1
|
Karsan N, Luiza Bastos A, Goadsby PJ. Glutamate as a Therapeutic Substrate in Migraine. Int J Mol Sci 2025; 26:3023. [PMID: 40243659 PMCID: PMC11988557 DOI: 10.3390/ijms26073023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Recurrent and intense headache is a well appreciated cardinal feature of migraine, a common and incapacitating neurological disorder. Often, there are associated canonical sensory abnormalities, such as light and sound sensitivity, as well as associated nausea. Given this phenotype of disordered sensory processing and, in a third of patients, the phenomenon called aura accompanying migraine attacks, it has been suggested that the pathophysiology of migraine is likely to involve glutamate, the main excitatory neurotransmitter in the central nervous system (CNS). Glutamate plays a role in nociception, central sensitization, and cortical spreading depression (CSD), three processes that are deemed important in migraine biology. With an emphasis on the therapeutic potential of targeting various glutamate receptors in migraine, this review will discuss the currently available literature and emerging findings on the role of targeting glutamatergic pathways for the treatment of migraine. A thorough literature review was carried out on the functions of both metabotropic glutamate receptors (mGluRs), and the ionotropic glutamate receptors (NMDA, AMPA, and kainate) in migraine pathogenesis. The ever-present need for new treatments, the role of glutamate in the migraine aura phenomenon, and the consequences of monogenic migraine mutations on mediating prolonged, complex, or permanent aura are all discussed, culminating in a suggestion that glutamatergic targeting may hold particular promise in the management of migraine aura. There are plausible roles for metabotropic receptors in regulating pain processing in important migraine-related brain structures, like the thalamus and trigeminal nucleus. Similarly, ionotropic receptors contribute to excitatory neurotransmission and neuronal hyperexcitability. Recent studies have shown preclinical and early clinical results for treatments targeting these receptors, but there are still significant issues with treatment response, including drug transport, side effects, and efficacy. With ongoing and emerging discoveries in the field, there is increasing promise of new migraine medications targeting glutamate receptors. For bench to bedside translation in this area, continued study of the molecular basis of migraine, receptor subtypes, and exploration of potential drug delivery methods are needed.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (A.L.B.)
| | - Alves Luiza Bastos
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (A.L.B.)
| | - Peter J. Goadsby
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (A.L.B.)
- NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Martins D, Acha B, Cavalcante M, Pereira S, Viana A, Pinheiro-Neto FR, Mendes P, Dittz-Júnior D, Oliveira F, Ventura T, Lobo MDG, Ferreirinha F, Correia-de-Sá P, Almeida F. Anti-Hyperalgesic Effect of Isopulegol Involves GABA and NMDA Receptors in a Paclitaxel-Induced Neuropathic Pain Model. Pharmaceuticals (Basel) 2025; 18:256. [PMID: 40006070 PMCID: PMC11860001 DOI: 10.3390/ph18020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Neuropathic pain can be triggered by chemotherapy drugs such as paclitaxel (PTX). Management of pain is limited by drugs' ineffectiveness and adverse effects. Isopulegol (ISO) is a monoterpene present in the essential oils of several aromatic plants and has promising pharmacological activities. Objectives: to evaluate the antinociceptive activity of ISO in a PTX-induced neuropathic pain model. Methods: the toxicity of ISO was evaluated in healthy and cancerous cells. Behavioral assessments were performed using the von Frey and acetone tests. We investigated the involvement of the GABAergic pathway, NMDA, TNF-α, and the release of GABA and glutamate in the presence of ISO. Results: ISO showed little or no cytotoxicity in U87 and MDA-MB-231 cells. In both acute and subacute treatment, ISO at doses of 25, 50, and 100 mg/kg (* p < 0.05) increased the mechanical nociceptive threshold of neuropathic animals compared to the control group and reduced thermal sensitivity. Its action was reversed by pre-treatment with flumazenil and potentiated by the NMDA antagonist, MK-801. TNF-α and glutamate levels were reduced and GABA release was increased in the tests carried out. Conclusions: ISO shows low toxicity in neuronal cells and its association with PTX generated synergism in its cytotoxic action. The antinociceptive effect of ISO is due to activation of GABA and antagonism of NMDA receptors and involves the stabilization of neuronal plasma membranes leading to an imbalance in the release of neurotransmitters, favoring GABA-mediated inhibition over glutamatergic excitation.
Collapse
Affiliation(s)
- Deyna Martins
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Boris Acha
- Post Graduate Program in Biotechnology—RENORBIO, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil;
| | - Mickael Cavalcante
- Laboratory of Experimental Cancerology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (M.C.); (D.D.-J.)
| | - Suellen Pereira
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Ana Viana
- Nursing Department, State University of Maranhão (UEMA)-Campus Santa Inês, Maranhão 65306-219, Brazil;
| | - Flaviano Ribeiro Pinheiro-Neto
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Priscyla Mendes
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Dalton Dittz-Júnior
- Laboratory of Experimental Cancerology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (M.C.); (D.D.-J.)
| | - Francisco Oliveira
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| | - Tatiana Ventura
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; (T.V.); (M.d.G.L.); (F.F.); (P.C.-d.-S.)
| | - Maria da Graça Lobo
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; (T.V.); (M.d.G.L.); (F.F.); (P.C.-d.-S.)
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; (T.V.); (M.d.G.L.); (F.F.); (P.C.-d.-S.)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; (T.V.); (M.d.G.L.); (F.F.); (P.C.-d.-S.)
| | - Fernanda Almeida
- Post Graduate Program in Pharmacology, Laboratory of Pain Pharmacology, Medicinal Plants Research Center, Federal University of Piauí—UFPI, Teresina 64049-550, Brazil; (S.P.); (F.R.P.-N.); (P.M.); (F.O.)
| |
Collapse
|
3
|
Wijesinghe SN, Ditchfield C, Flynn S, Agrawal J, Davis ET, Dajas-Bailador F, Chapman V, Jones SW. Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: Unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthritis Cartilage 2024; 32:1358-1370. [PMID: 38960140 DOI: 10.1016/j.joca.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Synovitis is a widely accepted sign of osteoarthritis (OA), characterised by tissue hyperplasia, where increased infiltration of immune cells and proliferation of resident fibroblasts adopt a pro-inflammatory phenotype, and increased the production of pro-inflammatory mediators that are capable of sensitising and activating sensory nociceptors, which innervate the joint tissues. As such, it is important to understand the cellular composition of synovium and their involvement in pain sensitisation to better inform the development of effective analgesics. METHODS Studies investigating pain sensitisation in OA with a focus on immune cells and fibroblasts were identified using PubMed, Web of Science and SCOPUS. RESULTS In this review, we comprehensively assess the evidence that cellular crosstalk between resident immune cells or synovial fibroblasts with joint nociceptors in inflamed OA synovium contributes to peripheral pain sensitisation. Moreover, we explore whether the elucidation of common mechanisms identified in similar joint conditions may inform the development of more effective analgesics specifically targeting OA joint pain. CONCLUSION The concept of local environment and cellular crosstalk within the inflammatory synovium as a driver of nociceptive joint pain presents a compelling opportunity for future research and therapeutic advancements.
Collapse
Affiliation(s)
- Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Caitlin Ditchfield
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Sariah Flynn
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jyoti Agrawal
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | - Victoria Chapman
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Xiao XY, Chen YM, Zhu J, Yin MY, Huang CN, Qin HM, Liu SX, Xiao Y, Fang HW, Zhuang T, Chen Y. The synergistic anti-nociceptive effects of nefopam and gabapentinoids in inflammatory, osteoarthritis, and neuropathic pain mouse models. Eur J Pharmacol 2024; 977:176738. [PMID: 38876275 DOI: 10.1016/j.ejphar.2024.176738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Pain is a common public health problem and remains as an unmet medical need. Currently available analgesics usually have limited efficacy or are accompanied by many adverse side effects. To achieve satisfactory pain relief by multimodal analgesia, new combinations of nefopam and gabapentinoids (pregabalin/gabapentin) were designed and assessed in inflammatory, osteoarthritis and neuropathic pain. Isobolographic analysis was performed to analyze the interactions between nefopam and gabapentinoids in carrageenan-induced inflammatory pain, mono-iodoacetate-induced osteoarthritis pain and paclitaxel-induced peripheral neuropathic pain in mice. The anti-inflammatory effect and motor performance of monotherapy or their combinations were evaluated in the carrageenan-induced inflammatory responses and rotarod test, respectively. Nefopam (1, 3, 5, 10, 30 mg/kg, p.o.), pregabalin (3, 6, 12, 24 mg/kg, p.o.) or gabapentin (25, 50, 75, 100 mg/kg, p.o.) dose-dependently reversed mechanical allodynia in three pain models. Isobolographic analysis indicated that the combinations of nefopam and gabapentinoids exerted synergistic anti-nociceptive effects in inflammatory, osteoarthritis, and neuropathic pain mouse models, as evidenced by the experimental ED50 (median effective dose) falling below the predicted additive line. Moreover, the combination of nefopam-pregabalin/gabapentin alleviated carrageenan-induced inflammation and edema, and also prevented gabapentinoids-related sedation or ataxia by lowering their effective doses. Collectively, the co-administration of nefopam and gabapentinoids showed synergistic analgesic effects and may result in improved therapeutic benefits for treating pain.
Collapse
Affiliation(s)
- Xin-Yi Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan-Ming Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ming-Yue Yin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chao-Nan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui-Min Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shu-Xian Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yang Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Heng-Wei Fang
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
5
|
Qi X, Aiyasamy K, Alenezi SK, Alanazi IM, Alshammari MS, Ibrahim IAA. Anti-nociceptive and Anti-inflammatory Activities of Visnagin in Different Nociceptive and Inflammatory Mice Models. Appl Biochem Biotechnol 2024; 196:3441-3455. [PMID: 37659050 DOI: 10.1007/s12010-023-04677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Pain management has been a severe public health issue throughout the world. Acute pain if not treated at the appropriate time can lead to chronic pain that can cause psychological and social distress. Nothing can be more rewarding than treating pain successfully for a physician. However, the use of chemical NSAIDs and opiate drugs has taken a toll on the patients with their unavoidable side effects. This study intends to explore the potential to treat pain by inhibiting nociception and inflammation with a safer, non-addictive, effective, and low-cost alternative agent from a natural source, visnagin. In vivo studies have been conducted using male Swiss albino mice as models for this research. Nociception was induced using different chemical and thermal stimuli such as acetic acid, glutamate, capsaicin, and formalin. To check for the anti-inflammatory properties, carrageenan was used to induce inflammation and the activity was assayed using peritoneal cavity leukocyte infiltration analysis and pro-inflammatory cytokine level comparison with the supplementation of visnagin at three different dosages. The findings of this study revealed that the visnagin treatment effectively attenuated the acetic acid-induced writhing response, glutamate-induced paw licking numbers, capsaicin-induced pain response, and formalin-induced biphasic licking incidences in the experimental mice models. Furthermore, the visnagin treatment remarkably suppressed the carrageenan-induced inflammation in mice, which is evident from the decreased leukocytes, mononuclear, and polymorphonuclear cell numbers in the mice. The levels of cytokines such as TNF-α, IL-1β, and IL-6 were effectively reduced by the visnagin treatment in the experimental mice. The results of open field test proved that the visnagin showed a better locomotor movement in the experimental mice. These results provided evidence for the potential activity of the visnagin against inflammatory and nociceptive responses in the mice.
