisted hybrid functional electrical stimulation (FES) cycling than outdoors; 42% greater for the arms and 23% higher for the legs (P < 0.05). Similar responses were reported for exercise effort and perceptual-psychological outcomes during both modes. Conclusion: This study proposes that combining FES and VR technology provides new opportunities for physical activity promotion or exercise rehabilitation in the SCI population, since these modes have similar "dose-potency" and self-perceived effort. Human Research Ethics Committee of the University of Sydney Ref. No. 01-2010/12385.
Collapse
Affiliation(s)
- Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vhinoth Magenthran
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Glen M Davis
- Discipline of Exercise and Sport Science, Sydney School of Health Sciences, Faculty of Medicine and Health. The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Farkas GJ, Caldera LJ, Nash MS. Assessing the efficacy of duration and intensity prescription for physical activity in mitigating cardiometabolic risk after spinal cord injury. Curr Opin Neurol 2023; 36:531-540. [PMID: 37865846 DOI: 10.1097/wco.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW Spinal cord injury (SCI) heightens susceptibility to cardiometabolic risk (CMR), predisposing individuals to cardiovascular disease. This monograph aims to assess the optimal duration and intensity of physical activity (PA) for managing CMR factors, particularly obesity, after SCI and provide modality-specific PA durations for optimal energy expenditure. RECENT FINDINGS PA guidelines recommend at least 150 min/week of moderate-intensity activity. However, non-SCI literature supports the effectiveness of engaging in vigorous-intensity PA (≥6 METs) and dedicating 250-300 min/week (≈2000 kcal/week) to reduce CMR factors. Engaging in this volume of PA has shown a dose-response relationship, wherein increased activity results in decreased obesity and other CMR factors in persons without SCI. SUMMARY To optimize cardiometabolic health, individuals with SCI require a longer duration and higher intensity of PA to achieve energy expenditures comparable to individuals without SCI. Therefore, individuals with SCI who can engage in or approach vigorous-intensity PA should prioritize doing so for at least 150 min/wk. At the same time, those unable to reach such intensities should engage in at least 250-300 min/week of PA at a challenging yet comfortable intensity, aiming to achieve an optimal intensity level based on their abilities. Given the potential to decrease CMR after SCI, increasing PA duration and intensity merits careful consideration in future SCI PA directives.
Collapse
Affiliation(s)
- Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis
| | - Lizeth J Caldera
- Department of Physical Medicine and Rehabilitation, University of Miami
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis
| | - Mark S Nash
- Department of Physical Medicine and Rehabilitation, University of Miami
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis
- The Miami Project to Cure Paralysis, Department of Neurological Surgery
- Department of Physical Therapy, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Máté S, Sinan-Fornusek C, Dhopte P, Singh MF, Hackett D, Fornusek C. Effects of Functional Electrical Stimulation Cycling Combined With Arm Cranking Exercise on Cardiorespiratory Fitness in People With Central Nervous System Disorders: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2023; 104:1928-1940. [PMID: 37098358 DOI: 10.1016/j.apmr.2023.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 03/26/2023] [Indexed: 04/27/2023]
Abstract
OBJECTIVE To examine the evidence regarding the potential of hybrid functional electrical stimulation (FES) cycling for improving cardiorespiratory fitness for people with a mobility disability related to a central nervous system (CNS) disorder. DATA SOURCES Nine electronic databases: MEDLINE, EMBASE, Web of Science, CINAHL, PsycInfo, SPORTDiscus, Pedro, Cochrane, and Scopus, were searched from inception until October 2022. STUDY SELECTION Search terms included multiple sclerosis, spinal cord injury (SCI), stroke, Parkinson's disease, cerebral palsy, synonyms of FES cycling, arm crank ergometry (ACE) or hybrid exercise, and V̇o2. All experimental studies, including randomized controlled trials that included an outcome measure related to peak or sub-maximal V̇o2 were eligible. DATA EXTRACTION From a total of 280 articles, 13 were studies included. The Downs and Black Checklist was used to assess study quality. Random effects (Hedges' g) meta-analyses were undertaken to determine whether there were differences in V̇o2peak during acute bouts of hybrid FES cycling vs other modes of exercise and changes resulting from longitudinal training. DATA SYNTHESIS During acute bouts of exercise, hybrid FES cycling was moderately more effective than ACE (effect size [ES] of 0.59 (95% CI 0.15-1.02, P=.008) in increasing V̇o2peak from rest. There was a large effect on the increase of V̇o2peak from rest for hybrid FES cycling compared with FES cycling (ES of 2.36 [95% CI 0.83-3.40, P=.003]). Longitudinal training with hybrid FES cycling showed a significant improvement in V̇o2peak from pre to post intervention with a large, pooled ES of 0.83 (95% CI 0.24-1.41, P=.006). CONCLUSIONS Hybrid FES cycling produced higher V̇o2peak compared with ACE or FES cycling during acute bouts of exercise. Hybrid FES cycling can improve cardiorespiratory fitness in people with SCI. Additionally, there is emerging evidence that hybrid FES cycling might increase aerobic fitness in people with mobility disability related to CNS disorders.
Collapse
Affiliation(s)
- Suzanne Máté
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| | - Canan Sinan-Fornusek
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Prakash Dhopte
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Maria Fiatarone Singh
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Sydney Medical School, The University of Sydney, Sydney, Australia; Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
| | - Daniel Hackett
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Ché Fornusek
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Ely MR, Schleifer GD, Singh TK, Baggish AL, Taylor JA. Exercise Training Does Not Attenuate Cardiac Atrophy or Loss of Function in Individuals With Acute Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil 2023; 104:909-917. [PMID: 36572202 PMCID: PMC10247388 DOI: 10.1016/j.apmr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the effects of 2 modes of exercise training, upper-body alone, and the addition of electrical stimulation of the lower body, to attenuate cardiac atrophy and loss of function in individuals with acute spinal cord injury (SCI). DESIGN Randomized controlled trial. SETTING Rehabilitation Hospital. PARTICIPANTS Volunteers (N=27; 5 women, 22 men) who were <24 months post SCI. INTERVENTIONS Volunteers completed either 6 months of no structured exercise (Control), arm rowing (AO), or a combination of arm rowing with electrical stimulation of lower body paralyzed muscle (functional electrical stimulation [FES] rowing). MAIN OUTCOME MEASURES Transthoracic echocardiography was performed on each subject prior to and 6 months after the intervention. The relations between time since injury and exercise type to cardiac structure and function were assessed via 2-way repeated-measures analysis of variance and with multilevel linear regression. RESULTS Time since injury was significantly associated with a continuous decline in cardiac structure and systolic function, specifically, a reduction in left ventricular mass (0.197 g/month; P=.049), internal diameter during systole (0.255 mm/month; P<.001), and diastole (0.217 mm/month; P=.019), as well as cardiac output (0.048 L/month, P=.019), and left ventricular percent shortening (0.256 %/month; P=.027). These associations were not differentially affected by exercise (Control vs AO vs FES, P>.05). CONCLUSIONS These results indicate that within the subacute phase of recovery from SCI there is a linear loss of left ventricular cardiac structure and systolic function that is not attenuated by current rehabilitative aerobic exercise practices. Reductions in cardiac structure and function may increase the risk of cardiovascular disease in individuals with SCI and warrants further interventions to prevent cardiac decline.
Collapse
Affiliation(s)
- Matthew R Ely
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Cambridge, MA.
| | - Grant D Schleifer
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Cambridge, MA
| | - Tamanna K Singh
- Cardiovascular Performance Program, Harvard Medical School, Cambridge, MA
| | - Aaron L Baggish
- Cardiovascular Performance Program, Harvard Medical School, Cambridge, MA
| | - J Andrew Taylor
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Cambridge, MA
| |
Collapse
|
5
|
Dolbow DR, Gorgey AS, Johnston TE, Bersch I. Electrical Stimulation Exercise for People with Spinal Cord Injury: A Healthcare Provider Perspective. J Clin Med 2023; 12:jcm12093150. [PMID: 37176591 PMCID: PMC10179213 DOI: 10.3390/jcm12093150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Electrical stimulation exercise has become an important modality to help improve the mobility and health of individuals with spinal cord injury (SCI). Electrical stimulation is used to stimulate peripheral nerves in the extremities to assist with muscle strengthening or functional activities such as cycling, rowing, and walking. Electrical stimulation of the peripheral nerves in the upper extremities has become a valuable tool for predicting the risk of hand deformities and rehabilitating functional grasping activities. The purpose of this paper is to provide healthcare providers perspective regarding the many rehabilitation uses of electrical stimulation in diagnosing and treating individuals with SCI. Electrical stimulation has been shown to improve functional mobility and overall health, decrease spasticity, decrease the risk of cardiometabolic conditions associated with inactivity, and assist in the diagnosis/prognosis of hand deformities in those with tetraplegia. Studies involving non-invasive stimulation of the spinal nerves via external electrodes aligned with the spinal cord and more invasive stimulation of electrodes implanted in the epidural lining of the spinal cord have demonstrated improvements in the ability to stand and enhanced the stepping pattern during ambulation. Evidence is also available to educate healthcare professionals in using functional electrical stimulation to reduce muscle spasticity and to recognize limitations and barriers to exercise compliance in those with SCI. Further investigation is required to optimize the dose-response relationship between electrical stimulation activities and the mobility and healthcare goals of those with SCI and their healthcare providers.