Collapse
Affiliation(s)
- Xiaobing Qi
- Department of Anesthesiology, Inner Mongolia Baogang Hospital, No. 20, Shaoxian Road, Baotou City, 014010, China
| | - Kalaivani Aiyasamy
- Department of Biochemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Namakkal, 637205, Tiruchengode, India
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed S Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
6
|
Duan D, Wang L, Feng Y, Hu D, Cui D. Picroside Ⅱ attenuates neuropathic pain by regulating inflammation and spinal excitatory synaptic transmission. Can J Physiol Pharmacol 2024; 102:281-292. [PMID: 37976472 DOI: 10.1139/cjpp-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nerve injury induced microglia activation, which released inflammatory mediators and developed neuropathic pain. Picroside Ⅱ (PⅡ) attenuated neuropathic pain by inhibiting the neuroinflammation of the spinal dorsal horn; however, how it engaged in the cross talk between microglia and neurons remained ambiguous. This study aimed to investigate PⅡ in the modulation of spinal synaptic transmission mechanisms on pain hypersensitivity in neuropathic rats. We investigated the analgesia of PⅡ in mechanical and thermal hyperalgesia using the spinal nerve ligation (SNL)-induced neuropathic pain model and formalin-induced tonic pain model, respectively. RNA sequencing and network pharmacology were employed to screen core targets and signaling pathways. Immunofluorescence staining and qPCR were performed to explore the expression level of microglia and inflammatory mediator mRNA. The whole-cell patch-clamp recordings were utilized to record miniature excitatory postsynaptic currents in excitatory synaptic transmission. Our results demonstrated that the analgesic of PⅡ was significant in both pain models, and the underlying mechanism may involve inflammatory signaling pathways. PⅡ reversed the SNL-induced overexpression of microglia and inflammatory factors. Moreover, PⅡ dose dependently inhibited excessive glutamate transmission. Thus, this study suggested that PⅡ attenuated neuropathic pain by inhibiting excitatory glutamate transmission of spinal synapses, induced by an inflammatory response on microglia.
Collapse
Affiliation(s)
- Dongxia Duan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Lian Wang
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yueyang Feng
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daiyu Hu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| |
Collapse
|
7
|
Balcazar-Ochoa LG, Ventura-Martínez R, Ángeles-López GE, Gómez-Acevedo C, Carrasco OF, Sampieri-Cabrera R, Chavarría A, González-Hernández A. Clavulanic Acid and its Potential Therapeutic Effects on the Central Nervous System. Arch Med Res 2024; 55:102916. [PMID: 38039802 DOI: 10.1016/j.arcmed.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Clavulanic acid (CLAV) is a non-antibiotic β-lactam that has been used since the late 1970s as a β-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that β-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.
Collapse
Affiliation(s)
| | - Rosa Ventura-Martínez
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Claudia Gómez-Acevedo
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Francisco Carrasco
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl Sampieri-Cabrera
- Phyisiology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Experimental Medicine Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
8
|
Vecera CM, C. Courtes A, Jones G, Soares JC, Machado-Vieira R. Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression. Pharmaceuticals (Basel) 2023; 16:1572. [PMID: 38004437 PMCID: PMC10675154 DOI: 10.3390/ph16111572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Treatment-resistant depression (TRD) is a term used to describe a particular type of major depressive disorder (MDD). There is no consensus about what defines TRD, with various studies describing between 1 and 4 failures of antidepressant therapies, with or without electroconvulsive therapy (ECT). That is why TRD is such a growing concern among clinicians and researchers, and it explains the necessity for investigating novel therapeutic targets beyond conventional monoamine pathways. An imbalance between two primary central nervous system (CNS) neurotransmitters, L-glutamate and γ-aminobutyric acid (GABA), has emerged as having a key role in the pathophysiology of TRD. In this review, we provide an evaluation and comprehensive review of investigational antidepressants targeting these two systems, accessing their levels of available evidence, mechanisms of action, and safety profiles. N-methyl-D-aspartate (NMDA) receptor antagonism has shown the most promise amongst the glutamatergic targets, with ketamine and esketamine (Spravato) robustly generating responses across trials. Two specific NMDA-glycine site modulators, D-cycloserine (DCS) and apimostinel, have also generated promising initial safety and efficacy profiles, warranting further investigation. Combination dextromethorphan-bupropion (AXS-05/Auvelity) displays a unique mechanism of action and demonstrated positive results in particular applicability in subpopulations with cognitive dysfunction. Currently, the most promising GABA modulators appear to be synthetic neurosteroid analogs with positive GABAA receptor modulation (such as brexanolone). Overall, advances in the last decade provide exciting perspectives for those who do not improve with conventional therapies. Of the compounds reviewed here, three are approved by the Food and Drug Administration (FDA): esketamine (Spravato) for TRD, Auvelity (dextromethorphan-bupropion) for major depressive disorder (MDD), and brexanolone (Zulresso) for post-partum depression (PPD). Notably, some concerns have arisen with esketamine and brexanolone, which will be detailed in this study.
Collapse
Affiliation(s)
- Courtney M. Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Gregory Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Rodrigo Machado-Vieira
- John S. Dunn Behavioral Sciences Center at UTHealth Houston, 5615 H.Mark Crosswell Jr St, Houston, TX 77021, USA
| |
Collapse
|
9
|
Farinato A, Cavalluzzi MM, Altamura C, Campanale C, Laghetti P, Saltarella I, Delre P, Barbault A, Tarantino N, Milani G, Rotondo NP, Di Cesare Mannelli L, Ghelardini C, Pierno S, Mangiatordi GF, Lentini G, Desaphy JF. Development of Riluzole Analogs with Improved Use-Dependent Inhibition of Skeletal Muscle Sodium Channels. ACS Med Chem Lett 2023; 14:999-1008. [PMID: 37465302 PMCID: PMC10350938 DOI: 10.1021/acsmedchemlett.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Several commercially available and newly synthesized riluzole analogs were evaluated in vitro as voltage-gated skeletal muscle sodium-channel blockers. Data obtained from the patch-clamp technique demonstrated that potency is well correlated with lipophilicity and the introduction of a protonatable amino function in the benzothiazole 2-position enhances the use-dependent behavior. The most interesting compound, the 2-piperazine analog of riluzole (14), although slightly less potent than the parent compound in the patch-clamp assay as well as in an in vitro model of myotonia, showed greater use-dependent Nav1.4 blocking activity. Docking studies allowed the identification of the key interactions that 14 makes with the amino acids of the local anesthetic binding site within the pore of the channel. The reported results pave the way for the identification of novel compounds useful in the treatment of cell excitability disorders.
Collapse
Affiliation(s)
- Alessandro Farinato
- Section
of Pharmacology, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Maria Maddalena Cavalluzzi
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Concetta Altamura
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Carmen Campanale
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Paola Laghetti
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Ilaria Saltarella
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Pietro Delre
- CNR
− Institute of Crystallography, via Amendola 122/o, 70126 Bari, Italy
| | - Arthur Barbault
- CNR
− Institute of Crystallography, via Amendola 122/o, 70126 Bari, Italy
| | - Nancy Tarantino
- Section
of Pharmacology, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Gualtiero Milani
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Natalie Paola Rotondo
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Lorenzo Di Cesare Mannelli
- Department
NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, 50139 Florence, Italy
| | - Carla Ghelardini
- Department
NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, 50139 Florence, Italy
| | - Sabata Pierno
- Section
of Pharmacology, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | | | - Giovanni Lentini
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Jean-François Desaphy
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| |
Collapse
|
10
|
Electroacupuncture Alleviates 46-Trinitrobenzene Sulfonic Acid-Induced Visceral Pain via the Glutamatergic Pathway in the Prefrontal Cortex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4463063. [PMID: 36713031 PMCID: PMC9879690 DOI: 10.1155/2023/4463063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Visceral pain caused by inflammatory bowel disease (IBD) greatly diminishes the quality of life in affected patients. Yet, the mechanism of how IBD causes visceral pain is currently not fully understood. Previous studies have suggested that the central nervous system (CNS) and gut-brain axis (GBA) play an important role in IBD-inducing visceral pain. As one of the treatments for IBD, electroacupuncture (EA) has been used to treat various types of pain and gastrointestinal diseases in clinical practice. However, whether EA relieves the visceral pain of IBD through the gut-brain axis has not been confirmed. To verify the relationship between visceral pain and CNS, the following experiments were conducted. 1H-NMR analysis was performed on the prefrontal cortex (PFC) tissue obtained from IBD rat models to determine the link between the metabolites and their role in EA treatment against visceral pain. Western blot assay was employed for detecting the contents of glutamate transporter excitatory amino acid transporters 2 (EAAT2) and the glutamate receptor N-methyl-D-aspartate (NMDA) to verify whether EA treatment can alleviate neurotoxic symptoms induced by abnormal increases of glutamate. Study results showed that the glutamate content was significantly increased in the PFC of TNBS-induced IBD rats. This change was reversed after EA treatment. This process was associated with increased EAAT2 expression and decreased expression of NMDA receptors in the PFC. In addition, an increase in intestinal glutamic-metabolizing bacteria was observed. In conclusion, this study suggests that EA treatment can relieve visceral pain by reducing glutamine toxicity in the PFC, and serves an alternative clinical utility.
Collapse
|
11
|
Liu J, Jia S, Huang F, He H, Fan W. Peripheral role of glutamate in orofacial pain. Front Neurosci 2022; 16:929136. [PMID: 36440288 PMCID: PMC9682037 DOI: 10.3389/fnins.2022.929136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/10/2022] [Indexed: 09/10/2023] Open
Abstract
Glutamate is the principal excitatory neurotransmitter in the central nervous system. In the periphery, glutamate acts as a transmitter and involves in the signaling and processing of sensory input. Glutamate acts at several types of receptors and also interacts with other transmitters/mediators under various physiological and pathophysiological conditions including chronic pain. The increasing amount of evidence suggests that glutamate may play a role through multiple mechanisms in orofacial pain processing. In this study, we reviewed the current understanding of how peripheral glutamate mediates orofacial pain, how glutamate is regulated in the periphery, and how these findings are translated into therapies for pain conditions.
Collapse
Affiliation(s)
- Jinyue Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Qamar M, Akhtar S, Ismail T, Wahid M, Ali S, Nazir Y, Murtaza S, Abbas MW, Ziora ZM. Syzygium cumini (L.) Skeels extracts; in vivo anti-nociceptive, anti-inflammatory, acute and subacute toxicity assessment. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114919. [PMID: 34995693 DOI: 10.1016/j.jep.2021.114919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Syzygium cumini (L.) Skeels has been extensively used in the ancient medical system of Pakistan, India, Bangladesh, and Sri Lanka to combat diabetes, inflammation, and renal disorders. These health-promoting aspects of S. cumini are related to bioactive metabolites such as phenolic acids, anthocyanins, tannins, and flavonoids. AIM OF THE STUDY Earlier to this study, we have reported S. cumini extracts as potential sources of bioactive compounds bearing antioxidant and anti-inflammatory properties. However, prior further suggesting S. cumini fruit extracts for consumption against inflammatory disorders, it was mandatory to validate the claim and explore toxicity of the extracts. This study aims to determine the in vivo anti-nociceptive, anti-inflammatory, acute, and subacute toxicity properties of S. cumini crude extracts, followed by identifying and quantifying bioactive metabolites. MATERIAL AND METHODS In the present study, the anti-nociceptive and anti-inflammatory potential of S. cumini sequential crude extracts were evaluated using formalin and glutamate-induced paw licking method in mice. The acute and sub-acute toxicity assessment of active extract was performed by oral administration in rats. An acute toxicity trial was performed with two different doses, i.e., 2000 mg/kg and 3000 mg/kg for consecutive 14 days, whereas a sub-acute toxicity study was conducted at doses of 750 mg/kg and 1500 mg/kg for the next 28 days. Identification of bioactive compounds was performed using HPLC, and at the end, in silico docking calculations of identified compounds were performed. RESULTS The 100% methanolic extract (SCME) protected the mice from painful stimulation of formalin and glutamate in a dose-dependent manner with the maximum effect of 49% and 67% at 200 mg/kg, respectively, followed by moderate and non-influential effects of 50% methanolic extract and dichloromethane (DCM) extracts when compared to control, i.e., normal saline. The results of acute toxicity recorded LD50 of SCME over 3000 mg/kg, and no antagonistic effects were recorded during the subacute study when SCME dispensed at the rate of 750 mg/kg and 1500 mg/kg. SCME was found to induce no adverse effects to kidney, heart, liver, spleen, and paired lungs examined by hematological, serum biochemical, histological analysis. HPLC analysis of S. cumini 100% methanolic extracts revealed the presence of delphinidin 3-glucoside, peonidin-3,5-diglucoside, scopoletin, and umbelliferone at the concentration of 127.4, 2104, 31.3, 10.4 μg/g whereas in 50% methanolic extract, the quinic acid, catechin, and myricetin were present at the concentration of 54.9, 63.7, 12.3 μg/g, respectively. Umbelliferone and scopoletin are newly reported compounds in the present study. In silico docking calculations of these compounds indicated the potential of anti-nociceptive and anti-inflammatory activities. CONCLUSIONS These findings validate that S. cumini fruit extracts are a rich source of bioactive compounds that needs to be considered to enhance biological activities with lesser side effects.