Collapse
Affiliation(s)
- David R Dolbow
- Department of Physical Therapy, College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
- College of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Therese E Johnston
- Department of Physical Therapy, Arcadia University, Glenside, PA 19038, USA
| | - Ines Bersch
- International FES Centre®, Swiss Paraplegic Center, CH-6207 Nottwil, Switzerland
| |
Collapse
|
6
|
Dharnipragada R, Ahiarakwe U, Gupta R, Abdilahi A, Butterfield J, Naik A, Parr A, Morse LR. Pharmacologic and nonpharmacologic treatment modalities for bone loss in SCI - Proposal for combined approach. J Clin Densitom 2023; 26:101359. [PMID: 36931948 DOI: 10.1016/j.jocd.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Increased risk of bone fracture due to bone mineral density (BMD) loss is a serious consequence of spinal cord injury (SCI). Traditionally, pharmaceutical approaches, such as bisphosphonates, have been prescribed to prevent bone loss. However, there is controversy in the literature regarding efficacy of these medications to mitigate the drastic bone loss following SCI. Individuals with SCI are particularly at risk of osteoporosis because of the lack of ambulation and weight bearing activities. In the past two decades, functional electric stimulation (FES) has allowed for another approach to treat bone loss. FES approaches are expanding into various modalities such as cycling and rowing exercises and show promising outcomes with minimal consequences. In addition, these non-pharmacological treatments can elevate overall physical and mental health. This article provides an overview of efficacy of different treatment options for BMD loss for SCI and advocates for a combined approach be pursued in standard of care.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, Twin-Cities, Minneapolis, MN 55455, USA
| | | | - Ribhav Gupta
- University of Minnesota Medical School, Twin-Cities, Minneapolis, MN 55455, USA; Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Abdiasis Abdilahi
- University of Minnesota Medical School, Twin-Cities, Minneapolis, MN 55455, USA
| | - Jack Butterfield
- University of Minnesota Medical School, Twin-Cities, Minneapolis, MN 55455, USA
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign IL, 61801, USA
| | - Ann Parr
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, MN 55455, USA
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota Twin-Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Calabrò RS, Portaro S, Tomasello P, Porcari B, Balletta T, Naro A. Paving the way for a better management of pain in patients with spinal cord injury: An exploratory study on the use of Functional Electric Stimulation(FES)-cycling. J Spinal Cord Med 2023; 46:107-117. [PMID: 34369852 PMCID: PMC9897777 DOI: 10.1080/10790268.2021.1961050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CONTEXT/OBJECTIVE Chronic pain is common in patients with spinal cord injury (SCI), for whom it negatively affects quality of life, and its treatment requires an integrated approach. To this end, lower limb functional electrical stimulation (FES) cycling holds promise. OBJECTIVE To investigate pain reduction in a sample of patients with SCI by means of lower limb rehabilitation using FES cycling. DESIGN, SETTING AND PARTICIPANTS Sixteen patients with incomplete and complete SCIs, attending the Neurorobotic Unit of our research institute and reporting pain at or below the level of their SCI were recruited to this exploratory study. INTERVENTIONS Patients undertook two daily sessions of FES cycling, six times weekly, for 6 weeks. OUTCOME MEASURES Pain outcomes were measured using the 0-10 numerical rating scale (NRS), the Multidimensional Pain Inventory for SCI (MPI-SCI), and the 36-Item Short Form Survey (SF-36). Finally, we assessed the features of dorsal laser-evoked potentials (LEPs) to objectively evaluate Aδ fiber pathways. RESULTS All participants tolerated the intervention well, and completed the training without side effects. Statistically significant changes were found in pain-NRS, MPI-SCI, and SF-36 scores, and LEP amplitudes. Following treatment, we found that three patients experienced high pain relief (an NRS decrease of at least 80%), six individuals achieved moderate pain relief (an NRS decrease of about 30-70%), and five participants had mild pain relief (an NRS decrease of less than 30%). CONCLUSION Our preliminary results suggest that FES cycling training is capable of reducing the pain reported by patients with SCI, regardless of American Spinal Injury Association scoring, pain level, or the neurological level of injury. The neurophysiological mechanisms underlying such effects are likely to be both spinal and supraspinal.
Collapse
Affiliation(s)
- Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy,Correspondence to: Rocco Salvatore Calabrò, IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS 113, Ctr. Casazza, Messina98124, Italy; Ph: +3909060128166.
| | | | | | - Bruno Porcari
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
8
|
Advanced Equipment Development and Clinical Application in Neurorehabilitation for Spinal Cord Injury: Historical Perspectives and Future Directions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Partial to complete paralysis following spinal cord injury (SCI) causes deterioration in health and has severe effects on the ability to perform activities of daily living. Following the discovery of neural plasticity, neurorehabilitation therapies have emerged that aim to reconstruct the motor circuit of the damaged spinal cord. Functional electrical stimulation (FES) has been incorporated into devices that reconstruct purposeful motions in the upper and lower limbs, the most recent of which do not require percutaneous electrode placement surgery and thus enable early rehabilitation after injury. FES-based devices have shown promising results for improving upper limb movement, including gripping and finger function, and for lower limb function such as the ability to stand and walk. FES has also been employed in hybrid cycling and rowing to increase total body fitness. Training using rehabilitation robots is advantageous in terms of consistency of quality and quantity of movements and is particularly applicable to walking training. Initiation of motor reconstruction at the early stage following SCI is likely to advance rapidly in the future, with the combined use of technologies such as regenerative medicine, brain machine interfaces, and rehabilitation robots with FES showing great promise.
Collapse
|
9
|
Antoniou G, Benetos IS, Vlamis J, Pneumaticos SG. Bone Mineral Density Post a Spinal Cord Injury: A Review of the Current Literature Guidelines. Cureus 2022; 14:e23434. [PMID: 35494917 PMCID: PMC9038209 DOI: 10.7759/cureus.23434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/05/2022] Open
|
10
|
Lai RE, Holman ME, Chen Q, Rivers J, Lesnefsky EJ, Gorgey AS. Assessment of mitochondrial respiratory capacity using minimally invasive and noninvasive techniques in persons with spinal cord injury. PLoS One 2022; 17:e0265141. [PMID: 35275956 PMCID: PMC8916668 DOI: 10.1371/journal.pone.0265141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose Muscle biopsies are the gold standard to assess mitochondrial respiration; however, biopsies are not always a feasible approach in persons with spinal cord injury (SCI). Peripheral blood mononuclear cells (PBMCs) and near-infrared spectroscopy (NIRS) may alternatively be predictive of mitochondrial respiration. The purpose of the study was to evaluate whether mitochondrial respiration of PBMCs and NIRS are predictive of respiration of permeabilized muscle fibers after SCI. Methods Twenty-two individuals with chronic complete and incomplete motor SCI between 18–65 years old were recruited to participate in the current trial. Using high-resolution respirometry, mitochondrial respiratory capacity was measured for PBMCs and muscle fibers of the vastus lateralis oxidizing complex I, II, and IV substrates. NIRS was used to assess mitochondrial capacity of the vastus lateralis with serial cuff occlusions and electrical stimulation. Results Positive relationships were observed between PBMC and permeabilized muscle fibers for mitochondrial complex IV (r = 0.86, P < 0.0001). Bland-Altman displayed agreement for complex IV (MD = 0.18, LOA = -0.86 to 1.21), between PBMCs and permeabilized muscles fibers. No significant relationships were observed between NIRS mitochondrial capacity and respiration in permeabilized muscle fibers. Conclusions This is the first study to explore and support the agreement of less invasive clinical techniques for assessing mitochondrial respiratory capacity in individuals with SCI. The findings will assist in the application of PBMCs as a viable alternative for assessing mitochondrial health in persons with SCI in future clinical studies.
Collapse
Affiliation(s)
- Raymond E. Lai
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Matthew E. Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Qun Chen
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Edward J. Lesnefsky
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tajali S, Fok KL, Theventhiran P, Ye G, Yokoyama H, Nakagawa K, Masani K. Development of a Coaching System for Functional Electrical Stimulation Rowing: A Feasibility Study in Able-Bodied Individuals. SENSORS 2022; 22:s22051813. [PMID: 35270960 PMCID: PMC8914784 DOI: 10.3390/s22051813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023]
Abstract
Background: Functional electrical stimulation (FES) during rowing has substantial effects on cardiovascular health in individuals with spinal cord injuries. Currently, manual stimulation control where stimulation is operated by rowers is mostly utilized. However, it takes time to obtain the skill to initiate FES at the optimal timing. The purpose of this study was to develop a coaching system that helps rowers to initiate FES at the optimal timing. Methods: The optimal range for FES application was identified based on the electromyography of the left quadriceps in 10 able-bodied individuals (AB). Then, the effects of the coaching system on the timing of button-pressing, power, and work were investigated in 7 AB. Results: Vastus lateralis (VL) activation began consistently before the seat reached the anterior-most position. Therefore, seat position at the onset of VL was used as the variable to control the switch timing in the coaching system. The results revealed significantly higher power and work outputs in the coaching than the no-coaching condition (median power coaching: 19.10 W, power no-coaching: 16.48 W, p = 0.031; median work coaching: 109.74 J, work no-coaching: 65.25 J, p = 0.047). Conclusions: The coaching system can provide the optimal timing for FES, resulting in improved performance.
Collapse
Affiliation(s)
- Shirin Tajali
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, ON M4P 1E4, Canada; (S.T.); (K.L.F.); (P.T.); (G.Y.); (H.Y.); (K.N.)
| | - Kai Lon Fok
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, ON M4P 1E4, Canada; (S.T.); (K.L.F.); (P.T.); (G.Y.); (H.Y.); (K.N.)
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Pirashanth Theventhiran
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, ON M4P 1E4, Canada; (S.T.); (K.L.F.); (P.T.); (G.Y.); (H.Y.); (K.N.)
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Gongkai Ye
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, ON M4P 1E4, Canada; (S.T.); (K.L.F.); (P.T.); (G.Y.); (H.Y.); (K.N.)
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Hikaru Yokoyama
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, ON M4P 1E4, Canada; (S.T.); (K.L.F.); (P.T.); (G.Y.); (H.Y.); (K.N.)
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kento Nakagawa
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, ON M4P 1E4, Canada; (S.T.); (K.L.F.); (P.T.); (G.Y.); (H.Y.); (K.N.)
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| | - Kei Masani
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, ON M4P 1E4, Canada; (S.T.); (K.L.F.); (P.T.); (G.Y.); (H.Y.); (K.N.)
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
- Correspondence:
| |
Collapse
|
12
|
Vestergaard M, Jensen K, Juul-Kristensen B. Hybrid high-intensity interval training using functional electrical stimulation leg cycling and arm ski ergometer for people with spinal cord injuries: a feasibility study. Pilot Feasibility Stud 2022; 8:43. [PMID: 35193705 PMCID: PMC8862540 DOI: 10.1186/s40814-022-00997-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Aim The aim was to assess safety and feasibility of Hybrid High-Intensity Interval Training (HIIT) using Functional Electrical Stimulation (FES) leg cycling and arm ski ergometer in people with Spinal Cord Injuries (SCI). Method Eight outpatients (mean age 42.8 years; 7 men) with stable SCI paraplegia (mean 14.5 years since injury) participated in hybrid HIIT (90% peak watts; 4 × 4–min intervals), three times a week (over 8 weeks). Primary outcomes were Adverse Events (AE), participant acceptability, shoulder pain, training intensity (% peak watts), and attendance. Secondary outcomes were effect on peak oxygen uptake (VO2peak) during FES hybrid poling, mean watts, self-reported leisure time physical activity, quality of life, and fatigue. Results No serious AE occurred; acceptability with the training modality was high, while shoulder pain increased by 9% (SD 95.2). During training, 50% of the participants reached > 90% peak watts during the intervals, three with the legs (FES cycle) and one with the arms (Ski-Erg). Overall, mean training intensity (% peak watts) was 92% (SD 18.9) for legs and 82% (SD 10.3) for arms. Proportion of fulfilled training minutes was 82% (range 36–100%); one participant dropped out after 6 weeks due to back pain. Mean VO2peak increased by 17% (SD 17.5). Participants reported increased leisure time physical activity and health-related quality of life, besides reduced fatigue. Conclusion Hybrid HIIT was safe for people with SCI paraplegia. The majority of the criteria for feasibility were met with acceptable attendance rate, limited drop out, participants enjoyed training, and increased VO2peak and mean watts. However, the intensity of 90% peak watts was reached by < 60% of the participants despite high RPE ratings during training. The method of measuring and calculating intensity needs to be studied further before a study using this HIIT protocol is undertaken. Trial registration Clinicaltrials.gov, NCT04211311, registered 12 December 2019 retrospectively registered Supplementary Information The online version contains supplementary material available at 10.1186/s40814-022-00997-2.
Collapse
|
13
|
Acute physiological comparison of sub-maximal exercise on a novel adapted rowing machine and arm crank ergometry in people with a spinal cord injury. Spinal Cord 2022; 60:694-700. [PMID: 35110695 PMCID: PMC8810340 DOI: 10.1038/s41393-022-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/01/2022]
Abstract
Study design Non-randomized crossover trial. Objectives The objective of this study was to assess the oxygen uptake during exercise using the Adapted ROWing machine (AROW) compared to the more commonly used Arm Crank Ergometry (ACE) for people with spinal cord injury/disease (SCI/D) with or without trunk stability. Setting Canada, Vancouver. Methods Participants were from a convenience sample of 14 adults with SCI/D (age 21–63 y) which include those with lumbar to low cervical impairments currently exercising at least once per week using cardiovascular exercise equipment at our Physical Activity Research Centre. The interventions were non-randomized steady-state exercise bouts at self-selected low and moderate workloads on the AROW and ACE for 5 min each. Our primary outcomes were the rate of oxygen consumption (mL/kg/min) and the Borg 0–10 Rating Scale of Perceived Exertion (RPE). Results A repeated measures two-way ANOVA (p < 0.05) indicated that exercising on the AROW resulted significantly greater oxygen consumption and perceived exertion than ACE at similar sub-maximal workloads which may be explained by the differences in efficiency between the devices (Partial eta squared = 0.84, F stat = 48.25; Partial eta squared = 0.86, F stat = 53.54). Conclusions We have demonstrated that this form of upper extremity exercise had a greater RPE and VO2 on the ACE at a given workload. Thus, the AROW could provide a functional upper extremity workout that can be used for daily exercise for those with varying levels of SCI.
Collapse
|
14
|
Ye G, Theventhiran P, Masani K. Effect of Spatially Distributed Sequential Stimulation on Fatigue in Functional Electrical Stimulation Rowing. IEEE Trans Neural Syst Rehabil Eng 2022; 30:999-1008. [DOI: 10.1109/tnsre.2022.3166710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Atkins KD, Bickel CS. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr Opin Pharmacol 2021; 60:226-231. [PMID: 34464934 DOI: 10.1016/j.coph.2021.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury is a devastating condition interrupting voluntary movement and motor control. In response to unloading, skeletal muscle undergoes numerous adaptations, including rapid and profound atrophy, intramuscular fat accumulation, impaired muscular glucose metabolism and decreased force generation and muscle performance. Functional electrical stimulation (FES) involves electrically stimulating affected muscles to contract in a coordinated manner to create a functional movement or task. Effects of FES-cycling, rowing and resistance training on muscle health are described here. Briefly, FES-cycling and resistance training may slow muscle atrophy or facilitate muscle hypertrophy, and all modalities benefit muscle composition and performance to some extent. These interventions show promise as future rehabilitative tools after spinal cord injury.
Collapse
Affiliation(s)
- Kelly D Atkins
- Department of Physical Therapy, Samford University, Birmingham, AL, USA
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, AL, USA.
| |
Collapse
|
16
|
Ely MR, Taylor JA. The Practical Utility of Functional Electrical Stimulation Exercise for Cardiovascular Health in Individuals with Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-021-00315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Gorgey AS, Lai RE, Khalil RE, Rivers J, Cardozo C, Chen Q, Lesnefsky EJ. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. J Appl Physiol (1985) 2021; 131:265-276. [PMID: 33982590 DOI: 10.1152/japplphysiol.01029.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine whether neuromuscular electrical stimulation resistance training (NMES-RT)-evoked muscle hypertrophy is accompanied by increased V̇o2 peak, ventilatory efficiency, and mitochondrial respiration in individuals with chronic spinal cord injury (SCI). Thirty-three men and women with chronic, predominantly traumatic SCI were randomized to either NMES-RT (n = 20) or passive movement training (PMT; n = 13). Functional electrical stimulation-lower extremity cycling (FES-LEC) was used to test the leg V̇o2 peak, V̇E/V̇co2 ratio, and substrate utilization pre- and postintervention. Magnetic resonance imaging was used to measure muscle cross-sectional area (CSA). Finally, muscle biopsy was performed to measure mitochondrial complexes and respiration. The NMES-RT group showed a significant increase in postintervention V̇o2 peak compared with baseline (ΔV̇o2 = 14%, P < 0.01) with no changes in the PMT group (ΔV̇o2 = 1.6%, P = 0.47). Similarly, thigh (ΔCSAthigh = 19%) and knee extensor (ΔCSAknee = 30.4%, P < 0.01) CSAs increased following NMES-RT but not after PMT. The changes in thigh and knee extensor muscle CSAs were positively related with the change in V̇o2 peak. Neither NMES-RT nor PMT changed mitochondrial complex tissue levels; however, changes in peak V̇o2 were related to complex I. In conclusion, in persons with SCI, NMES-RT-induced skeletal muscle hypertrophy was accompanied by increased peak V̇o2 consumption which may partially be explained by enhanced activity of mitochondrial complex I.NEW & NOTEWORTHY Leg oxygen uptake (V̇o2) and ventilatory efficiency (V̇E/V̇co2 ratio) were measured during functional electrical stimulation cycling testing following 12-16 wk of either electrically evoked resistance training or passive movement training, and the respiration of mitochondrial complexes. Resistance training increased thigh muscle area and leg V̇o2 peak but decreased V̇E/V̇co2 ratio without changes in mitochondrial complex levels. Leg V̇o2 peak was associated with muscle hypertrophy and mitochondrial respiration of complex I following training.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Raymond E Lai
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine, New York City, New York.,Department Rehabilitation Medicine, Icahn School of Medicine, New York City, New York
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Hashida R, Takano Y, Matsuse H, Kudo M, Bekki M, Omoto M, Nago T, Kawaguchi T, Torimura T, Shiba N. Electrical Stimulation of the Antagonist Muscle During Cycling Exercise Interval Training Improves Oxygen Uptake and Muscle Strength. J Strength Cond Res 2021; 35:111-117. [PMID: 29278576 DOI: 10.1519/jsc.0000000000002393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Hashida, R, Takano, Y, Matsuse, H, Kudo, M, Bekki, M, Omoto, M, Nago, T, Kawaguchi, T, Torimura, T, and Shiba, N. Electrical stimulation of the antagonist muscle during cycling exercise interval training improves oxygen uptake and muscle strength. J Strength Cond Res 35(1): 111-117, 2021-A hybrid training system (HTS) is a resistance exercise method that combines voluntary concentric muscle contractions and electrically stimulated eccentric muscle contractions. We devised an exercise technique using HTS on cycle ergometer (HCE). The purpose of this study was to compare cardiorespiratory function and muscle strength when cycling exercise is combined with electrical stimulation over an extended period. Twenty-nine healthy young men were divided into an HCE group (n = 14) and a volitional cycle ergometer (VCE alone) group (n = 15). All subjects performed 30-minute cycling exercise interval training sessions 3 times a week for 6 weeks. The V̇o2peak of both groups significantly increased compared with the pretraining period (HCE group: from 31.3 ± 4.4 [ml·kg-1·min-1] pretraining to 37.6 ± 6.7 [ml·kg-1·min-1] post-training [p = 0.0024] and VCE group: from 34.0 ± 7.1 [ml·kg-1·min-1] pretraining to 38.4 ± 8.2 [ml·kg-1·min-1] [p = 0.0057]). After the training, there was no significant difference of changes in V̇o2peak between the HCE and the VCE groups (p = 0.7107). In the VCE group, the maximal isokinetic torque of knee extension (60°·s-1) post-training did not significantly increase compared with the pretraining period (VCE group: from 2.4 ± 0.5 [N·m·kg-1] pretraining to 2.5 ± 0.4 [N·m·kg-1] [p = 0.4543]). By contrast, in the HCE group, the maximal isokinetic torque of knee extension (60°·s-1) post-training significantly increased compared with pretraining period (HCE group: from 2.5 ± 0.3 [N·m·kg-1] pretraining to 2.8 ± 0.3 [N·m·kg-1] [p < 0.0001]). The change in knee extension torque was significantly greater for the HCE group than for the VCE group (p = 0.0307). In conclusion, cardiopulmonary function and knee extension strength were improved by the use of HCE.