Collapse
Affiliation(s)
- Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muqeet Wahid
- Department of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sajed Ali
- Department of Biotechnology, University of Management and Technology, Sialkot, Pakistan
| | - Yasir Nazir
- Faculty of Sciences, Department of Chemistry, University of Sialkot, Sialkot, 51300, Pakistan
| | - Shahid Murtaza
- Center of Excellence in Molecular Biology, 87-West Canal Bank Road, Thokar Niazbaig, University of the Punjab, Lahore, Pakistan
| | - Malik Waseem Abbas
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zyta M Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
13
|
Singh V, Gillespie TW, Lane O, Spektor B, Zarrabi AJ, Egan K, Curseen K, Tsvetkova M, Beumer JH, Sniecinski R, Shteamer J, Switchenko J, Harvey RD. A dose‐escalation clinical trial of intranasal ketamine for uncontrolled cancer‐related pain. Pharmacotherapy 2022; 42:298-310. [DOI: 10.1002/phar.2669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Vinita Singh
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Theresa W. Gillespie
- Department of Hematology and Medical Oncology Emory University School of Medicine Atlanta Georgia USA
- Department of Surgery Emory University School of Medicine Atlanta Georgia USA
| | - Olabisi Lane
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Boris Spektor
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Ali John Zarrabi
- Department of Family Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Katherine Egan
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Kimberly Curseen
- Department of Family Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Maya Tsvetkova
- Cancer Therapeutics Program UPMC Hillman Cancer Center Pittsburgh Pennsylvania USA
- Department of Pharmaceutical Sciences School of Pharmacy University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Jan H. Beumer
- Cancer Therapeutics Program UPMC Hillman Cancer Center Pittsburgh Pennsylvania USA
- Department of Pharmaceutical Sciences School of Pharmacy University of Pittsburgh Pittsburgh Pennsylvania USA
- Division of Hematology‐Oncology Department of Medicine University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
| | - Roman Sniecinski
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Jack W. Shteamer
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Jeffery Switchenko
- Department of Biostatistics and Bioinformatics Rollins School of Public Health Emory University Atlanta Georgia USA
| | - R. Donald Harvey
- Department of Hematology and Medical Oncology Emory University School of Medicine Atlanta Georgia USA
- Department of Pharmacology Emory University School of Medicine Atlanta Georgia USA
| |
Collapse
|
14
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
15
|
de Oliveira AS, Llanes LC, Nunes RJ, Nucci-Martins C, de Souza AS, Palomino-Salcedo DL, Dávila-Rodríguez MJ, Ferreira LLG, Santos ARS, Andricopulo AD. Antioxidant Activity, Molecular Docking, Quantum Studies and In Vivo Antinociceptive Activity of Sulfonamides Derived From Carvacrol. Front Pharmacol 2021; 12:788850. [PMID: 34887769 PMCID: PMC8650121 DOI: 10.3389/fphar.2021.788850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The synthesis and antioxidant, antinociceptive and antiedematogenic activities of sulfonamides derived from carvacrol-a druglike natural product-are reported. The compounds showed promising antioxidant activity, and sulfonamide derived from morpholine (S1) demonstrated excellent antinociceptive and antiedematogenic activities, with no sedation or motor impairment. The mechanism that underlies the carvacrol and derived sulfonamides' relieving effects on pain has not yet been fully elucidated, however, this study shows that the antinociceptive activity can be partially mediated by the antagonism of glutamatergic signaling. Compound S1 presented promising efficacy and was predicted to have an appropriate medicinal chemistry profile. Thus, derivative S1 is an interesting starting point for the design of new leads for the treatment of pain and associated inflammation and prooxidative conditions.
Collapse
Affiliation(s)
- Aldo S de Oliveira
- Department of Exact Sciences and Education, Federal University of Santa Catarina-UFSC, Blumenau, Brazil.,Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo-USP, São Carlos, Brazil
| | - Luana C Llanes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ricardo J Nunes
- Departament of Chemistry, Federal University of Santa Catarina-UFSC, Florianópolis, Brazil
| | - Catharina Nucci-Martins
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Florianópolis, Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Anacleto S de Souza
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo-USP, São Carlos, Brazil
| | - David L Palomino-Salcedo
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo-USP, São Carlos, Brazil
| | | | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo-USP, São Carlos, Brazil
| | - Adair R S Santos
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Florianópolis, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo-USP, São Carlos, Brazil
| |
Collapse
|
16
|
Taiji R, Yamanaka M, Taniguchi W, Nishio N, Tsutsui S, Nakatsuka T, Yamada H. Anti-allodynic and promotive effect on inhibitory synaptic transmission of riluzole in rat spinal dorsal horn. Biochem Biophys Rep 2021; 28:101130. [PMID: 34541342 PMCID: PMC8435917 DOI: 10.1016/j.bbrep.2021.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 10/29/2022] Open
Abstract
Riluzole (2-amino-6-(trifluoromethoxy)benzothiazole) is a drug known for its inhibitory effect on glutamatergic transmission and its anti-nociceptive and anti-allodynic effects in neuropathic pain rat models. Riluzole also has an enhancing effect on GABAergic synaptic transmission. However, the effect on the spinal dorsal horn, which plays an important role in modulating nociceptive transmission, remains unknown. We investigated the ameliorating effect of riluzole on mechanical allodynia using the von Frey test in a rat model of neuropathic pain and analyzed the synaptic action of riluzole on inhibitory synaptic transmission in substantia gelatinosa (SG) neurons using whole-cell patch clamp recordings. We found that single-dose intraperitoneal riluzole (4 mg/kg) administration effectively attenuated mechanical allodynia in the short term in a rat model of neuropathic pain. Moreover, 300 μM riluzole induced an outward current in rat SG neurons. The outward current induced by riluzole was not suppressed in the presence of tetrodotoxin. Furthermore, we found that the outward current was suppressed by simultaneous bicuculline and strychnine application, but not by strychnine alone. Altogether, these results suggest that riluzole enhances inhibitory synaptic transmission monosynaptically by potentiating GABAergic synaptic transmission in the rat spinal dorsal horn.
Collapse
Affiliation(s)
- Ryo Taiji
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Manabu Yamanaka
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Wataru Taniguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Naoko Nishio
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Shunji Tsutsui
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Terumasa Nakatsuka
- Pain Research Center, Kansai University of Health Sciences, 2-11-1 Wakaba, Kumatori, Osaka, 590-0482, Japan
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| |
Collapse
|
17
|
Mohammadi S, Fakhri S, Mohammadi-Farani A, Farzaei MH, Abbaszadeh F. Astaxanthin engages the l-arginine/NO/cGMP/KATP channel signaling pathway toward antinociceptive effects. Behav Pharmacol 2021; 32:607-614. [PMID: 34561366 DOI: 10.1097/fbp.0000000000000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the main functions of the sensory system in our body is to maintain somatosensory homeostasis. Recent reports have led to a significant advance in our understanding of pain signaling mechanisms; however, the exact mechanisms of pain transmission have remained unclear. There is an urgent need to reveal the precise signaling mediators of pain to provide alternative therapeutic agents with more efficacy and fewer side effects. Accordingly, although the anti-inflammatory, antioxidative and anti-neuropathic effects of astaxanthin (AST) have been previously highlighted, its peripheral antinociceptive mechanisms are not fully understood. In this line, considering the engagement of l-arginine/nitric oxide (NO)/cyclic GMP (cGMP)/potassium channel (KATP) signaling pathway in the antinociceptive responses, the present study evaluated its associated role in the antinociceptive activity of AST. Male mice were intraperitoneally (i.p.) injected with l-arginine (100 mg/kg), SNAP (1 mg/kg), L-NAME (30 mg/kg), sildenafil (5 mg/kg), and glibenclamide (10 mg/kg) alone and prior to the most effective dose of AST. Following AST administration, intraplantarly (i.pl) injection of formalin was done, and pain responses were evaluated in mice during the primary (acute) and secondary (inflammatory) phases of formalin test. The results highlighted that 10 mg/kg i.p. dose of AST showed the greatest antinociceptive effect. Besides, while L-NAME and glibenclamide reduced the antinociceptive effect of AST, it was significantly increased by l-arginine, SNAP and sildenafil during both the primary and secondary phases of formalin test. These data suggest that the antinociceptive activity of AST is passing through the l-arginine/NO/cGMP/KATP pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Alghamdi BS, Alshehri FS. Melatonin Blocks Morphine-Induced Place Preference: Involvement of GLT-1, NF-κB, BDNF, and CREB in the Nucleus Accumbens. Front Behav Neurosci 2021; 15:762297. [PMID: 34720901 PMCID: PMC8551802 DOI: 10.3389/fnbeh.2021.762297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Opioid addiction remains a widespread issue despite continuous attempts by the FDA to help maintain abstinence. Melatonin is a neurohormone considered to be involved only in the neuroendocrine and reproductive systems; however, recent reports have demonstrated its potential to attenuate drug addiction and dependence. Cumulative studies have suggested that melatonin can attenuate the rewarding effects of several drugs of abuse, including opioids. This study aimed to investigate the effect of melatonin (50 mg/kg) on morphine (5 mg/kg) to produce place preference. We also investigated the effect of melatonin and morphine on the expression of GLT-1, BDNF, NF-κB, and CREB within the nucleus accumbens. Male Wistar rats were divided into control, morphine, melatonin, and the morphine + melatonin groups. The study involved a two-phase habituation phase from day 1 to day 3 and an acquisition phase from day 5 to day 14. The conditioned place preference (CPP) score, distance traveled, resting time, ambulatory count, and total activity count were measured for all animals. Rats that received morphine showed a significant increase in CPP score compared to those in the control group. Morphine treatment reduced the mRNA expression of GLT-1, BDNF, and CREB and increased that of NF-κB. However, melatonin treatment administered 30 min before morphine treatment attenuated morphine place preference and reversed GLT-1, BDNF, NF-κB, and CREB expression levels. In conclusion, the study results indicate, for the first time, the new potential targets of melatonin in modulating morphine-induced CPP.
Collapse
Affiliation(s)
- Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Deciphering the mechanisms of regulation of an excitatory synapse via cyclooxygenase-2. A review. Biochem Pharmacol 2021; 192:114729. [PMID: 34400127 DOI: 10.1016/j.bcp.2021.114729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Cyclooxygenase (COX) is a heme-containing enzyme that produces prostaglandins (PGs) via a pathway known as the arachidonic acid (AA) cascade. Two isoforms of COX enzyme (COX-1 and COX-2) and splice variant (COX-3) have been described so far. COX-2 is a neuronal enzyme that is intensively produced during activation of the synapse and glutamate (Glu) release. The end product of COX-2 action, prostaglandin E2 (PGE2), regulates Glu level in a retrograde manner. At the same time, the level of Glu, the primary excitatory neurotransmitter, is regulated in the excitatory synapse via Glu receptors, both ionotropic and metabotropic ones. Glu receptors are known modulators of behavior, engaged in cognition and mood. So far, the interaction between ionotropic N-methyl-D-aspartate (NMDA) receptors or metabotropic glutamate (mGluRs) receptors and COX-2 was found. Here, based on literature data and own research, a new mechanism of action of COX-2 in an excitatory synapse will be presented.