Collapse
Affiliation(s)
- Ryuki Hashida
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan.,Department of Orthopedics, Kurume University School of Medicine, Kurume, Japan
| | - Yoshio Takano
- Department of Physical Therapy, School of Health Sciences, International University Health and Welfare, Enokizu, Okawa, Japan; and
| | - Hiroo Matsuse
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan.,Department of Orthopedics, Kurume University School of Medicine, Kurume, Japan
| | - Mei Kudo
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Masafumi Bekki
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan.,Department of Orthopedics, Kurume University School of Medicine, Kurume, Japan
| | - Masayuki Omoto
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan.,Department of Orthopedics, Kurume University School of Medicine, Kurume, Japan
| | - Takeshi Nago
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan.,Department of Orthopedics, Kurume University School of Medicine, Kurume, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Department of Physical Therapy, School of Health Sciences, International University Health and Welfare, Enokizu, Okawa, Japan; and
| | - Naoto Shiba
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan.,Department of Orthopedics, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
19
|
Clinical Benefits and System Design of FES-Rowing Exercise for Rehabilitation of Individuals with Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2021; 102:1595-1605. [PMID: 33556345 DOI: 10.1016/j.apmr.2021.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To comprehensively and critically appraise the clinical benefits and engineering designs of functional electrical stimulation (FES)-rowing for management of individuals with spinal cord injury (SCI). DATA SOURCES Electronic database searches were conducted in Cumulative Index to Nursing & Allied Health Literature, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Excerpta Medica database, Emcare, Medline, PubMed, Scopus, and Web of Science databases from inception to May 12, 2020. STUDY SELECTION Search terms used were synonyms of "spinal cord injury" for Population and "Electric Stimulation (Therapy)/ and rowing" for Intervention. Two reviewers independently assessed articles based on the following inclusion criteria: recruited individuals with SCI; had aerobic FES-rowing exercise as study intervention; reported cardiovascular, muscular, bone mineral density, or metabolic outcomes; and examined engineering design of FES-rowing systems. Of the 256 titles that were retrieved in the primary search, 24 were included in this study. DATA EXTRACTION Study characteristics, quality, participants' characteristics, test descriptions, and results were independently extracted by 2 reviewers. The quality of studies was assessed with the Downs and Black checklist. DATA SYNTHESIS Comparison of peak oxygen consumption (V̇o2peak) rates showed that V̇o2peak during FES-rowing was significantly higher than arm-only exercise; FES-rowing training improved V̇o2peak by 11.2% on average (95% confidence interval, 7.25-15.1), with a 4.1% (95% confidence interval, 2.23-5.97) increase in V̇o2peak per month of training. FES-rowing training reduced bone density loss with increased time postinjury. The rowing ergometer used in 2 studies provided motor assistance during rowing. Studies preferred manual stimulation control (n=20) over automatic (n=4). CONCLUSIONS Our results suggest FES-rowing is a viable exercise for individuals with SCI that can improve cardiovascular performance and reduce bone density loss. Further randomized controlled trials are needed to better understand the optimal set-up for FES-rowing that maximizes the rehabilitation outcomes.
Collapse
|
20
|
McMillan DW, Maher JL, Jacobs KA, Nash MS, Gater DR. Exercise Interventions Targeting Obesity in Persons With Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:109-120. [PMID: 33814889 PMCID: PMC7983638 DOI: 10.46292/sci20-00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) results in an array of cardiometabolic complications, with obesity being the most common component risk of cardiometabolic disease (CMD) in this population. Recent Consortium for Spinal Cord Medicine Clinical Practice Guidelines for CMD in SCI recommend physical exercise as a primary treatment strategy for the management of CMD in SCI. However, the high prevalence of obesity in SCI and the pleiotropic nature of this body habitus warrant strategies for tailoring exercise to specifically target obesity. In general, exercise for obesity management should aim primarily to induce a negative energy balance and secondarily to increase the use of fat as a fuel source. In persons with SCI, reductions in the muscle mass that can be recruited during activity limit the capacity for exercise to induce a calorie deficit. Furthermore, the available musculature exhibits a decreased oxidative capacity, limiting the utilization of fat during exercise. These constraints must be considered when designing exercise interventions for obesity management in SCI. Certain forms of exercise have a greater therapeutic potential in this population partly due to impacts on metabolism during recovery from exercise and at rest. In this article, we propose that exercise for obesity in SCI should target large muscle groups and aim to induce hypertrophy to increase total energy expenditure response to training. Furthermore, although carbohydrate reliance will be high during activity, certain forms of exercise might induce meaningful postexercise shifts in the use of fat as a fuel. General activity in this population is important for many components of health, but low energy cost of daily activities and limitations in upper body volitional exercise mean that exercise interventions targeting utilization and hypertrophy of large muscle groups will likely be required for obesity management.
Collapse
Affiliation(s)
- David W. McMillan
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Jennifer L. Maher
- Department of Health, University of Bath, Claverton Down, Bath, United Kingdom
| | - Kevin A. Jacobs
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, Florida
| | - Mark S. Nash
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
| | - David R. Gater
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
| |
Collapse
|
21
|
Farkas GJ, Gorgey AS, Dolbow DR, Berg AS, Gater DR. Energy Expenditure, Cardiorespiratory Fitness, and Body Composition Following Arm Cycling or Functional Electrical Stimulation Exercises in Spinal Cord Injury: A 16-Week Randomized Controlled Trial. Top Spinal Cord Inj Rehabil 2021; 27:121-134. [PMID: 33814890 PMCID: PMC7983642 DOI: 10.46292/sci20-00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Physical deconditioning and inactivity following spinal cord injury (SCI) are associated with multiple cardiometabolic risks. To mitigate cardiometabolic risk, exercise is recommended, but it is poorly established whether arm cycling exercise (ACE) or functional electrical stimulation (FES) leg cycling yields superior benefits. Objectives: To determine the adaptations of 16 weeks of FES cycling and ACE on exercise energy expenditure (EEE), cardiorespiratory fitness (CRF), and obesity after SCI. Methods: Thirteen physically untrained individuals were randomly assigned to FES (n = 6) or ACE (n = 7) exercise 5 days/week for 16 weeks. Pre- and post-intervention EEE, peak oxygen consumption (absolute and relative VO2Peak), and work were assessed using indirect calorimetry, while body composition was measured by dual-energy x-ray absorptiometry. Results: Main effects were found for peak power (p < .001), absolute (p = .046) and relative (p = .042) VO2Peak, and peak work (p = .013). Compared to baseline, the ACE group increased in EEE (+85%, p = .002), peak power (+307%, p < .001), VO2Peak (absolute +21%, relative +22%, p ≤ .024), peak work (19% increase, p = .003), and total body fat decreased (-6%, p = .05). The FES group showed a decrease in percentage body fat mass (-5%, p = .008). The ACE group had higher EEE (p = .008), peak power (p < .001), and relative VO2Peak (p = .025) compared to postintervention values in the FES group. Conclusion: In the current study, ACE induced greater increases in EEE and CRF, whereas ACE and FES showed similar results on body fat. Exercise promotional efforts targeting persons with SCI should use both FES and ACE to reduce sedentary behavior and to optimize different health parameters after SCI.
Collapse
Affiliation(s)
- Gary J. Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - David R. Dolbow
- Department of Physical Therapy, William Carey University, Hattiesburg, Mississippi
| | - Arthur S. Berg
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
22
|
Bersch I, Fridén J. Upper and lower motor neuron lesions in tetraplegia: implications for surgical nerve transfer to restore hand function. J Appl Physiol (1985) 2020; 129:1214-1219. [DOI: 10.1152/japplphysiol.00529.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nerve transfers (neurotizations) performed under optimal conditions can restore some voluntary control in muscles of the upper extremities in patients with tetraplegia. However, the type of motoneuron lesions in target muscles for nerve transfers influences the functional outcome. Using standardized maps of motor point topography, surface electrical stimulation reliably defines the kind and extent of motoneuron lesion in the selected muscles. In a muscle with an intact lower motor motoneuron, nerve transfers can often successfully reinnervate the chosen key muscle. Conversely, in a lower motoneuron lesion, the nerve transfer outcome is less predictable. However, direct muscle stimulation appears to ameliorate the morphological precondition, a finding that necessitates new preoperative approaches to optimize reinnervation in denervated/partially denervated muscles. Therefore, understanding the impact of electrical stimulation in diagnostics, prognostics, and treatments of upper limbs in tetraplegia is critical for neurotization procedures.
Collapse
Affiliation(s)
- Ines Bersch
- Swiss Paraplegic Centre, Nottwil, Switzerland
- Department of Orthopaedics, Institute of Clinical Sciences at the University of Gothenburg, Gothenburg, Sweden
| | - Jan Fridén
- Swiss Paraplegic Centre, Nottwil, Switzerland
- Department of Orthopaedics, Institute of Clinical Sciences at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Mercier HW, Picard G, Taylor JA, Vivodtzev I. Gains in aerobic capacity with whole-body functional electrical stimulation row training and generalization to arms-only exercise after spinal cord injury. Spinal Cord 2020; 59:74-81. [PMID: 32719528 PMCID: PMC7855132 DOI: 10.1038/s41393-020-0527-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Longitudinal study in adults (n = 27; 19-40 years old) with tetraplegic or paraplegic spinal cord injury (SCI). OBJECTIVES Determine physiological adaptations and generalizable fitness effects of 6 months of whole-body exercise training using volitional arm and functional electrical stimulation (FES) leg rowing. SETTING Outpatient hospital-based exercise facility and laboratory. METHODS Participants enrolled in hybrid FES-row training (FESRT) and performed peak exercise tests with arms-only (AO; baseline and 6 months) and FES rowing (baseline, 3, 6 months). RESULTS Participants demonstrated increased aerobic capacity (VO2peak) after FESRT (p < 0.001, np2 = 0.56) that tended to be higher when assessed with FES than AO rowing tests (0.15 ± 0.20 vs. 0.04 ± 0.22 L/min; p = 0.10). Changes in FES and AO VO2peak were significantly correlated (r = 0.55; p < 0.01), and 11 individuals demonstrated improvements (>6%) on both test formats. Younger age was the only difference between those who showed generalization of training effects and those who did not (mean age 26.6 ± 5.6 vs. 32.0 ± 5.7 years; p < 0.05) but changes in FES VO2peak correlated to time since injury in individuals <2 years post-SCI (r = -0.51, p < 0.01, n = 24). Lastly, VO2peak improvements were greater during the first 3 months vs. months 4-6 (+7.0% vs. +3.9%; p < 0.01) which suggests early training adaptations during FESRT. CONCLUSIONS Gains in aerobic capacity after whole-body FESRT are better reflected during FES-row testing format. They relate to high-intensity exercise and appear early during training, but they may not generalize to equivalent increases in AO exercise in all individuals with SCI.
Collapse
Affiliation(s)
- Hannah W Mercier
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA. .,Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA.
| | - Glen Picard
- Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA
| | - J Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.,Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA
| | - Isabelle Vivodtzev
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.,Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA.,Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| |
Collapse
|
24
|
Waldauf P, Gojda J, Urban T, Hrušková N, Blahutová B, Hejnová M, Jiroutková K, Fric M, Jánský P, Kukulová J, Stephens F, Řasová K, Duška F. Functional electrical stimulation-assisted cycle ergometry in the critically ill: protocol for a randomized controlled trial. Trials 2019; 20:724. [PMID: 31842936 PMCID: PMC6915865 DOI: 10.1186/s13063-019-3745-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Intensive care unit (ICU)-acquired weakness is the most important cause of failed functional outcome in survivors of critical care. Most damage occurs during the first week when patients are not cooperative enough with conventional rehabilitation. Functional electrical stimulation-assisted cycle ergometry (FES-CE) applied within 48 h of ICU admission may improve muscle function and long-term outcome. METHODS An assessor-blinded, pragmatic, single-centre randomized controlled trial will be performed. Adults (n = 150) mechanically ventilated for < 48 h from four ICUs who are estimated to need > 7 days of critical care will be randomized (1:1) to receive either standard of care or FES-CE-based intensified rehabilitation, which will continue until ICU discharge. PRIMARY OUTCOME quality of life measured by 36-Item Short Form Health Survey score at 6 months. SECONDARY OUTCOMES functional performance at ICU discharge, muscle mass (vastus ultrasound, N-balance) and function (Medical Research Council score, insulin sensitivity). In a subgroup (n = 30) we will assess insulin sensitivity and perform skeletal muscle biopsies to look at mitochondrial function, fibre typing and regulatory protein expression. TRIAL REGISTRATION ClinicalTrials.gov, NCT02864745. Registered on 12 August 2016.
Collapse
Affiliation(s)
- Petr Waldauf
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Jan Gojda
- Department of Internal Medicine II, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Tomáš Urban
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Natália Hrušková
- Department of Rehabilitation, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Barbora Blahutová
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
- Department of Rehabilitation, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Marie Hejnová
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
- Department of Rehabilitation, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Kateřina Jiroutková
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Michal Fric
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Pavel Jánský
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Jana Kukulová
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Francis Stephens
- College of Life and Environmental Sciences, Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Kamila Řasová
- Department of Rehabilitation, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - František Duška
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic.
| |
Collapse
|
25
|
Qiu S, Draghici AE, Picard G, Taylor JA. Muscle Fatigue in Response to Electrical Stimulation Pattern and Frequency in Spinal Cord Injury. PM R 2019; 12:699-705. [PMID: 31702873 DOI: 10.1002/pmrj.12282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/23/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Functional electrical stimulation (FES) is widely used to induce functional movements for paralyzed muscles. However, rapid muscle fatigue during FES-induced muscle contractions limits FES clinical efficacy. OBJECTIVE To investigate muscle fatigue response across stimulation patterns and frequencies during FES in able-bodied individuals and in those with spinal cord injury (SCI). DESIGN Four stimulation protocols combining 20 and 40 Hz average frequency with either constant frequency trains (CFTs) or with doublet frequency trains (DFTs) were applied to the quadriceps of seven adults with SCI and eight able-bodied participants. SETTING A FES-row training laboratory. PARTICIPANTS Seven individuals with SCI (one female; age range, 25 ± 6 years) and eight age-matched able-bodied participants (one female). INTERVENTION None. MAIN OUTCOME MEASURES Fatigue was defined as the number of contractions until force decreased by 20% from the target level of 25% maximal contraction force. The number of contractions and the stimulation current used during the four stimulation protocols were compared. RESULTS There was a significant effect of frequency, as well as interaction between group and stimulation pattern (P < .05). In both groups, 20-Hz trains increased the number of contractions to fatigue compared to 40-Hz trains. However, the responses to the pattern of stimulation differed. In the able-bodied participants, CFT increased the number of contractions to fatigue compared to DFT, whereas in those with SCI, DFT increased the number of contractions to fatigue. In fact, DFT resulted in similar number of contractions to fatigue in both populations. CONCLUSIONS These results indicate that DFT at 20 Hz may be a better stimulation protocol to delay fatigue onset in the SCI population than the other three protocols. In addition, this work implies that results from able-bodied persons may not be directly applicable to those with SCI.
Collapse
Affiliation(s)
- Shuang Qiu
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA.,Department of Physical Medicine & Rehabilitation, Harvard Medical School, Cambridge, MA.,Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Adina E Draghici
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA.,Department of Physical Medicine & Rehabilitation, Harvard Medical School, Cambridge, MA
| | - Glen Picard
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA
| | - J Andrew Taylor
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA.,Department of Physical Medicine & Rehabilitation, Harvard Medical School, Cambridge, MA
| |
Collapse
|
26
|
Gorgey AS, Khalil RE, Davis JC, Carter W, Gill R, Rivers J, Khan R, Goetz LL, Castillo T, Lavis T, Sima AP, Lesnefsky EJ, Cardozo CC, Adler RA. Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial. Trials 2019; 20:526. [PMID: 31443727 PMCID: PMC6708188 DOI: 10.1186/s13063-019-3560-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022] Open
Abstract
Background Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities. Methods/Design Forty-eight persons aged 18–65 years with chronic (> 1 year) SCI/D (AIS A-C) at the C5-L2 levels, equally sub-grouped by cervical or sub-cervical injury levels and time since injury, will be randomized into either the NMES + FES group or Passive + FES (control group). The NMES + FES group will undergo 12 weeks of evoked RT using twice-weekly NMES and ankle weights followed by twice-weekly progressive FES-LEC for an additional 12 weeks. The control group will undergo 12 weeks of passive movement followed by 12 weeks of progressive FES-LEC. Measurements will be performed at baseline (B; week 0), post-intervention 1 (P1; week 13), and post-intervention 2 (P2; week 25), and will include: VO2 measurements, insulin sensitivity, and glucose effectiveness using intravenous glucose tolerance test; magnetic resonance imaging to measure muscle, IMF, and VAT areas; muscle biopsy to measure protein expression and intracellular signaling; and mitochondrial ETC function. Discussion Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks. Trial registration ClinicalTrials.gov, NCT02660073. Registered on 21 Jan 2016.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA. .,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Refka E Khalil
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - John C Davis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Jeannie Rivers
- Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Rehan Khan
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Lance L Goetz
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Teodoro Castillo
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Timothy Lavis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Adam P Sima
- Department of Biostatistics, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J Lesnefsky
- Cardiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher C Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY, USA.,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine, New York, NY, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
27
|
Shevtsova NA, Marchenko V, Bezdudnaya T. Modulation of Respiratory System by Limb Muscle Afferents in Intact and Injured Spinal Cord. Front Neurosci 2019; 13:289. [PMID: 30971888 PMCID: PMC6443963 DOI: 10.3389/fnins.2019.00289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Breathing constantly adapts to environmental, metabolic or behavioral changes by responding to different sensory information, including afferent feedback from muscles. Importantly, not just respiratory muscle feedback influences respiratory activity. Afferent sensory information from rhythmically moving limbs has also been shown to play an essential role in the breathing. The present review will discuss the neuronal mechanisms of respiratory modulation by activation of peripheral muscles that usually occurs during locomotion or exercise. An understanding of these mechanisms and finding the most effective approaches to regulate respiratory motor output by stimulation of limb muscles could be extremely beneficial for people with respiratory dysfunctions. Specific attention in the present review is given to the muscle stimulation to treat respiratory deficits following cervical spinal cord injury.
Collapse
Affiliation(s)
- Natalia A Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Tatiana Bezdudnaya
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
28
|
Gojda J, Waldauf P, Hrušková N, Blahutová B, Krajčová A, Urban T, Tůma P, Řasová K, Duška F. Lactate production without hypoxia in skeletal muscle during electrical cycling: Crossover study of femoral venous-arterial differences in healthy volunteers. PLoS One 2019; 14:e0200228. [PMID: 30822305 PMCID: PMC6396965 DOI: 10.1371/journal.pone.0200228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/11/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aim of the study was to compare metabolic response of leg skeletal muscle during functional electrical stimulation-driven unloaded cycling (FES) to that seen during volitional supine cycling. METHODS Fourteen healthy volunteers were exposed in random order to supine cycling, either volitional (10-25-50 W, 10 min) or FES assisted (unloaded, 10 min) in a crossover design. Whole body and leg muscle metabolism were assessed by indirect calorimetry with concomitant repeated measurements of femoral venous-arterial differences of blood gases, glucose, lactate and amino acids. RESULTS Unloaded FES cycling, but not volitional exercise, led to a significant increase in across-leg lactate production (from -1.1±2.1 to 5.5±7.4 mmol/min, p<0.001) and mild elevation of arterial lactate (from 1.8±0.7 to 2.5±0.8 mM). This occurred without widening of across-leg veno-arterial (VA) O2 and CO2 gaps. Femoral SvO2 difference was directly proportional to VA difference of lactate (R2 = 0.60, p = 0.002). Across-leg glucose uptake did not change with either type of exercise. Systemic oxygen consumption increased with FES cycling to similarly to 25W volitional exercise (138±29% resp. 124±23% of baseline). There was a net uptake of branched-chain amino acids and net release of Alanine from skeletal muscle, which were unaltered by either type of exercise. CONCLUSIONS Unloaded FES cycling, but not volitional exercise causes significant lactate production without hypoxia in skeletal muscle. This phenomenon can be significant in vulnerable patients' groups.
Collapse
Affiliation(s)
- Jan Gojda
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 2 Department of Internal Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail:
| | - Petr Waldauf
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natália Hrušková
- Department of Rehabilitation, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Blahutová
- Department of Rehabilitation, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adéla Krajčová
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 2 Department of Internal Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomáš Urban
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Tůma
- Department of Hygiene, The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Řasová
- Department of Rehabilitation, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - František Duška
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
29
|
Hemodynamic and cardiorespiratory responses to various arm cycling regimens in men with spinal cord injury. Spinal Cord Ser Cases 2019; 5:2. [PMID: 30675386 DOI: 10.1038/s41394-018-0145-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Study design Repeated measures within-subjects crossover study. Objectives High intensity interval exercise (HIIE) elicits higher oxygen consumption (VO2) and heart rate (HR) versus moderate intensity continuous exercise (MICE) in men with spinal cord injury (SCI). No study has compared hemodynamic responses to HIIE versus MICE in SCI. In this study, we determined hemodynamic and cardiorespiratory responses to different bouts of arm cycling in men with SCI. Setting Human Performance Laboratory, San Diego, CA. Methods Five men (age and injury duration = 42.6 ± 16.1 yr and 9.9 ± 7.6 yr) with SCI participated in the study. VO2peak and peak power output were initially assessed. Subsequent visits included MICE, HIIE, sprint interval exercise (SIE), and a no-exercise control (CON). Energy expenditure was matched across modes and equal to 100 ± 10 kcal. During the bouts, cardiac output (CO), stroke volume (SV), HR, and VO2 were measured. Results Heart rate, SV, and CO increased in response to all exercise bouts and were higher during exercise versus CON. During HIIE and SIE, heart rate approached 90% of maximum, and stroke volume increased by 40% which was higher (p < 0.05) versus MICE and CON. In addition, exercise led to a two (MICE) to threefold increase in CO (HIIE and SIE) although it was not different from CON. VO2 during SIE and HIIE was higher (p < 0.05) versus MICE. Conclusions Similar to results in non-disabled populations, HIIE and SIE elicit near-maximal values of SV and CO.