Collapse
|
20
|
Negrini-Ferrari SE, Medeiros P, Malvestio RB, de Oliveira Silva M, Medeiros AC, Coimbra NC, Machado HR, de Freitas RL. The primary motor cortex electrical and chemical stimulation attenuates the chronic neuropathic pain by activation of the periaqueductal grey matter: The role of NMDA receptors. Behav Brain Res 2021; 415:113522. [PMID: 34391797 DOI: 10.1016/j.bbr.2021.113522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Motor cortex stimulation (MCS) is proper as a non-pharmacological therapy for patients with chronic and neuropathic pain (NP). AIMS This work aims to investigate if the MCS in the primary motor cortex (M1) produces analgesia and how the MCS could interfere in the MCS-induced analgesia. Also, to elucidate if the persistent activation of N-methyl-d-aspartic acid receptor (NMDAr) in the periaqueductal grey matter (PAG) can contribute to central sensitisation of the NP. METHODS Male Wistar rats were submitted to the von Frey test to evaluate the mechanical allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve. The MCS was performed with low-frequency (20 μA, 100 Hz) currents during 15 s by a deep brain stimulation (DBS) device. Moreover, the effect of M1-treatment with an NMDAr agonist (at 2, 4, and 8 nmol) was investigated in CCI rats. The PAG dorsomedial column (dmPAG) was pretreated with the NMDAr antagonist LY 235959 (at 8 nmol), followed by MCS. RESULTS The MCS decreased the mechanical allodynia in rats with chronic NP. The M1-treatment with an NMDA agonist at 2 and 8 nmol reduced the mechanical allodynia in CCI rats. In addition, dmPAG-pretreatment with LY 235959 at 8 nmol attenuated the mechanical allodynia evoked by MCS. CONCLUSION The M1 cortex glutamatergic system is involved in the modulation of chronic NP. The analgesic effect of MCS may depend on glutamate signaling recruitting NMDAr located on PAG neurons in rodents with chronic NP.
Collapse
Affiliation(s)
- Sylmara Esther Negrini-Ferrari
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Braghetto Malvestio
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Mariana de Oliveira Silva
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ana Carolina Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil
| | - Helio Rubens Machado
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Brain Protection Laboratory in Childhood, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil.
| |
Collapse
|
21
|
Kolahdouz M, Jafari F, Falanji F, Nazemi S, Mohammadzadeh M, Molavi M, Amin B. Clavulanic Acid Attenuating Effect on the Diabetic Neuropathic Pain in Rats. Neurochem Res 2021; 46:1759-1770. [PMID: 33846883 DOI: 10.1007/s11064-021-03308-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/24/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
Diabetic neuropathy is one of the most common complications of diabetes mellitus. Excess glutamate release and oxidative stress are hypothesized to be involved in the pathophysiology of diabetes-induced neuropathy. This study was designed to investigate the effect of clavulanic acid (CLAV), a competitive beta-lactamase inhibitor, on the streptozocin (STZ)-induced neuropathic pain and possible mechanisms in the spinal cord of rats. Male Wistar rats were divided into naive group; control group which got a single dose of STZ (50 mg/kg, i.p.), as a model of diabetic neuropathic pain; prophylactic groups: animals received CLAV (10, 20 and 40 mg/kg, i.p.) 1 week after STZ for 10 days; and therapeutic group: animals received 20 mg/kg CLAV, 21 days after STZ for 10 days. Study of pain behaviors was started on days 0, 7, 14, 21, 28, 35 and 42 after STZ. The expression of the glutamate transport 1 (GLT1), genes of oxidative stress including inducible nitric oxide synthase (iNOS), proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), as well as genes involved in the apoptosis including bcl2, bcl2-associated x (bax) were measured in the spinal cord tissue by Real Time PCR, on day 42. On day 21 post injection of STZ, diabetic animals showed significant mechanical allodynia, cold allodynia and thermal hyperalgesia. CLAV in all doses of 10, 20 and 40 mg/kg reduced symptoms of allodynia and hyperalgesia, in both prophylactic and therapeutic regimens. While iNOS, TNF-α, bax/bcl2 were found significantly overexpressed in spinal cord of diabetic animals, their expression in animals received CLAV had been reduced. In contrast, GLT1 that had decreased in the spinal cord of diabetic animals, significantly increased in those received CLAV. CLAV was found a promising candidate for reliving neuropathic pain in diabetes mellitus. Such beneficial effect of CLAV could be, in part, attributed to the increased expression of GLT 1, inhibition of nitrosative stress, anti-inflammation, and inhibition of some apoptotic mediators followed by administration into diabetic animals.
Collapse
Affiliation(s)
- Mahnoush Kolahdouz
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Faranak Jafari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Samad Nazemi
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mohammadzadeh
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehdi Molavi
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
22
|
The role of peripheral adenosine receptors in glutamate-induced pain nociceptive behavior. Purinergic Signal 2021; 17:303-312. [PMID: 33860899 DOI: 10.1007/s11302-021-09781-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
The role of peripheral adenosine receptors in pain is a controversial issue and seems to be quite different from the roles of spinal and central adenosine receptors. The present study is aimed at clarifying the role of these receptors in peripheral nociception. To clarify this, studies were done on Swiss mice with adenosine receptor agonists and antagonists. Nociceptive behavior was induced by subcutaneous injection of glutamate (10 μmol) into the ventral surface of the hind paw of mice. Statistical analyses were performed by one-way ANOVA followed by the Student-Newman-Keuls post hoc test. Results showed that intraplantar (i.pl.) administration of N6-cyclohexyl-adenosine (CHA), an adenosine A1 receptor agonist, at 1 or 10 μg/paw significantly reduced glutamate-induced nociception (p<0.01 and p<0.001 vs. vehicle, respectively, n=8-10). In contrast, i.pl. injection of hydrochloride hydrate (CGS21680, an adenosine A2A receptor agonist) (1 μg/paw) induced a significant increase in glutamate-induced nociception compared to the vehicle (p<0.05, n=8), while 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, an adenosine A2A receptor antagonist) (20 μg/paw) caused a significant reduction (p<0.05, n=7-8). There were no significant effects on i.pl. administration of four additional adenosine receptor drugs-8-cyclopentyl-1,3-dipropylxanthine (DPCPX, an A1 antagonist, 1-10 μg/paw), N(6)-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA, an A2B agonist, 1-100 μg/paw), alloxazine (an A2B antagonist, 0.1-3 μg/paw), and 2-hexyn-1-yl-N(6)-methyladenosine (HEMADO) (an A3 agonist, 1-100 μg/paw) (p>0.05 vs. vehicle for all tests). We also found that prior administration of DPCPX (3 μg/paw) significantly blocked the anti-nociceptive effect of CHA (1 μg/paw) (p<0.05, n=7-9). Similarly, ZM241385 (20 μg/paw) administered prior to CGS21680 (1 μg/paw) significantly blocked CGS21680-induced exacerbation of nociception (p<0.05, n=8). Finally, inosine (10 and 100 μg/paw), a novel endogenous adenosine A1 receptor agonist recently reported by our research group, was also able to reduce glutamate-induced nociception (p<0.001 vs. vehicle, n=7-8). Interestingly, as an A1 adenosine receptor agonist, the inosine effect was significantly blocked by the A1 antagonist DPCPX (3 μg/paw) (p<0.05, n=7-9) but not by the A2A antagonist ZM241385 (10 μg/paw, p>0.05). In summary, these results demonstrate for the first time that i.pl administration of inosine induces an anti-nociceptive effect, similar to that elicited by CHA and possibly mediated by peripheral adenosine A1 receptor activation. Moreover, our results suggest that peripheral adenosine A2A receptor activation presents a pro-nociceptive effect, exacerbating glutamate-induced nociception independent of inosine-induced anti-nociceptive effects.
Collapse
|
23
|
Abstract
Pain is an essential protective mechanism that the body uses to alert or prevent further damage. Pain sensation is a complex event involving perception, transmission, processing, and response. Neurons at different levels (peripheral, spinal cord, and brain) are responsible for these pro- or antinociceptive activities to ensure an appropriate response to external stimuli. The terminals of these neurons, both in the peripheral endings and in the synapses, are equipped with G protein-coupled receptors (GPCRs), voltage- and ligand-gated ion channels that sense structurally diverse stimuli and inhibitors of neuronal activity. This review will focus on the largest class of sensory proteins, the GPCRs, as they are distributed throughout ascending and descending neurons and regulate activity at each step during pain transmission. GPCR activation also directly or indirectly controls the function of co-localized ion channels. The levels and types of some GPCRs are significantly altered in different pain models, especially chronic pain states, emphasizing that these molecules could be new targets for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, St. Louis College of Pharmacology and Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
24
|
Gopalsamy B, Chia JSM, Farouk AAO, Sulaiman MR, Perimal EK. Zerumbone-Induced Analgesia Modulated via Potassium Channels and Opioid Receptors in Chronic Constriction Injury-Induced Neuropathic Pain. Molecules 2020; 25:molecules25173880. [PMID: 32858809 PMCID: PMC7503342 DOI: 10.3390/molecules25173880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Zerumbone, a monocyclic sesquiterpene from the wild ginger plant Zingiber zerumbet (L.) Smith, attenuates allodynia and hyperalgesia. Currently, its mechanisms of action in neuropathic pain conditions remain unclear. This study examines the involvement of potassium channels and opioid receptors in zerumbone-induced analgesia in a chronic constriction injury (CCI) neuropathic pain mice model. Male Institute of Cancer Research (ICR) mice were subjected to CCI and behavioral responses were tested on day 14. Responses toward mechanical allodynia and thermal hyperalgesia were tested with von Frey's filament and Hargreaves' tests, respectively. Symptoms of neuropathic pain were significantly alleviated following treatment with zerumbone (10 mg/kg; intraperitoneal, i.p.). However, when the voltage-dependent K+ channel blocker tetraethylammonium (TEA, 4 mg/kg; i.p.), ATP-sensitive K+ channel blocker, glibenclamide (GLIB, 10 mg/kg; i.p.); small-conductance Ca2+-activated K+ channel inhibitor apamin (APA, 0.04 mg/kg; i.p.), or large-conductance Ca2+-activated K+ channel inhibitor charybdotoxin (CHAR, 0.02 mg/kg; i.p.) was administered prior to zerumbone (10 mg/kg; i.p.), the antiallodynic and antihyperalgesic effects of zerumbone were significantly reversed. Additionally, non-specific opioid receptors antagonist, naloxone (NAL, 10 mg/kg; i.p.), selective µ-, δ- and κ-opioid receptor antagonists; β-funaltrexamine (β-FN, 40 mg/kg; i.p.), naltrindole (20 mg/kg; s.c.), nor-binaltorphamine (10 mg/kg; s.c.) respectively attenuated the antiallodynic and antihyperalgesic effects of zerumbone. This outcome clearly demonstrates the participation of potassium channels and opioid receptors in the antineuropathic properties of zerumbone. As various clinically used neuropathic pain drugs also share this similar mechanism, this compound is, therefore, a highly potential substitute to these therapeutic options.