Collapse
|
30
|
Lambach RL, Stafford NE, Kolesar JA, Kiratli BJ, Creasey GH, Gibbons RS, Andrews BJ, Beaupre GS. Bone changes in the lower limbs from participation in an FES rowing exercise program implemented within two years after traumatic spinal cord injury. J Spinal Cord Med 2018; 43:306-314. [PMID: 30475172 PMCID: PMC7241570 DOI: 10.1080/10790268.2018.1544879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: To determine the effect of a functional electrical stimulation (FES) rowing program on bone mineral density (BMD) when implemented within two years after SCI.Design: Prospective.Setting: Health Care Facility.Participants: Convenience sample; four adults with recent (<2 years) traumatic, motor complete SCI (C7-T12 AIS A-B).Intervention: A 90-session FES rowing exercise program; participants attended 30-minute FES training sessions approximately three times each week for the duration of their participation.Outcome Measures: BMD in the distal femur and tibia were measured using peripheral Quantitative Computed Tomography (pQCT) at enrollment (T0) and after 30 (T1), 60 (T2), and 90 (T3) sessions. Bone stimulus was calculated for each rower at each time point using the average number of weekly loading cycles, peak foot reaction force, and bone mineral content from the previous time point. A regression analysis was used to determine the relationship between calculated bone stimulus and change in femoral trabecular BMD between time points.Results: Trabecular BMD in the femur and tibia decreased for all participants in T0-1, but the rate of loss slowed or reversed between T1-2, with little-to-no bone loss for most participants during T2-3. The calculated bone stimulus was significantly correlated with change in femoral trabecular BMD (P = 0.016; R2 = 0.458).Conclusion: Consistent participation in an FES rowing program provides sufficient forces and loading cycles to reduce or reverse expected bone loss at the distal femur and tibia, at least temporarily, in some individuals within two years after SCI.Trial Registration: NCT02008149.
Collapse
Affiliation(s)
- Rebecca L. Lambach
- Spinal Cord Injury & Disorders Center, VA Palo Alto Health Care System, Palo Alto, California, USA,Department of Neurosurgery, Stanford University, Stanford, California, USA,Correspondence to: Rebecca L. Lambach, Spinal Cord Injury & Disorders Center, VA Palo Alto Health Care System, Mail Code 153, 3801 Miranda Ave, Palo Alto, CA 94304, USA. ;
| | - Nicole E. Stafford
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Julie A. Kolesar
- Spinal Cord Injury & Disorders Center, VA Palo Alto Health Care System, Palo Alto, California, USA,Bioengineering Department, Stanford University, Stanford, California, USA
| | - B. Jenny Kiratli
- Spinal Cord Injury & Disorders Center, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Graham H. Creasey
- Spinal Cord Injury & Disorders Center, VA Palo Alto Health Care System, Palo Alto, California, USA,Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Robin S. Gibbons
- Aspire CREATe Centre for Rehabilitation Engineering and Assistive Technology, Division of Surgery & International Science, Royal National Orthopaedic Hospital, University College London, Stanmore, UK
| | - Brian J. Andrews
- School of Engineering, University of Warwick, Coventry, UK,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Gary S. Beaupre
- Spinal Cord Injury & Disorders Center, VA Palo Alto Health Care System, Palo Alto, California, USA,Bioengineering Department, Stanford University, Stanford, California, USA
| |
Collapse
|
31
|
Vieira T, Cerone GL, Gastaldi L, Pastorelli S, Oliveira LF, Gazzoni M, Botter A. Design and Test of a Biomechanical Model for the Estimation of Knee Joint Angle During Indoor Rowing: Implications for FES-Rowing Protocols in Paraplegia. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2145-2152. [PMID: 30334801 DOI: 10.1109/tnsre.2018.2876634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional electrical stimulation of lower limb muscles during rowing provides a means for the cardiovascular conditioning in paraplegia. The possibility of shaping stimulation profiles according to changes in knee angle, so far conceived as changes in seat position, may help circumventing open issues associated with muscle fatigue and movement coordination. Here, we present a subject-specific biomechanical model for the estimation of knee joint angle during indoor rowing. Anthropometric measurements and foot and seat positions are inputs to the model. We tested our model on two samples of elite rowers; 15 able-bodied, and 11 participants in the Rio 2016 Paralympic games. Paralympic rowers presented minor physical disabilities (LTA-PD classification), enabling them to perform the full rowing cycle (with legs, trunks, and arms). Knee angle was estimated from the rowing machine seat position, measured with a linear encoder, and transmitted wirelessly to a computer. Key results indicate the root mean square error (RMSE) between estimated and measured angles did not depend on group and stroke rate ( ). Significantly greater RMSE values were observed, however, within the rowing cycle ( ), reaching on average 8 deg in the mid-recovery phase. Differences between estimated and measured knee angle values resulted in slightly earlier (5%) detection of knee flexion, regardless of the group and stroke rate considered. Offset of knee extension, knee angle at catch and range of knee motion were identified equally well with our model and with inertial sensors. These results suggest our model describes accurately the movement of knee joint during indoor rowing.
Collapse
|
32
|
Hasnan N, Mohamad Saadon NS, Hamzaid NA, Teoh MXH, Ahmadi S, Davis GM. Muscle oxygenation during hybrid arm and functional electrical stimulation-evoked leg cycling after spinal cord injury. Medicine (Baltimore) 2018; 97:e12922. [PMID: 30412097 PMCID: PMC6221724 DOI: 10.1097/md.0000000000012922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study compared muscle oxygenation (StO2) during arm cranking (ACE), functional electrical stimulation-evoked leg cycling (FES-LCE), and hybrid (ACE+FES-LCE) exercise in spinal cord injury individuals. Eight subjects with C7-T12 lesions performed exercises at 3 submaximal intensities. StO2 was measured during rest and exercise at 40%, 60%, and 80% of subjects' oxygen uptake (VO2) peak using near-infrared spectroscopy. StO2 of ACE showed a decrease whereas in ACE+FES-LCE, the arm muscles demonstrated increasing StO2 from rest in all of VO2) peak respectively. StO2 of FES-LCE displayed a decrease at 40% VO2 peak and steady increase for 60% and 80%, whereas ACE+FES-LCE revealed a steady increase from rest at all VO2 peak. ACE+FES-LCE elicited greater StO2 in both limbs which suggested that during this exercise, upper- and lower-limb muscles have higher blood flow and improved oxygenation compared to ACE or FES-LCE performed alone.
Collapse
Affiliation(s)
- Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine
| | | | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mira Xiao-Hui Teoh
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sirous Ahmadi
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Glen M. Davis
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
33
|
Rapidi CA, Tederko P, Moslavac S, Popa D, Branco CA, Kiekens C, Varela Donoso E, Christodoulou N. Evidence-based position paper on Physical and Rehabilitation Medicine (PRM) professional practice for persons with spinal cord injury. The European PRM position (UEMS PRM Section). Eur J Phys Rehabil Med 2018; 54:797-807. [PMID: 29952157 DOI: 10.23736/s1973-9087.18.05374-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a devastating condition and a challenge for every health system and every society. This EBPP represents the official position of the European Union through the UEMS PRM Section and designates the professional role of PRM physicians for people with SCI. The aim of the paper was to improve Physical and Rehabilitation Medicine (PRM) physicians' professional practice for persons with SCI in order to improve their functionality, social and community reintegration, and to overcome activity limitations and/or participation restrictions. EVIDENCE ACQUISITION A systematic review of the literature and a consensus procedure by means of a Delphi process have been performed involving the delegates of all European countries represented in the UEMS PRM Section. EVIDENCE SYNTHESIS The systematic literature review is reported together with thirty-eight recommendations resulting from the Delphi procedure. CONCLUSIONS The professional role of PRM physicians who have expertise in the rehabilitation of SCI is to run rehabilitation programmes in multi-professional teams, working in an interdisciplinary way in a variety of settings to improve the functioning of people with SCI.
Collapse
Affiliation(s)
| | - Piotr Tederko
- Department of Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| | - Sasa Moslavac
- Department of Physical and Rehabilitation Medicine, Special Hospital for Medical Rehabilitation, Varaždinske Toplice, Croatia
| | - Daiana Popa
- Clinical Rehabilitation Hospital Felix-Spa Bihor County, Oradea, Romania
| | - Catarina A Branco
- Department of Physical and Rehabilitation Medicine, Centro Hospitalar de Entre o Douro e Vouga E.P.E, Porto, Portugal
| | - Carlotte Kiekens
- Department of Physical and Rehabilitation Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Enrique Varela Donoso
- Physical and Rehabilitation Medicine Department, Complutense University School of Medicine, Madrid, Spain
| | - Nicolas Christodoulou
- Medical School, European University Cyprus, Nicosia, Cyprus.,UEMS PRM Section, Brussels, Belgium
| | | |
Collapse
|
34
|
Gorgey AS, Khalil RE, Lester RM, Dudley GA, Gater DR. Paradigms of Lower Extremity Electrical Stimulation Training After Spinal Cord Injury. J Vis Exp 2018:57000. [PMID: 29443103 PMCID: PMC5912427 DOI: 10.3791/57000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy, increased adiposity and reduced physical activity are key changes observed after spinal cord injury (SCI) and are associated with numerous cardiometabolic health consequences. These changes are likely to increase the risk of developing chronic secondary conditions and impact the quality of life in persons with SCI. Surface neuromuscular electrical stimulation evoked resistance training (NMES-RT) was developed as a strategy to attenuate the process of skeletal muscle atrophy, decrease ectopic adiposity, improve insulin sensitivity and enhance mitochondrial capacity. However, NMES-RT is limited to only a single muscle group. Involving multiple muscle groups of the lower extremities may maximize the health benefits of training. Functional electrical stimulation-lower extremity cycling (FES-LEC) allows for the activation of 6 muscle groups, which is likely to evoke greater metabolic and cardiovascular adaptation. Appropriate knowledge of the stimulation parameters is key to maximizing the outcomes of electrical stimulation training in persons with SCI. Adopting strategies for long-term use of NMES-RT and FES-LEC during rehabilitation may maintain the integrity of the musculoskeletal system, a pre-requisite for clinical trials aiming to restore walking after injury. The current manuscript presents a combined protocol using NMES-RT prior to FES-LEC. We hypothesize that muscles conditioned for 12 weeks prior to cycling will be capable of generating greater power, cycle against higher resistance and result in greater adaptation in persons with SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University;
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC
| | - Robert M Lester
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC
| | - Gary A Dudley
- Deceased, Department of Kinesiology, The University of Georgia
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center
| |
Collapse
|
35
|
Zhou R, Alvarado L, Ogilvie R, Chong SL, Shaw O, Mushahwar VK. Non-gait-specific intervention for the rehabilitation of walking after SCI: role of the arms. J Neurophysiol 2018; 119:2194-2211. [PMID: 29364074 DOI: 10.1152/jn.00569.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arm movements modulate leg activity and improve gait efficiency; however, current rehabilitation interventions focus on improving walking through gait-specific training and do not actively involve the arms. The goal of this project was to assess the effect of a rehabilitation strategy involving simultaneous arm and leg cycling on improving walking after incomplete spinal cord injury (iSCI). We investigated the effect of 1) non-gait-specific training and 2) active arm involvement during training on changes in over ground walking capacity. Participants with iSCI were assigned to simultaneous arm-leg cycling (A&L) or legs only cycling (Leg) training paradigms, and cycling movements were assisted with electrical stimulation. Overground walking speed significantly increased by 0.092 ± 0.022 m/s in the Leg group and 0.27 ± 0.072m/s in the A&L group after training. Whereas the increases in the Leg group were similar to those seen after current locomotor training strategies, increases in the A&L group were significantly larger than those in the Leg group. Walking distance also significantly increased by 32.12 ± 8.74 m in the Leg and 91.58 ± 36.24 m in the A&L group. Muscle strength, sensation, and balance improved in both groups; however, the A&L group had significant improvements in most gait measures and had more regulated joint kinematics and muscle activity after training compared with the Leg group. We conclude that electrical stimulation-assisted cycling training can produce significant improvements in walking after SCI. Furthermore, active arm involvement during training can produce greater improvements in walking performance. This strategy may also be effective in people with other neural disorders or diseases. NEW & NOTEWORTHY This work challenges concepts of task-specific training for the rehabilitation of walking and encourages coordinated training of the arms and legs after spinal cord injury. Cycling of the legs produced significant improvements in walking that were similar in magnitude to those reported with gait-specific training. Moreover, active engagement of the arms simultaneously with the legs generated nearly double the improvements obtained by leg training only. The cervico-lumbar networks are critical for the improvement of walking.