Collapse
Affiliation(s)
- Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
| | - Jasmine Siew Min Chia
- Centre for Community Health Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide 5000, Australia
- Correspondence: ; Tel./Fax: +61-603-8947-2774
| |
Collapse
|
25
|
Ma S, Zheng X, Zheng T, Huang F, Jiang J, Luo H, Guo Q, Hu B. Amitriptyline influences the mechanical withdrawal threshold in bone cancer pain rats by regulating glutamate transporter GLAST. Mol Pain 2020; 15:1744806919855834. [PMID: 31218920 PMCID: PMC6637840 DOI: 10.1177/1744806919855834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with cancer, especially breast, prostate, and lung cancer, commonly experience bone metastases that are difficult to manage and are associated with bone cancer pain. Amitriptyline is often used to treat chronic pain, such as neuropathic pain. In this study, the effects of amitriptyline on the mechanical withdrawal threshold and its underlying mechanisms were evaluated in rat models of bone cancer pain. Walker 256 rat mammary gland carcinoma cells were injected into the bone marrow cavity of the right tibia of rats to provoke bone cancer pain. Then, amitriptyline was intraperitoneally administered twice daily from fifth day after the operation. Rats with bone cancer showed an apparent decline in the mechanical withdrawal threshold at day 11 after Walker 256 cells inoculation. The levels of the glutamate-aspartate transporter in the spinal cord dorsal horn decreased remarkably, and the concentration of the excitatory amino acid glutamate in the cerebrospinal fluid increased substantially. Amitriptyline injection could prevent the decline of mechanical withdrawal threshold in bone cancer pain rats. In addition, glutamate-aspartate transporter was upregulated on the glial cell surface, and glutamate levels were reduced in the cerebrospinal fluid. However, amitriptyline injection could not prevent the bone cancer pain-induced reduction in glutamate-aspartate transporter in the glial cell cytosol, it further downregulated cytosolic glutamate-aspartate transporter. Amitriptyline had no significant effect on GLAST messenger RNA expression, and bone cancer pain-invoked protein kinase A/protein kinase C upregulation was prevented. Taken together, these results suggest that the intraperitoneal injection of amitriptyline can prevent the decrease of mechanical withdrawal threshold in bone cancer pain rats, the underlying mechanisms may be associated with the inhibition of protein kinase A/protein kinase C expression, thus promoting glutamate-aspartate transporter trafficking onto the glial cell surface and reducing excitatory amino acid concentrations in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Simeng Ma
- 1 Fujian Provincial Hospital, Fuzhou, China
| | | | - Ting Zheng
- 1 Fujian Provincial Hospital, Fuzhou, China
| | | | | | | | | | - Bin Hu
- 1 Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
26
|
Chia JSM, Izham NAM, Farouk AAO, Sulaiman MR, Mustafa S, Hutchinson MR, Perimal EK. Zerumbone Modulates α 2A-Adrenergic, TRPV1, and NMDA NR2B Receptors Plasticity in CCI-Induced Neuropathic Pain In Vivo and LPS-Induced SH-SY5Y Neuroblastoma In Vitro Models. Front Pharmacol 2020; 11:92. [PMID: 32194397 PMCID: PMC7064019 DOI: 10.3389/fphar.2020.00092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Zerumbone has shown great potential in various pathophysiological models of diseases, particularly in neuropathic pain conditions. Further understanding the mechanisms of action is important to develop zerumbone as a potential anti-nociceptive agent. Numerous receptors and pathways function to inhibit and modulate transmission of pain signals. Previously, we demonstrated involvement of the serotonergic system in zerumbone's anti-neuropathic effects. The present study was conducted to determine zerumbone's modulatory potential involving noradrenergic, transient receptor potential vanilloid type 1 (TRPV1) and N-methyl-D-aspartate (NMDA) receptors in chronic constriction injury (CCI)-induced in vitro and lipopolysaccharide (LPS)-induced SH-SY5Y in vitro neuroinflammatory models. von Frey filament and Hargreaves plantar tests were used to assess allodynia and hyperalgesia in the chronic constriction injury-induced neuropathic pain mouse model. Involvement of specific adrenoceptors were investigated using antagonists- prazosin (α1-adrenoceptor antagonist), idazoxan (α2-adrenoceptor antagonist), metoprolol (β1-adrenoceptor antagonist), ICI 118,551 (β2-adrenoceptor antagonist), and SR 59230 A (β3-adrenoceptor antagonist), co-administered with zerumbone (10 mg/kg). Involvement of excitatory receptors; TRPV and NMDA were conducted using antagonists capsazepine (TRPV1 antagonist) and memantine (NMDA antagonist). Western blot was conducted to investigate the effect of zerumbone on the expression of α2A-adrenoceptor, TRPV1 and NMDA NR2B receptors in CCI-induced whole brain samples of mice as well as in LPS-induced SH-SY5Y neuroblastoma cells. Pre-treatment with α1- and α2-adrenoceptor antagonists significantly attenuated both anti-allodynic and anti-hyperalgesic effects of zerumbone. For β-adrenoceptors, only β2-adrenoceptor antagonist significantly reversed the anti-allodynic and anti-hyperalgesic effects of zerumbone. β1-adrenoceptor antagonist only reversed the anti-allodynic effect of zerumbone. The anti-allodynic and anti-hyperalgesic effects of zerumbone were both absent when TRPV1 and NMDA receptors were antagonized in both nociceptive assays. Zerumbone treatment markedly decreased the expression of α2A-adrenoceptor, while an up-regulation was observed of NMDA NR2B receptors. Expression of TRPV1 receptors however did not significantly change. The in vitro study, representing a peripheral model, demonstrated the reduction of both NMDA NR2B and TRPV1 receptors while significantly increasing α2A-adrenoceptor expression in contrast to the brain samples. Our current findings suggest that the α1-, α2-, β1- and β2-adrenoceptors, TRPV1 and NMDA NR2B are essential for the anti-allodynic and antihyperalgesic effects of zerumbone. Alternatively, we demonstrated the plasticity of these receptors through their response to zerumbone's administration.
Collapse
Affiliation(s)
- Jasmine Siew Min Chia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Centre for Community Health Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noor Aishah Mohammed Izham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sanam Mustafa
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark R Hutchinson
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| | - Enoch Kumar Perimal
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
27
|
Lee JY, Sim WS, Cho NR, Kim BW, Moon JY, Park HJ. The Antiallodynic Effect of Nefopam on Vincristine-Induced Neuropathy in Mice. J Pain Res 2020; 13:323-329. [PMID: 32104054 PMCID: PMC7012248 DOI: 10.2147/jpr.s224478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background Chemotherapy-induced neuropathic pain is a disabling condition following cancer treatment. Vincristine has more neurotoxicity than other vinca alkaloid agents. This study evaluated the correlation of different doses of nefopam with antiallodynic effects in a mouse vincristine neuropathy model. Methods A peripheral neuropathic mouse model was made by intraperitoneal injection of vincristine (0.1 mg/kg/day; 5-day-on, 2-day-off schedule over 12 days). After the development of allodynia, mice were injected intraperitoneally with 0.9% normal saline (NS group) or various doses (10, 30, 60 mg/kg) of nefopam (Nefopam group). We examined allodynia using von Frey hairs pre-administration and at 30, 60, 90, 120, 180, 240 mins, and 24 hrs after drug administration. We also measured the neurokinin-1 receptor concentrations in the spinal cord to confirm the antiallodynic effect of nefopam after drug administration. Results The peripheral neuropathic mouse model showed prominent mechanical allodynia. Intraperitoneal nefopam produced a clear dose-dependent increase in paw withdrawal threshold compared with pre-administration values and versus the NS group. The concentration of neurokinin-1 receptor was significantly decreased in the Nefopam group (P<0.05). Conclusion Intraperitoneally administered nefopam yielded a dose-dependent attenuation of mechanical allodynia and decreased neurokinin-1 receptor concentration, suggesting that the neurokinin-1 receptor is involved in the antiallodynic effects of nefopam in vincristine neuropathy.
Collapse
Affiliation(s)
- Jin Young Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Woo Seog Sim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Noo Ree Cho
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Bae Wook Kim
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Jeong Yeon Moon
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Hue Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Alijanpour S, Zarrindast MR. Potentiation of morphine-induced antinociception by harmaline: involvement of μ-opioid and ventral tegmental area NMDA receptors. Psychopharmacology (Berl) 2020; 237:557-570. [PMID: 31740992 DOI: 10.1007/s00213-019-05389-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
RATIONAL Morphine is one of the most well-known and potent analgesic agents; however, it can also induce various side effects. Thus, finding drugs and mechanisms which can potentiate the analgesic effects of low doses of morphine will be a good strategy for pain management. OBJECTIVE The involvement of μ-opioid receptors and ventral tegmental area (VTA) glutamatergic system in harmaline and morphine combination on the nociceptive response were investigated. Also, we examined reward efficacy and tolerance expression following the drugs. METHODS Animals were bilaterally cannulated in the VTA by stereotaxic instrument. A tail-flick (TF) apparatus and conditioned place preference (CPP) paradigm were used to measure nociceptive response and rewarding effects in male NMRI mice respectively. RESULTS Morphine (2 mg/kg, i.p.) had no effect in TF test. Also, harmaline (1.25 and 5 mg/kg, i.p.) could not change pain threshold. Combination of a non-effective dose of harmaline (5 mg/kg) and morphine (2 mg/kg) produced antinociception and also prevented morphine tolerance but had no effect on the acquisition of CPP. Systemic administration of naloxone (0.5 and 1 mg/kg) and intra-VTA microinjection of NMDA (0.06 and 0.1 μg/mouse) before harmaline (5 mg/kg) plus morphine (2 mg/kg) prevented antinociception induced by the drugs. D-AP5 (0.5 and 1 μg/mouse, intra-VTA) potentiated the effect of low-dose harmaline (1.25 mg/kg) and morphine (2 mg/kg) and induced antinociception. Microinjection of the same doses of NMDA or D-AP5 into the VTA alone had no effect on pain threshold. CONCLUSION The findings showed that harmaline potentiated the analgesic effect of morphine and reduced morphine tolerance. Glutamatergic and μ-opioidergic system interactions in the VTA seem to have a modulatory role in harmaline plus morphine-induced analgesia.
Collapse
Affiliation(s)
- Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, P. O. Box 163, Gonbad Kavous, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Neale JH, Yamamoto T. N-acetylaspartylglutamate (NAAG) and glutamate carboxypeptidase II: An abundant peptide neurotransmitter-enzyme system with multiple clinical applications. Prog Neurobiol 2019; 184:101722. [PMID: 31730793 DOI: 10.1016/j.pneurobio.2019.101722] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
N-Acetylaspartylglutamate (NAAG) is the third most prevalent neurotransmitter in the mammalian nervous system, yet its therapeutic potential is only now being fully recognized. Drugs that inhibit the inactivation of NAAG by glutamate carboxypeptidase II (GCPII) increase its extracellular concentration and its activation of its receptor, mGluR3. These drugs warrant attention, as they are effective in animal models of several clinical disorders including stroke, traumatic brain injury and schizophrenia. In inflammatory and neuropathic pain studies, GCPII inhibitors moderated both the primary and secondary pain responses when given systemically, locally or in brain regions associated with the pain perception pathway. The finding that GCPII inhibition also moderated the motor and cognitive effects of ethanol intoxication led to the discovery of their procognitive efficacy in long-term memory tests in control mice and in short-term memory in a mouse model of Alzheimer's disease. NAAG and GCPII inhibitors respectively reduce cocaine self-administration and the rewarding effects of a synthetic stimulant. Most recently, GCPII inhibition also has been reported to be efficacious in a model of inflammatory bowel disease. GCPII was first discovered as a protein expressed by and released from metastatic prostate cells where it is known as prostate specific membrane antigen (PSMA). GCPII inhibitors with high affinity for this protein have been developed as prostate imaging and radiochemical therapies for prostate cancer. Taken together, these data militate in favor of the development and application of GCPII inhibitors in more advanced preclinical research as a prelude to clinical trials.