Collapse
Affiliation(s)
- Rui Zhou
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Laura Alvarado
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Robert Ogilvie
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Su Ling Chong
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Oriana Shaw
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Vivian K Mushahwar
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
36
|
Andrews B, Gibbons R, Wheeler G. Development of Functional Electrical Stimulation Rowing: The Rowstim Series. Artif Organs 2017; 41:E203-E212. [DOI: 10.1111/aor.13053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Brian Andrews
- School of Engineering; University of Warwick; Coventry UK
- Nuffield Department of Surgical Sciences; University of Oxford; Oxford UK
| | | | | |
Collapse
|
37
|
Qiu S, Alzhab S, Picard G, Taylor JA. Ventilation Limits Aerobic Capacity after Functional Electrical Stimulation Row Training in High Spinal Cord Injury. Med Sci Sports Exerc 2017; 48:1111-8. [PMID: 26784276 DOI: 10.1249/mss.0000000000000880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE In the able-bodied, exercise training results in increased ventilatory capacity to meet increased aerobic demands of trained skeletal muscle. However, after spinal cord injury (SCI), peak ventilation can be limited by pulmonary muscle denervation. In fact, peak ventilation may restrict aerobic capacity in direct relation to injury level. Hybrid functional electrical stimulation (FES) exercise training results in increased aerobic capacity and dissociation between aerobic capacity and injury level in those with injuries at T3 and below. However, injuries above T3 have the greatest pulmonary denervation, and ventilatory capacity may restrict the increase in aerobic capacity with hybrid FES training. METHODS We assessed relationships among injury level, peak ventilation, and peak aerobic capacity and calculated oxygen uptake efficiency slope during hybrid FES exercise in 12 individuals (1 female) with SCI at level T2 to C4 (injury duration = 0.33-33 yr, age = 20-60 yr), before and after 6 months of FES-row training (FES-RT). RESULTS Training increased peak aerobic capacity by 12% (P = 0.02) with only a modest increase in peak ventilation (7 of 12 subjects, P = 0.09). Both before and after training, injury level was directly related to peak ventilation (R = 0.48 and 0.43) and peak aerobic capacity (R = 0.70 and 0.55). Before training, the relationship of peak aerobic capacity to peak ventilation was strong (R = 0.62), however, after training, this relationship became almost completely linearized (R = 0.84). In addition, oxygen uptake efficiency slope increased by 11% (P < 0.05) after FES-RT. CONCLUSION Despite the ability to increase exercise capacity via hybrid FES exercise, the inability to increase peak ventilation beyond limits set by SCI level in those with high-level injuries (above T3) appears to restrict aerobic capacity.
Collapse
Affiliation(s)
- Shuang Qiu
- 1Department of Biomedical Engineering, Tianjin University, Tianjin, CHINA; 2Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA; and 3Department of Physical Medicine & Rehabilitation, Harvard Medical School, Cambridge, MA
| | | | | | | |
Collapse
|
38
|
Woelfel JR, Kimball AL, Yen CL, Shields RK. Low-Force Muscle Activity Regulates Energy Expenditure after Spinal Cord Injury. Med Sci Sports Exerc 2017; 49:870-878. [PMID: 28009786 DOI: 10.1249/mss.0000000000001187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reduced physical activity is a primary risk factor for increased morbidity and mortality. People with spinal cord injury (SCI) have reduced activity for a lifetime, as they cannot volitionally activate affected skeletal muscles. We explored whether low-force and low-frequency stimulation is a viable strategy to enhance systemic energy expenditure in people with SCI. PURPOSE This study aimed to determine the effects of low stimulation frequency (1 and 3 Hz) and stimulation intensity (50 and 100 mA) on energy expenditure in people with SCI. We also examined the relationship between body mass index and visceral adipose tissue on energy expenditure during low-frequency stimulation. METHODS Ten individuals with complete SCI underwent oxygen consumption monitoring during electrical activation of the quadriceps and hamstrings at 1 and 3 Hz and at 50 and 100 mA. We calculated the difference in energy expenditure between stimulation and rest and estimated the number of days that would be necessary to burn 1 lb of body fat (3500 kcal) for each stimulation protocol (1 vs 3 Hz). RESULTS Both training frequencies induced a significant increase in oxygen consumption above a resting baseline level (P < 0.05). Energy expenditure positively correlated with stimulus intensity (muscle recruitment) and negatively correlated with adiposity (reflecting the insulating properties of adipose tissue). We estimated that 1 lb of body fat could be burned more quickly with 1 Hz training (58 d) as compared with 3 Hz training (87 d) if an identical number of pulses were delivered. CONCLUSION Low-frequency stimulation increased energy expenditure per pulse and may be a feasible option to subsidize physical activity to improve metabolic status after SCI.
Collapse
Affiliation(s)
- Jessica R Woelfel
- 1Carver College of Medicine, University of Iowa, Iowa City, IA; and 2Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | | | | |
Collapse
|
39
|
Assessing kinematics and kinetics of functional electrical stimulation rowing. J Biomech 2017; 53:120-126. [PMID: 28104245 DOI: 10.1016/j.jbiomech.2017.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 11/22/2022]
Abstract
Hybrid functional electrical stimulation (FES) rowing has positive effects on cardiovascular fitness, producing significantly greater aerobic power than either upper body or FES exercise alone. However, there is minimal information on the kinematics, kinetics, and mechanical efficiency of FES-rowing in the spinal cord injured (SCI) population. This study examined the biomechanics of FES-rowing to determine how motions, forces, and aerobic demand change with increasing intensity. Six individuals with SCI and six able-bodied subjects performed a progressive aerobic capacity rowing test. Differences in kinematics (motion profiles), kinetics (forces produced by the feet and arms), external mechanical work, and mechanical efficiency (work produced/volume of oxygen consumed) were compared in able-bodied rowing vs. SCI FES-rowing at three comparable subpeak workloads. With increasing exercise intensity (measured as wattage), able-bodied rowing increased stroke rate by decreasing recovery time, while FES-rowing maintained a constant stroke rate, with no change in drive or recovery times. While able-bodied rowers increased leg and arm forces with increasing intensity, FES-rowers used only their arms to achieve a higher intensity with a constant and relatively low contribution of the legs. Oxygen consumption increased in both groups, but more so in able-bodied rowers, resulting in able-bodied rowers having twice the mechanical efficiency of FES-rowers. Our results suggest that despite its ability to allow for whole body exercise, the total force output achievable with FES-rowing results in only modest loading of the legs that affects overall rowing performance and that may limit forces applied to bone.
Collapse
|
40
|
Qiu S, Feng J, Xu J, Xu R, Zhao X, Zhou P, Qi H, Zhang L, Ming D. Sonomyography Analysis on Thickness of Skeletal Muscle During Dynamic Contraction Induced by Neuromuscular Electrical Stimulation: A Pilot Study. IEEE Trans Neural Syst Rehabil Eng 2017; 25:59-67. [DOI: 10.1109/tnsre.2016.2556687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Bergquist AJ, Babbar V, Ali S, Popovic MR, Masani K. Fatigue reduction during aggregated and distributed sequential stimulation. Muscle Nerve 2016; 56:271-281. [PMID: 27862023 DOI: 10.1002/mus.25465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates. The primary objective was to compare fatigue-related outcomes, "potentiation," "variability," and "efficiency" between CONV, AGGR-SEQ, and DISTR-SEQ stimulation of knee extensors in healthy participants. METHODS Torque and current were recorded during testing with fatiguing trains using each NMES type under isometric and isokinetic (180°/s) conditions. RESULTS Compared with CONV stimulation, SEQ techniques reduced fatigue-related outcomes, increased potentiation, did not affect variability, and reduced efficiency. CONCLUSIONS SEQ techniques hold promise for reducing fatigue during NMES-based rehabilitation and exercise; however, optimization is required to improve efficiency. Muscle Nerve 56: 271-281, 2017.