Collapse
Affiliation(s)
- Joseph H Neale
- Department of Biology, Georgetown University, 37(th) and O Sts., NW, Washington, DC, 20057, USA.
| | - Tatsuo Yamamoto
- Dept. of Anesthesiology, Kumamoto University., Kumamoto, Japan
| |
Collapse
|
30
|
Le J, Lin Z, Song L, Wang H, Hong Z. LC-MS/MS combined with in vivo microdialysis sampling from conscious rat striatum for simultaneous determination of active constituents of Yuanhu- Baizhi herb pair and endogenous neurotransmitters: Application to pharmacokinetic and pharmacodynamic study. J Pharm Biomed Anal 2019; 176:112807. [DOI: 10.1016/j.jpba.2019.112807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022]
|
31
|
Colgrove YM, Gravino-Dunn NS, Dinyer SC, Sis EA, Heier AC, Sharma NK. Physical and Physiological Effects of Yoga for an Underserved Population with Chronic Low Back Pain. Int J Yoga 2019; 12:252-264. [PMID: 31543635 PMCID: PMC6746048 DOI: 10.4103/ijoy.ijoy_78_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Yoga has been shown useful in reducing chronic low back pain (CLBP) through largely unknown mechanisms. The aim of this pilot study is to investigate the feasibility of providing yoga intervention to a predominantly underserved population and explore the potential mechanisms underlying yoga intervention in improving CLBP pain. Methods The quasi-experimental within-subject wait-listed crossover design targeted the recruitment of low-income participants who received twice-weekly group yoga for 12 weeks, following 6-12 weeks of no intervention. Outcome measures were taken at baseline, preintervention (6-12 weeks following baseline), and then postintervention. Outcome measures included pain, disability, core strength, flexibility, and plasma tumor necrosis factor (TNF)-α protein levels. Outcomes measures were analyzed by one-way ANOVA and paired one-tailed t-tests. Results Eight patients completed the intervention. Significant improvements in pain scores measured over time were supported by the significant improvement in pre- and post-yoga session pain scores. Significant improvements were also seen in the Oswestry Disability Questionnaire scores, spinal and hip flexor flexibility, and strength of core muscles following yoga. Six participants saw a 28.6%-100% reduction of TNF-α plasma protein levels after yoga, while one showed an 82.4% increase. Two participants had no detectable levels to begin with. Brain imaging analysis shows interesting increases in N-acetylaspartate in the dorsolateral prefrontal cortex and thalamus. Conclusion Yoga appears effective in reducing pain and disability in a low-income CLBP population and in part works by increasing flexibility and core strength. Changes in TNF-α protein levels should be further investigated for its influence on pain pathways.
Collapse
Affiliation(s)
- Yvonne M Colgrove
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Missouri, USA
| | - Nicole S Gravino-Dunn
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Missouri, USA
| | - Sarah C Dinyer
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Missouri, USA
| | - Emily A Sis
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Missouri, USA
| | - Alexa C Heier
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Missouri, USA
| | - Neena K Sharma
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
32
|
Rebalka IA, Cao AW, May LL, Tarnopolsky MA, Hawke TJ. Statin administration activates system xC - in skeletal muscle: a potential mechanism explaining statin-induced muscle pain. Am J Physiol Cell Physiol 2019; 317:C894-C899. [PMID: 31509447 DOI: 10.1152/ajpcell.00308.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Statins are a cholesterol-lowering drug class that significantly reduce cardiovascular disease risk. Despite their safety and effectiveness, musculoskeletal side-effects, particularly myalgia, are prominent and the most common reason for discontinuance. The cause of statin-induced myalgia is unknown, so defining the underlying mechanism(s) and potential therapeutic strategies is of clinical importance. Here we tested the hypothesis that statin administration activates skeletal muscle system xC-, a cystine/glutamate antiporter, to increase intracellular cysteine and therefore glutathione synthesis to attenuate statin-induced oxidative stress. Increased system xC- activity would increase interstitial glutamate; an amino acid associated with peripheral nociception. Consistent with our hypothesis, atorvastatin treatment significantly increased mitochondrial reactive oxygen species (ROS; 41%) and glutamate efflux (up to 122%) in C2C12 mouse skeletal muscle myotubes. Statin-induced glutamate efflux was confirmed to be the result of system xC- activation, as cotreatment with sulfasalazine (system xC- inhibitor) negated this rise in extracellular glutamate. These findings were reproduced in primary human myotubes but, consistent with being muscle-specific, were not observed in primary human dermal fibroblasts. To further demonstrate that statin-induced increases in ROS triggered glutamate efflux, C2C12 myotubes were cotreated with atorvastatin and various antioxidants. α-Tocopherol and cysteamine bitartrate reversed the increase in statin-induced glutamate efflux, bringing glutamate levels between 50 and 92% of control-treated levels. N-acetylcysteine (a system xC- substrate) increased glutamate efflux above statin treatment alone: up to 732% greater than control treatment. Taken together, we provide a mechanistic foundation for statin-induced myalgia and offer therapeutic insights to alleviate this particular statin-associated side-effect.
Collapse
Affiliation(s)
- Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Andrew W Cao
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Linda L May
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Rigo FK, Bochi GV, Pereira AL, Adamante G, Ferro PR, Dal-Toé De Prá S, Milioli AM, Damiani AP, da Silveira Prestes G, Dalenogare DP, Chávez-Olórtegui C, Moraes de Andrade V, Machado-de-Ávila RA, Trevisan G. TsNTxP, a non-toxic protein from Tityus serrulatus scorpion venom, induces antinociceptive effects by suppressing glutamate release in mice. Eur J Pharmacol 2019; 855:65-74. [PMID: 31059709 DOI: 10.1016/j.ejphar.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023]
Abstract
Neuropathic pain is a common type of chronic pain caused by trauma or chemotherapy. However, this type of pain is undertreated. TsNTxP is a non-toxic protein isolated from the venom of the scorpion Tityus serrulatus, and it is structurally similar to neurotoxins that interact with voltage-gated sodium channels. However, the antinociceptive properties of this protein have not been characterized. The purpose of this study was to investigate the antinociceptive effects of TsNTxP in acute and neuropathic pain models. Male and female Swiss mice (25-30 g) were exposed to different models of acute pain (tail-flick test and nociception caused by capsaicin intraplantar injection) or neuropathic pain (chronic pain syndrome induced by paclitaxel or chronic constriction injury of the sciatic nerve). Hypersensitivity to mechanical or cold stimuli were evaluated in the models of neuropathic pain. The ability of TsNTxP to alter the release of glutamate in mouse spinal cord synaptosomes was also evaluated. The results showed that TsNTxP exerted antinociceptive effects in the tail-flick test to a thermal stimulus and in the intraplantar capsaicin administration model. Furthermore, TsNTxP was non-toxic and exerted antiallodynic effects in neuropathic pain models induced by chronic constriction injury of the sciatic nerve and administration of paclitaxel. TsNTxP reduced glutamate release from mouse spinal cord synaptosomes following stimulation with potassium chloride (KCl) or capsaicin. Thus, this T. serrulatus protein may be a promising non-toxic drug for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Flávia Karine Rigo
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Guilherme Vargas Bochi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Adriano Lana Pereira
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Gabriela Adamante
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Paula Ronsani Ferro
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Samira Dal-Toé De Prá
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Alessandra Marcone Milioli
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Adriani Paganini Damiani
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Gabriele da Silveira Prestes
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Diéssica Padilha Dalenogare
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Federal University of Minas Gerais State (UFMG), 31270-901, Belo Horizonte, MG, Brazil
| | - Vanessa Moraes de Andrade
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | | | - Gabriela Trevisan
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil; Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
34
|
Alotaibi G, Rahman S. Effects of glial glutamate transporter activator in formalin‐induced pain behaviour in mice. Eur J Pain 2018. [DOI: https://doi.org/10.1002/ejp.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University Brookings South Dakota
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University Brookings South Dakota
| |
Collapse
|
35
|
Alotaibi G, Rahman S. Effects of glial glutamate transporter activator in formalin-induced pain behaviour in mice. Eur J Pain 2018; 23:765-783. [PMID: 30427564 DOI: 10.1002/ejp.1343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nociceptive pain remains a prevalent clinical problem and often poorly responsive to the currently available analgesics. Previous studies have shown that astroglial glutamate transporter-1 (GLT-1) in the hippocampus and anterior cingulate cortex (ACC) is critically involved in pain processing and modulation. However, the role of astroglial GLT-1 in nociceptive pain involving the hippocampus and ACC remains unknown. We investigated the role of 3-[[(2-Methylphenyl) methyl]thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, in nociceptive pain model and hippocampal-dependent behavioural tasks in mice. METHODS We evaluated the effects of LDN-212320 in formalin-induced nociceptive pain model. In addition, formalin-induced impaired hippocampal-dependent behaviours were measured using Y-maze and object recognition test. Furthermore, GLT-1 expression and extracellular signal-regulated kinase phosphorylation (pERK1/2) were measured in the hippocampus and ACC using Western blot analysis and immunohistochemistry. RESULTS The LDN-212320 (10 or 20 mg/kg, i.p) significantly attenuated formalin-evoked nociceptive behaviour. The antinociceptive effects of LDN-212320 were reversed by systemic administration of DHK (10 mg/kg, i.p), a GLT-1 antagonist. Moreover, LDN-212320 (10 or 20 mg/kg, i.p) significantly reversed formalin-induced impaired hippocampal-dependent behaviour. In addition, LDN-212320 (10 or 20 mg/kg, i.p) increased GLT-1 expressions in the hippocampus and ACC. On the other hand, LDN-212320 (20 mg/kg, i.p) significantly reduced formalin induced-ERK phosphorylation, a marker of nociception, in the hippocampus and ACC. CONCLUSION These results suggest that the GLT-1 activator LDN-212320 prevents nociceptive pain by upregulating astroglial GLT-1 expression in the hippocampus and ACC. Therefore, GLT-1 activator could be a novel drug candidate for nociceptive pain. SIGNIFICANCE The present study provides new insights and evaluates the role of GLT-1 activator in the modulation of nociceptive pain involving hippocampus and ACC. Here, we provide evidence that GLT-1 activator could be a potential therapeutic utility for the treatment of nociceptive pain.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
36
|
Dallazen JL, Maria-Ferreira D, da Luz BB, Nascimento AM, Cipriani TR, de Souza LM, Glugoski LP, Silva BJG, Geppetti P, de Paula Werner MF. Distinct mechanisms underlying local antinociceptive and pronociceptive effects of natural alkylamides from Acmella oleracea compared to synthetic isobutylalkyl amide. Fitoterapia 2018; 131:225-235. [DOI: 10.1016/j.fitote.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
|
37
|
Liu NJ, Storman EM, Gintzler AR. Pharmacological Modulation of Endogenous Opioid Activity to Attenuate Neuropathic Pain in Rats. THE JOURNAL OF PAIN 2018; 20:235-243. [PMID: 30366152 DOI: 10.1016/j.jpain.2018.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/12/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022]
Abstract
We showed previously that spinal metabotropic glutamate receptor 1 (mGluR1) signaling suppresses or facilitates (depending on the stage of estrous cycle) analgesic responsiveness to intrathecal endomorphin 2, a highly mu-opioid receptor-selective endogenous opioid. Spinal endomorphin 2 antinociception is suppressed during diestrus by mGluR1 when it is activated by membrane estrogen receptor alpha (mERα) and is facilitated during proestrus when mGluR1 is activated by glutamate. In the current study, we tested the hypothesis that in female rats subjected to spinal nerve ligation (SNL), the inhibition of spinal estrogen synthesis or blockade of spinal mERα/mGluR1 would be antiallodynic during diestrus, whereas during proestrus, mGluR1 blockade would worsen the mechanical allodynia. As postulated, following SNL, aromatase inhibition or mERα/mGluR1 blockade during diestrus markedly lessened the mechanical allodynia. This was observed only on the paw ipsilateral to SNL and was eliminated by naloxone, implicating endogenous opioid mediation. In contrast, during proestrus, mGluR1 blockade worsened the SNL-induced mechanical allodynia of the ipsilateral paw. Findings suggest menstrual cycle stage-specific drug targets for and the putative clinical utility of harnessing endogenous opioids for chronic pain management in women, as well as the value of, if not the necessity for, considering menstrual cycle stage in clinical trials thereof. PERSPECTIVE: Intrathecal treatments that enhance spinal endomorphin 2 analgesic responsiveness under basal conditions lessen mechanical allodynia in a chronic pain model. Findings provide a foundation for developing drugs that harness endogenous opioid antinociception for chronic pain relief, lessening the need for exogenous opioids and thus prescription opioid abuse.
Collapse
Affiliation(s)
- Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Emiliya M Storman
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York..
| |
Collapse
|
38
|
Radwani H, Roca-Lapirot O, Aby F, Lopez-Gonzalez MJ, Benazzouz R, Errami M, Favereaux A, Landry M, Fossat P. Group I metabotropic glutamate receptor plasticity after peripheral inflammation alters nociceptive transmission in the dorsal of the spinal cord in adult rats. Mol Pain 2018; 13:1744806917737934. [PMID: 29020860 PMCID: PMC5661751 DOI: 10.1177/1744806917737934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract The dorsal horn of the spinal cord is a crucial site for pain transmission and modulation. Dorsal horn neurons of the spinal cord express group I metabotropic glutamate receptors (group I mGluRs) that exert a complex role in nociceptive transmission. In particular, group I mGluRs promote the activation of L-type calcium channels, voltage-gated channels involved in short- and long-term sensitization to pain. In this study, we analyzed the role of group I mGluRs in spinal nociceptive transmission and the possible cooperation between these receptors and L-type calcium channels in the pathophysiology of pain transmission in the dorsal horn of the spinal cord. We demonstrate that the activation of group I mGluRs induces allodynia and L-type calcium channel-dependent increase in nociceptive field potentials following sciatic nerve stimulation. Surprisingly, in a model of persistent inflammation induced by complete Freund’s adjuvant, the activation of group I mGluRs induced an analgesia and a decrease in nociceptive field potentials. Among the group I mGluRs, mGluR1 promotes the activation of L-type calcium channels and increased nociceptive transmission while mGluR5 induces the opposite through the inhibitory network. These results suggest a functional switch exists in pathological conditions that can change the action of group I mGluR agonists into possible analgesic molecules, thereby suggesting new therapeutic perspectives to treat persistent pain in inflammatory settings.
Collapse
Affiliation(s)
- Houda Radwani
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Olivier Roca-Lapirot
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Franck Aby
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | | | - Rabia Benazzouz
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Mohammed Errami
- University of Abdelmalek Essaâdi, Faculty of Sciences, Laboratory: ''Physiology and Physiopathology''. Tetouan, Morocco
| | - Alexandre Favereaux
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Marc Landry
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | | |
Collapse
|
39
|
Pourzitaki C, Tsaousi G, Papazisis G, Kyrgidis A, Zacharis C, Kritis A, Malliou F, Kouvelas D. Fentanyl and naloxone effects on glutamate and GABA release rates from anterior hypothalamus in freely moving rats. Eur J Pharmacol 2018; 834:169-175. [DOI: 10.1016/j.ejphar.2018.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
|
40
|
do Nascimento JET, de Morais SM, de Lisboa DS, de Oliveira Sousa M, Santos SAAR, Magalhães FEA, Campos AR. The orofacial antinociceptive effect of Kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomed Pharmacother 2018; 107:1030-1036. [PMID: 30257314 DOI: 10.1016/j.biopha.2018.08.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to evaluate the antinociceptive effect of Kaempferol-3-O-rutinoside (KR), isolated from the plant Ouratea fieldingiana, on the orofacial nociception and possible mechanisms of action. Adult zebrafish (Danio rerio) were tested as a behavioral model to study formalin, glutamate, capsaicin, cinnamaldehyde and acidic saline-induced orofacial nociception, using as parameter the number of times the fish crossed the lines between the quadrants of a glass Petri dish during a specific time. Morphine was used as positive control. The effect of KR was tested for modulation by opioid (naloxone), nitrergic (L-NAME), TRPV1 (ruthenium red), TRPA1 (camphor) or ASIC (amiloride) antagonists. The effect of KR on zebrafish locomotor behavior was evaluated with the open field test. KR did not alter the fish's locomotor system and significantly reduced the orofacial nociceptive behavior induced by all noxious agents compared to the control group. The antinociceptive effect of KR was similar to morphine. All antagonists inhibited the antinociceptive effect of KR. KR has pharmacological potential for the treatment of acute orofacial pain and this effect is modulated by the opioid and nitrergic systems as well as TRPV1, TRPA1 and ASIC channels. These results can lead to the development of a new natural product for the treatment of orofacial pain and confirm the popular use of O. fieldingiana leaf for pain relief.
Collapse
Affiliation(s)
- José Eranildo Teles do Nascimento
- Programa de Pós-Graduação em Ciências Veterinárias, Núcleo de Pesquisa em Sanidade Animal, Universidade Estadual do Ceará, Brazil; Laboratório de Química de Produtos Naturais (LQPN), Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil; Instituto Federal do Ceará, Campus Itapipoca, Ceará, Brazil
| | - Selene Maia de Morais
- Programa de Pós-Graduação em Ciências Veterinárias, Núcleo de Pesquisa em Sanidade Animal, Universidade Estadual do Ceará, Brazil; Laboratório de Química de Produtos Naturais (LQPN), Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil.
| | - Daniele Silva de Lisboa
- Laboratório de Química de Produtos Naturais (LQPN), Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Matheus de Oliveira Sousa
- Laboratório de Química de Produtos Naturais (LQPN), Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Sacha Aubrey Alves Rodrigues Santos
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, Ceará, Brazil; Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Universidade Estadual do Ceará (UECE), Tauá, Ceará, Brazil
| | - Francisco Ernani Alves Magalhães
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, Ceará, Brazil; Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Universidade Estadual do Ceará (UECE), Tauá, Ceará, Brazil
| | - Adriana Rolim Campos
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, Ceará, Brazil
| |
Collapse
|
41
|
Morlion B, Coluzzi F, Aldington D, Kocot-Kepska M, Pergolizzi J, Mangas AC, Ahlbeck K, Kalso E. Pain chronification: what should a non-pain medicine specialist know? Curr Med Res Opin 2018. [PMID: 29513044 DOI: 10.1080/03007995.2018.1449738] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Pain is one of the most common reasons for an individual to consult their primary care physician, with most chronic pain being treated in the primary care setting. However, many primary care physicians/non-pain medicine specialists lack enough awareness, education and skills to manage pain patients appropriately, and there is currently no clear, common consensus/formal definition of "pain chronification". METHODS This article, based on an international Change Pain Chronic Advisory Board meeting which was held in Wiesbaden, Germany, in October 2016, provides primary care physicians/non-pain medicine specialists with a narrative overview of pain chronification, including underlying physiological and psychosocial processes, predictive factors for pain chronification, a brief summary of preventive strategies, and the role of primary care physicians and non-pain medicine specialists in the holistic management of pain chronification. RESULTS Based on currently available evidence, we propose the following consensus-based definition of pain chronification which provides a common framework to raise awareness among non-pain medicine specialists: "Pain chronification describes the process of transient pain progressing into persistent pain; pain processing changes as a result of an imbalance between pain amplification and pain inhibition; genetic, environmental and biopsychosocial factors determine the risk, the degree, and time-course of chronification." CONCLUSIONS Early intervention plays an important role in preventing pain chronification and, as key influencers in the management of patients with acute pain, it is critical that primary care physicians are equipped with the necessary awareness, education and skills to manage pain patients appropriately.
Collapse
Affiliation(s)
- Bart Morlion
- a Leuven Centre for Algology & Pain Management , University Hospitals Leuven , KU Leuven , Belgium
| | - Flaminia Coluzzi
- b Department of Medical and Surgical Sciences and Biotechnologies Unit of Anaesthesia, Intensive Care and Pain Medicine , Sapienza University of Rome , Rome , Italy
| | | | - Magdalena Kocot-Kepska
- d Department of Pain Research and Treatment , Jagiellonian University Medical College , Kraków , Poland
| | - Joseph Pergolizzi
- e Global Pain Initiative, Golden, CO, USA and Naples Anesthesia and Pain Associates , Naples , FL , USA
| | | | | | - Eija Kalso
- h Pain Clinic, Departments of Anaesthesiology , Intensive Care, and Pain Medicine, Helsinki University Central Hospital , Helsinki , Finland
| |
Collapse
|
42
|
Monge-Fuentes V, Arenas C, Galante P, Gonçalves JC, Mortari MR, Schwartz EF. Arthropod toxins and their antinociceptive properties: From venoms to painkillers. Pharmacol Ther 2018; 188:176-185. [PMID: 29605457 DOI: 10.1016/j.pharmthera.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The complex process of pain control commonly involves the use of systemic analgesics; however, in many cases, a more potent and effective polypharmacological approach is needed to promote clinically significant improvement. Additionally, considering side effects caused by current painkillers, drug discovery is once more turning to nature as a source of more efficient therapeutic alternatives. In this context, arthropod venoms contain a vast array of bioactive substances that have evolved to selectively bind to specific pharmacological targets involved in the pain signaling pathway, playing an important role as pain activators or modulators, the latter serving as promising analgesic agents. The current review explores how the pain pathway works and surveys neuroactive compounds obtained from arthropods' toxins, which function as pain modulators through their interaction with specific ion channels and membrane receptors, emerging as promising candidates for drug design and development.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil.
| | - Claudia Arenas
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Priscilla Galante
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Jacqueline Coimbra Gonçalves
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
43
|
Anversa RG, Sousa FSS, Birmann PT, Lima DB, Lenardão EJ, Bruning CA, Savegnago L. Antinociceptive and anti-inflammatory effects of 1,2-bis-(4 methoxyphenylselanyl) styrene in mice: involvement of the serotonergic system. J Pharm Pharmacol 2018; 70:901-909. [PMID: 29582424 DOI: 10.1111/jphp.12907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pain is one of the most prevalent, costly and disabling conditions that reduces quality of life. Although there are many analgesics available, there is some concern regarding their efficacy, safety and side effects. Organic selenium compounds are attractive targets of various research groups due to their pharmacological properties. OBJECTIVES The aim of this study was to evaluate the antinociceptive and anti-inflammatory activity of 1,2-bis-(4-methoxyphenylselanyl) styrene (BMOSE) in mice, as well as to investigate the mechanism involved in the antinociceptive effect. METHODS The animals were submitted to the formalin and glutamate tests. The assessment of the possible involvement of the serotonergic system in BMOSE antinociceptive activity was performed using the glutamate test. Also, we investigated the possible toxicity of the compound. KEY FINDINGS 1,2-bis-(4-methoxyphenylselanyl) styrene (0.1-50 mg/kg, i.g.) was efficient in avoiding nociception induced by glutamate and formalin and also reduced paw oedema. The possible involvement of 5-HT3 serotoninergic receptor antagonist ondansetron blocked the antinociceptive effect of BMOSE. The acute toxicity assays did not show any toxicity related to the administration of BMOSE (200 mg/kg). CONCLUSIONS It is possible to conclude that BMOSE has both antinociceptive and anti-inflammatory activity, and the serotoninergic system, more specifically, the 5-HT3 receptor, is involved in the effect.