Collapse
Affiliation(s)
- Austin J Bergquist
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Vishvek Babbar
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Saima Ali
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kei Masani
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Astorino TA, Thum JS. Within-session responses to high-intensity interval training in spinal cord injury. Disabil Rehabil 2016; 40:444-449. [PMID: 27930890 DOI: 10.1080/09638288.2016.1260648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIM Completion of high-intensity interval training (HIIT) increases maximal oxygen uptake and health status, yet its feasibility in persons with spinal cord injury is unknown. PURPOSE To compare changes in cardiorespiratory and metabolic variables between two interval training regimes and moderate intensity exercise. METHOD Nine adults with spinal cord injury (duration = 6.8 ± 6.2 year) initially underwent determination of peak oxygen uptake. During subsequent sessions, they completed moderate intensity exercise, HIIT, or sprint interval training. Oxygen uptake, heart rate, and blood lactate concentration were measured. RESULTS Oxygen uptake and heart rate increased (p < 0.05) during both interval training sessions and were similar (p > 0.05) to moderate intensity exercise. Peak oxygen uptake and heart rate were higher (p < 0.05) with HIIT (90% peak oxygen uptake and 99% peak heart rate) and sprint interval training (80% peak oxygen uptake and 96% peak heart rate) versus moderate intensity exercise. CONCLUSIONS Despite a higher intensity and peak cardiorespiratory strain, all participants preferred interval training versus moderate exercise. Examining long-term efficacy and feasibility of interval training in this population is merited, considering that exercise intensity is recognized as the most important variable factor of exercise programming to optimize maximal oxygen uptake. Implications for Rehabilitation Spinal cord injury (SCI) reduces locomotion which impairs voluntary physical activity, typically resulting in a reduction in peak oxygen uptake and enhanced chronic disease risk. In various able-bodied populations, completion of high-intensity interval training (HIIT) has been consistently reported to improve cardiorespiratory fitness and other health-related outcomes, although its efficacy in persons with SCI is poorly understood. Data from this study in 9 men and women with SCI show similar changes in oxygen uptake and heart in response to HIIT compared to a prolonged bout of aerobic exercise, although peak values were higher in response to HIIT. Due to the higher peak metabolic strain induced by HIIT as well as universal preference for this modality versus aerobic exercise as reported in this study, further work testing utility of HIIT in this population is merited.
Collapse
Affiliation(s)
- Todd Anthony Astorino
- a Department of Kinesiology , California State University - San Marcos , San Marcos , CA , USA
| | - Jacob S Thum
- a Department of Kinesiology , California State University - San Marcos , San Marcos , CA , USA
| |
Collapse
|
43
|
Bersch I, Fridén J. Role of Functional Electrical Stimulation in Tetraplegia Hand Surgery. Arch Phys Med Rehabil 2016; 97:S154-9. [DOI: 10.1016/j.apmr.2016.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 12/19/2015] [Accepted: 01/01/2016] [Indexed: 11/17/2022]
|
44
|
Arm Crank and Wheelchair Ergometry Produce Similar Peak Oxygen Uptake but Different Work Economy Values in Individuals with Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5481843. [PMID: 27144169 PMCID: PMC4842047 DOI: 10.1155/2016/5481843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/20/2016] [Indexed: 01/31/2023]
Abstract
Objective. To study whether values for peak oxygen uptake (VO2peak) and work economy (WE) at a standardized workload are different when tested by arm crank ergometry (ACE) and wheelchair ergometry (WCE). Methods. Twelve paraplegic men with spinal cord injury (SCI) in stable neurological condition participated in this cross-sectional repeated-measures study. We determined VO2peak and peak power output (POpeak) values during ACE and WCE in a work-matched protocol. Work economy was tested at a standardized workload of 30 Watts (W) for both ACE and WCE. Results. There were no significant differences in VO2peak (mL·kg−1·min−1) between ACE (27.3 ± 3.2) and WCE (27.4 ± 3.8) trials, and a Bland-Altman plot shows that findings are within 95% level of agreement. WE or oxygen consumption at 30 W (VO2-30W) was significantly lower during WCE compared to ACE (P < 0.039). Mean (95% CI) POpeak (W) were 130 (111–138) and 100 (83–110) during ACE and WCE, respectively. Conclusion. The findings in the present study support the use of both ACE and WCE for testing peak oxygen uptake. However, WE differed between the two test modalities, meaning that less total energy is used to perform external work of 30 W during wheelchair exercise when using this WCE (VP100 Handisport ergometer). Clinical Trials Protocol Record is NCT00987155/4.2007.2271.
Collapse
|
45
|
Qiu S, Yi W, Xu J, Qi H, Du J, Wang C, He F, Ming D. Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb. IEEE Trans Neural Syst Rehabil Eng 2016; 24:283-90. [DOI: 10.1109/tnsre.2015.2476481] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
The effect of FES-rowing training on cardiac structure and function: pilot studies in people with spinal cord injury. Spinal Cord 2016; 54:822-829. [PMID: 26754476 DOI: 10.1038/sc.2015.228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 09/27/2015] [Accepted: 11/30/2015] [Indexed: 01/19/2023]
Abstract
STUDY DESIGN Two studies were conducted: Study-1 was cross-sectional; and Study-2 a longitudinal repeated measures design. OBJECTIVES To examine the influence of functional electrical stimulation (FES) rowing training on cardiac structure and function in people with spinal cord injury (SCI). SETTING A university sports science department and home-based FES-training. METHODS Fourteen participants with C4-T10 SCI (American Spinal Injury Association Impairment Scale A or B) were recruited for the studies. Cardiac structure and function, and peak: oxygen uptake ([Vdot ]O2peak), power output (POpeak) and heart rate (HRpeak), were compared between two FES-untrained groups (male n=3, female n=3) and an FES-trained group (male n=3) in Study-1 and longitudinally assessed in an FES-naive group (male n=1, female n=4) in Study-2. Main outcome measures left ventricular-dimensions, volumes, mass, diastolic and systolic function, and [Vdot ]O2peak, POpeak and HRpeak. In Study-2, in addition to peak values, the [Vdot ]O2 sustainable over 30 min and the related PO and HR were also assessed. RESULTS Sedentary participants with chronic SCI had cardiac structure and function at the lower limits of non-SCI normal ranges. Individuals with chronic SCI who habitually FES-row have cardiac structure and function that more closely resemble non-SCI populations. A programme of FES-rowing training improved cardiac structure and function in previously FES-naive people. CONCLUSION FES-rowing training appears to be an effective stimulus for positive cardiac remodelling in people with SCI. Further work, with greater participant numbers, should investigate the impact of FES-rowing training on cardiac health in SCI. SPONSORSHIP We thank the INSPIRE Foundation, UK, for funding these studies.
Collapse
|
47
|
Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury. Spinal Cord 2015; 54:675-81. [PMID: 26666508 PMCID: PMC4909592 DOI: 10.1038/sc.2015.212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022]
Abstract
Study Design Single group, pretest-posttest study. Objectives To determine the effects of a non-task-specific, voluntary, progressive aerobic exercise training (AET) intervention on fitness and walking-related outcomes in ambulatory adults with chronic motor-incomplete SCI. Setting Rehabilitation research center. Methods Ten ambulatory individuals (50% female; 57.94 ± 9.33 years old; 11.11 ± 9.66 years post injury) completed voluntary, progressive moderate-to-vigorous intensity AET on a recumbent stepper three days per week for six weeks. The primary outcome measures were aerobic capacity (VO2peak) and self-selected overground walking speed (OGWS). Secondary outcome measures included: walking economy, six-minute walk test (6MWT), daily step counts, Walking Index for Spinal Cord Injury (WISCI-II), Dynamic Gait Index (DGI), and Berg Balance Scale (BBS). Results Nine participants completed all testing and training. Significant improvements in aerobic capacity (P=0.011), OGWS (P=0.023), the percentage of VO2peak utilized while walking at self-selected speed (P=0.03), and daily step counts (P=0.025) resulted following training. Conclusions The results indicate that total-body, voluntary, progressive AET is safe, feasible, and effective for improving aerobic capacity, walking speed, and select walking-related outcomes in an exclusively ambulatory SCI sample. This study suggests the potential for non-task-specific aerobic exercise to improve walking following incomplete SCI and builds a foundation for further investigation aimed at the development of exercise based rehabilitation strategies to target functionally limiting impairments in ambulatory individuals with chronic SCI.
Collapse
|
48
|
Gorgey AS, Poarch HJ, Dolbow DD, Castillo T, Gater DR. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury. ACTA ACUST UNITED AC 2015; 51:1455-68. [PMID: 25803753 DOI: 10.1682/jrrd.2014.02.0054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/29/2014] [Indexed: 11/05/2022]
Abstract
The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively]) on oxygen uptake (VO2), cycling performance, and energy expenditure (EE) percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI). A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES) cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative VO2 or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 compared with P200 (p = 0.07), whereas recovery VO2 was 23% greater in P350 compared with P200 (p = 0.03). There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001) and 48 to 72 h after (p < 0.001) FES leg cycling. Lengthening pulse duration did not affect submaximal or relative VO2 or EE, total EE, and time to fatigue. Greater recovery VO2 and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire Department of Veterans Affairs Medical Center, Richmond, VA
| | | | | | | | | |
Collapse
|
49
|
Varoto R, Cliquet A. Experiencing Functional Electrical Stimulation Roots on Education, and Clinical Developments in Paraplegia and Tetraplegia With Technological Innovation. Artif Organs 2015; 39:E187-201. [DOI: 10.1111/aor.12620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Renato Varoto
- Department of Orthopedics and Traumatology; Universidade Estadual de Campinas-UNICAMP; São Paulo Brazil
- Department of Electrical Engineering; Universidade de São Paulo-USP; São Paulo Brazil
| | - Alberto Cliquet
- Department of Orthopedics and Traumatology; Universidade Estadual de Campinas-UNICAMP; São Paulo Brazil
- Department of Electrical Engineering; Universidade de São Paulo-USP; São Paulo Brazil
| |
Collapse
|
50
|
Ho CH, Triolo RJ, Elias AL, Kilgore KL, DiMarco AF, Bogie K, Vette AH, Audu ML, Kobetic R, Chang SR, Chan KM, Dukelow S, Bourbeau DJ, Brose SW, Gustafson KJ, Kiss ZHT, Mushahwar VK. Functional electrical stimulation and spinal cord injury. Phys Med Rehabil Clin N Am 2015; 25:631-54, ix. [PMID: 25064792 DOI: 10.1016/j.pmr.2014.05.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI.
Collapse
Affiliation(s)
- Chester H Ho
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada.
| | - Ronald J Triolo
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Anastasia L Elias
- Chemical and Materials Engineering, W7-002 ECERF, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Kevin L Kilgore
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Anthony F DiMarco
- MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Kath Bogie
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta T6G 2G8, Canada; Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 - 111 Avenue, Edmonton, Alberta T5G 0B7, Canada
| | - Musa L Audu
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Rudi Kobetic
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Sarah R Chang
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - K Ming Chan
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| | - Sean Dukelow
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Dennis J Bourbeau
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Steven W Brose
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA; Ohio University Heritage College of Osteopathic Medicine, Grosvenor Hall, Athens, OH 45701, USA
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Zelma H T Kiss
- Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Vivian K Mushahwar
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|