Collapse
Affiliation(s)
- Roberta Gonçalves Anversa
- Grupo de Pesquisa em Neurobiotecnologia - GPN- Centro de Desenvolvimento Tecnológico, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Fernanda Severo Sabedra Sousa
- Grupo de Pesquisa em Neurobiotecnologia - GPN-Programa de Pós Graduação em Bioquímica e Bioprospecção, PPGBBio, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Paloma Taborda Birmann
- Grupo de Pesquisa em Neurobiotecnologia - GPN-Programa de Pós Graduação em Bioquímica e Bioprospecção, PPGBBio, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - David Borba Lima
- Laboratório de Síntese Orgânica Limpa- LASOL, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa- LASOL, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - César Augusto Bruning
- Grupo de Pesquisa em Neurobiotecnologia - GPN-Programa de Pós Graduação em Bioquímica e Bioprospecção, PPGBBio, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN- Centro de Desenvolvimento Tecnológico, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| |
Collapse
|
44
|
Zhang L, Zhao Y, Wang J, Yang D, Zhao C, Wang C, Ma C, Cheng M. Design, synthesis and bioevaluation of 1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline-1-carboxylic acid derivatives as potent neuroprotective agents. Eur J Med Chem 2018; 151:27-38. [PMID: 29604542 DOI: 10.1016/j.ejmech.2018.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
Abstract
Diverse of 1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline-1-carboxylic acid derivatives were designed, synthesized and evaluated for their neuroprotective activity against NMDA-induced cytotoxicity in vitro, and 5q exhibited excellent neuroprotective activity. The compound 5q was selected for further investigation. We found that 5q could attenuate Ca2+ influx induced by NMDA, meanwhile, 5q could suppress the NR2B up-regulation and increase p-ERK1/2 expression. The molecular docking results showed that 5q might fit well in the binding pocket of 4 and interact with some key residues in the binding pocket of 1 simultaneously. Besides, 5q exhibited acceptable metabolic stability. These results suggested that 5q was a promising lead for further development of new potent and orally bioavailable NR2B-selective NMDAR antagonists.
Collapse
Affiliation(s)
- Linkui Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ying Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Donglin Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chenwen Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Changli Wang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenhe District, Shenyang, 110840, PR China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| |
Collapse
|
45
|
Antinociceptive Activity of Methanolic Extract of Clinacanthus nutans Leaves: Possible Mechanisms of Action Involved. Pain Res Manag 2018; 2018:9536406. [PMID: 29686743 PMCID: PMC5857305 DOI: 10.1155/2018/9536406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Abstract
Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been proven to possess antinociceptive activity that works via the opioid and NO-dependent/cGMP-independent pathways. In the present study, we aimed to further determine the possible mechanisms of antinociception of MECN using various nociceptive assays. The antinociceptive activity of MECN was (i) tested against capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged against selective antagonist of opioid receptor subtypes (β-funaltrexamine, naltrindole, and nor-binaltorphimine); (iii) prechallenged against antagonist of nonopioid systems, namely, α2-noradrenergic (yohimbine), β-adrenergic (pindolol), adenosinergic (caffeine), dopaminergic (haloperidol), and cholinergic (atropine) receptors; (iv) prechallenged with inhibitors of various potassium channels (glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride). The results demonstrated that the orally administered MECN (100, 250, and 500 mg/kg) significantly (p < 0.05) reversed the nociceptive effect of all models in a dose-dependent manner. Moreover, the antinociceptive activity of 500 mg/kg MECN was significantly (p < 0.05) inhibited by (i) antagonists of μ-, δ-, and κ-opioid receptors; (ii) antagonists of α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and (iii) blockers of different K+ channels (voltage-activated-, Ca2+-activated, and ATP-sensitive-K+ channels, resp.). In conclusion, MECN-induced antinociception involves modulation of protein kinase C-, bradykinin-, TRVP1 receptors-, and glutamatergic-signaling pathways; opioidergic, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and nonopioidergic receptors as well as the opening of various K+ channels. The antinociceptive activity could be associated with the presence of several flavonoid-based bioactive compounds and their synergistic action with nonvolatile bioactive compounds.
Collapse
|
46
|
Mironova YS, Zhukova NG, Zhukova IA, Alifirova VM, Izhboldina OP, Latypova AV. Parkinson's disease and glutamatergic system. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:138-142. [DOI: 10.17116/jnevro201811851138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Dallazen JL, da Silva CF, Hamm L, Córdova MM, Santos ARS, Werner MFP, Baggio CH. Further Antinociceptive Properties of Naringenin on Acute and Chronic Pain in Mice. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Naringenin (NG) is a flavanone abundant in grapefruit and other citrus fruits that presents several pharmacological effects, such as antioxidant, anti-inflammatory, analgesic, among others. We investigated the antinociception of systemic administration of naringenin (NG) and some of the mechanisms of action underlying its effect. Intraperitoneal administration of NG (10 mg/kg) inhibited the mechanical allodynia induced by partial sciatic nerve ligation (PSNL) and carrageenan in 65 ± 4 and 43 ± 9% (2 h), respectively. NG also reduced the writhes number (30 mg/kg: 90 ± 9%) and the nociceptive response of formalin (100 mg/kg: 75 ± 12%, inflammatory phase), bradykinin (30 mg/kg: 79 ± 6%) and prostaglandin E2 (100 mg/kg: 98 ± 1%). Besides, NG reduced the glutamate-induced nociception with ID50 value of 66 mg/kg, effect that was reversed by naloxone. NG, at antinociceptive doses, did not affect the locomotor activity. Our findings demonstrated that systemic NG exerts anti-allodynic activity in neuropathic pain model and antinociceptive effect in several chemical and inflammatory models of nociception, with participation of glutamatergic and opioid system.
Collapse
Affiliation(s)
- Jorge L. Dallazen
- Department of Pharmacology, Federal University of Parana, 81531-980, Curitiba, PR, Brazil
| | - Carla F. da Silva
- Department of Pharmacology, Federal University of Parana, 81531-980, Curitiba, PR, Brazil
| | - Leticia Hamm
- Department of Pharmacology, Federal University of Parana, 81531-980, Curitiba, PR, Brazil
| | - Marina M. Córdova
- Department of Physiological Sciences, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Adair R. S. Santos
- Department of Physiological Sciences, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | | | - Cristiane H. Baggio
- Department of Pharmacology, Federal University of Parana, 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
48
|
Khariv V, Elkabes S. Contribution of Plasma Membrane Calcium ATPases to neuronal maladaptive responses: Focus on spinal nociceptive mechanisms and neurodegeneration. Neurosci Lett 2017; 663:60-65. [PMID: 28780172 DOI: 10.1016/j.neulet.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
Plasma membrane calcium ATPases (PMCAs) are ion pumps that expel Ca2+ from cells and maintain Ca2+ homeostasis. Four isoforms and multiple splice variants play important and non-overlapping roles in cellular function and integrity and have been implicated in diseases including disorders of the central nervous system (CNS). In particular, one of these isoforms, PMCA2, is critical for spinal cord (SC) neuronal function. PMCA2 expression is decreased in SC neurons at onset of symptoms in animal models of multiple sclerosis. Decreased PMCA2 expression affects the function and viability of SC neurons, with motor neurons being the most vulnerable population. Recent studies have also shown that PMCA2 could be an important contributor to pain processing in the dorsal horn (DH) of the SC. Pain sensitivity was altered in female, but not male, PMCA2+/- mice compared to PMCA2+/+ littermates in a modality-dependent manner. Changes in pain responsiveness in the female PMCA2+/- mice were paralleled by female-specific alterations in the expression of effectors, which have been implicated in the excitability of DH neurons, in mechanisms governing nociception and in the transmission of pain signals. Other PMCA isoforms and in particular, PMCA4, also contribute to the excitability of neurons in the dorsal root ganglia (DRG), which contain the first-order sensory neurons that convey nociceptive information from the periphery to the DH. These findings suggest that specific PMCA isoforms play specialized functions in neurons that mediate pain processing. Further investigations are necessary to unravel the precise contribution of PMCAs to mechanisms governing pathological pain in models of injury and disease.
Collapse
Affiliation(s)
- Veronika Khariv
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States; Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Stella Elkabes
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
49
|
Ochoa-Aguilar A, Sotomayor-Sobrino MA, Jaimez R, Rodríguez R, Plancarte-Sánchez R, Ventura-Martinez R. Antiallodynic Activity of Ceftriaxone and Clavulanic Acid in Acute Administration is Associated with Serum TNF-α Modulation and Activation of Dopaminergic and Opioidergic Systems. Drug Dev Res 2017; 78:105-115. [PMID: 28345130 DOI: 10.1002/ddr.21381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/02/2023]
Abstract
Preclinical Research The aim of this study was to determine the antiallodynic effect of acute administration of the β-lactam antimicrobials, ceftriaxone (CFX) and clavulanic acid (CLAV), for the control of established pain on a model of neuropathic pain (NP). We also investigated the involvement of dopaminergic and opioidergic pathways as well as alterations in serum concentrations of TNF-α in the antiallodynic actions of these drugs. CFX, CLAV, or gabapentin (GAP), a reference drug, were administered i.p. twelve days after constriction of the sciatic nerve in rats. Mechanic and cold allodynia were evaluated for 3 h and alterations in serum concentration of TNF-α determined. Both CFX and CLAV had antiallodynic effects in response to mechanical and cold stimulation, similar to GAP. The antiallodynic effects of CFX and CLAV were blocked by haloperidol (HAL), a D2 receptor antagonist, and by naloxone (NLX), an opioid receptor antagonist. Additionally, serum TNF-α levels were attenuated following CFX and CLAV administration. These results suggest that acute administration of CFX and CLAV may represent a promising approach for treating the acute allodynia of NP, and that the mechanisms involved in these effects involve activation of dopaminergic and opioidergic pathways as well as modulation of TNF-α production. Drug Dev Res 78 : 105-115, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Ochoa-Aguilar
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| | - M A Sotomayor-Sobrino
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| | - R Jaimez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| | - R Rodríguez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| | | | - R Ventura-Martinez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| |
Collapse
|
50
|
Chen A, Hu WW, Jiang XL, Potegal M, Li H. Molecular mechanisms of group I metabotropic glutamate receptor mediated LTP and LTD in basolateral amygdala in vitro. Psychopharmacology (Berl) 2017; 234:681-694. [PMID: 28028604 DOI: 10.1007/s00213-016-4503-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022]
Abstract
The roles of group I metabotropic glutamate receptors, metabotropic glutamate receptor 1 (mGluR1) and mGluR5, in regulating synaptic plasticity and metaplasticity in the basolateral amygdala (BLA) remain unclear. The present study examined mGluR1- and mGluR5-mediated synaptic plasticity in the BLA and their respective signaling mechanisms. Bath application of the group I mGluR agonist, 3,5-dihydroxyphenylglycine (DHPG) (20 μM), directly suppressed basal fEPSPs (84.5 ± 6.3% of the baseline). The suppressive effect persisted for at least 30 min after washout; it was abolished by the mGluR1 antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) but was unaffected by the mGluR5 antagonist 2-methyl-6- (phenylethynyl)-pyridine (MPEP). Interestingly, application of DHPG (at both 2 and 20 μM), regardless of the presence of CPCCOEt, could transform single theta burst stimulation (TBS)-induced short-term synaptic potentiation into a long-term potentiation (LTP). Such a facilitating effect could be blocked by the mGluR5 antagonist MPEP. Blockade of phospholipase C (PLC), the downstream enzyme of group I mGluR, with U73122, prevented both mGluR1- and mGluR5-mediated effects on synaptic plasticity. Nevertheless, blockade of protein kinase C (PKC), the downstream enzyme of PLC, with chelerythrine (5 μM) only prevented the transforming effect of DHPG on TBS-induced LTP and did not affect DHPG-induced long-term depression (LTD). These results suggest that mGluR1 activation induced LTD via a PLC-dependent and PKC-independent mechanism, while the priming action of mGluR5 receptor on the BLA LTP is both PLC and PKC dependent. The BLA metaplasticity mediated by mGluR1 and mGluR5 may provide signal switching mechanisms mediating learning and memory with emotional significance.
Collapse
Affiliation(s)
- A Chen
- Department of Physiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - W W Hu
- Department of Physiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - X L Jiang
- Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4799, USA
| | - M Potegal
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - H Li
- Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4799, USA.
| |
Collapse
|